On the well-posedness for Keller-Segel system with fractional diffusion

Communicated by M. Costabel In this paper, we study the Cauchy problem for the Keller–Segel system with fractional diffusion generalizing the Keller–Segel model of chemotaxis for the initial data (u0,v0) in critical Fourier‐Herz spaces B˙q2−2αRn×B˙q2−2αRn with q ∈ [2, ∞], where 1 < α ≤ 2. Making...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences Vol. 34; no. 14; pp. 1739 - 1750
Main Authors: Wu, Gang, Zheng, Xiaoxin
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 30.09.2011
Wiley
Subjects:
ISSN:0170-4214, 1099-1476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Communicated by M. Costabel In this paper, we study the Cauchy problem for the Keller–Segel system with fractional diffusion generalizing the Keller–Segel model of chemotaxis for the initial data (u0,v0) in critical Fourier‐Herz spaces B˙q2−2αRn×B˙q2−2αRn with q ∈ [2, ∞], where 1 < α ≤ 2. Making use of some estimates of the linear dissipative equation in the frame of mixed time‐space spaces, the Chemin ‘mono‐norm method’, the Fourier localization technique and the Littlewood–Paley theory, we get a local well‐posedness result and a global well‐posedness result with a small initial data. In addition, ill‐posedness for ‘doubly parabolic’ models is also studied. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList Communicated by M. Costabel In this paper, we study the Cauchy problem for the Keller–Segel system with fractional diffusion generalizing the Keller–Segel model of chemotaxis for the initial data (u0,v0) in critical Fourier‐Herz spaces B˙q2−2αRn×B˙q2−2αRn with q ∈ [2, ∞], where 1 < α ≤ 2. Making use of some estimates of the linear dissipative equation in the frame of mixed time‐space spaces, the Chemin ‘mono‐norm method’, the Fourier localization technique and the Littlewood–Paley theory, we get a local well‐posedness result and a global well‐posedness result with a small initial data. In addition, ill‐posedness for ‘doubly parabolic’ models is also studied. Copyright © 2011 John Wiley & Sons, Ltd.
Author Wu, Gang
Zheng, Xiaoxin
Author_xml – sequence: 1
  givenname: Gang
  surname: Wu
  fullname: Wu, Gang
  email: wugangmaths@yahoo.com.cn, Gang Wu, Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China., wugangmaths@yahoo.com.cn
  organization: Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
– sequence: 2
  givenname: Xiaoxin
  surname: Zheng
  fullname: Zheng, Xiaoxin
  organization: The Graduate School of China Academy of Engineering Physics, P.O. Box 2101, Beijing, China 100088
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24442062$$DView record in Pascal Francis
BookMark eNp1kF1LwzAUhoNMcJuCPyE3gjed-WraXs6hVdwcouJlSNPERbN2JJW5f2_GVFD06hwOz3l5eQag17SNBuAYoxFGiJwtl3KEWY72QB-jokgwy3gP9BHOUMIIZgdgEMILQijHmPRBOW9gt9BwrZ1LVm3QdaNDgKb18CaetE_u9bN2MGxCp5dwbbsFNF6qzraNdLC2xryFuB-CfSNd0EefcwgeLy8eJlfJdF5eT8bTRFFKUYJxISlRUqeEZmmGWK54JTOW15mqOKl5RSrFccSwSVFRG4ZwYQqak7SKG6dDcLLLXcmgpItVGmWDWHm7lH4jCGOMIE4iN9pxyrcheG2Esp3ctu68tE5gJLa6RNQltrriw-mvh6_MP9Bkh66t05t_OTGbjX_yNjp8_-alfxU8ixrE020pzu8oK1mRi5x-AHtyiHY
CODEN MMSCDB
CitedBy_id crossref_primary_10_1016_j_na_2019_01_014
crossref_primary_10_1007_s10231_017_0691_y
crossref_primary_10_1007_s10440_022_00489_8
crossref_primary_10_1007_s00009_025_02933_z
crossref_primary_10_1080_00036811_2018_1501030
crossref_primary_10_3390_fractalfract7030209
crossref_primary_10_11648_j_acm_20251403_13
crossref_primary_10_1016_j_jde_2016_11_028
crossref_primary_10_1007_s40590_024_00653_0
crossref_primary_10_1002_mma_8475
crossref_primary_10_1002_mma_8585
crossref_primary_10_1016_j_chaos_2019_109462
crossref_primary_10_1007_s00033_025_02442_9
crossref_primary_10_1016_j_na_2019_111624
crossref_primary_10_1016_j_aim_2016_03_011
crossref_primary_10_1016_j_jmaa_2021_124943
crossref_primary_10_1007_s10440_020_00374_2
crossref_primary_10_1016_j_na_2021_112750
crossref_primary_10_1016_j_camwa_2019_05_018
crossref_primary_10_1016_j_nonrwa_2021_103389
crossref_primary_10_1016_j_nonrwa_2021_103485
Cites_doi 10.1016/j.jfa.2008.07.008
10.1016/j.jfa.2005.08.004
10.1137/S0036139996313447
10.4064/bc74-0-9
10.4310/CMS.2008.v6.n2.a8
10.1006/jdeq.2001.4146
10.3233/ASY-2008-0907
10.1016/j.jmaa.2011.02.010
10.1016/j.jmaa.2007.09.060
10.1002/mana.200410472
10.4064/bc74-0-2
10.1016/j.jfa.2010.02.005
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/mma.1480
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 1750
ExternalDocumentID 24442062
10_1002_mma_1480
MMA1480
ark_67375_WNG_BQ34G498_8
Genre article
GrantInformation_xml – fundername: Chinese Postdoctoral Science Foundation
  funderid: 20090460553
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
ACSCC
AGHNM
AMVHM
GBZZK
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
ID FETCH-LOGICAL-c3330-119a32cae523757048c6ba748d7cb62d6b2bc611191f509df4019f93825b01963
IEDL.DBID DRFUL
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000294324900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0170-4214
IngestDate Mon Jul 21 09:15:10 EDT 2025
Sat Nov 29 01:33:49 EST 2025
Tue Nov 18 22:25:19 EST 2025
Sun Sep 21 06:22:17 EDT 2025
Tue Nov 11 03:32:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Keller-Segel model
Numerical linear algebra
Fourier analysis
Evolution equation
Well posed problem
Littlewood Paley theory
Mathematical method
Cauchy problem
Non linear equation
Regularization method
Parabolic equation
Numerical analysis
fractional diffusion
Linear equation
III-posedness
Applied mathematics
nonlinear parabolic equations
Ill posed problem
Localization
nonlinear evolution equations
Well-posedness
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3330-119a32cae523757048c6ba748d7cb62d6b2bc611191f509df4019f93825b01963
Notes Chinese Postdoctoral Science Foundation - No. 20090460553
istex:DAAB3592B02342C1BD3920DA905A7BAACEA5AF7A
ArticleID:MMA1480
ark:/67375/WNG-BQ34G498-8
PageCount 12
ParticipantIDs pascalfrancis_primary_24442062
crossref_citationtrail_10_1002_mma_1480
crossref_primary_10_1002_mma_1480
wiley_primary_10_1002_mma_1480_MMA1480
istex_primary_ark_67375_WNG_BQ34G498_8
PublicationCentury 2000
PublicationDate 30 September 2011
PublicationDateYYYYMMDD 2011-09-30
PublicationDate_xml – month: 09
  year: 2011
  text: 30 September 2011
  day: 30
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Mathematical methods in the applied sciences
PublicationTitleAlternate Math. Meth. Appl. Sci
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Raczyński A. Stability property of the two-dimensional Keller-Segel model. Asymptotic Analysis 2009; 61:35-59.
Calvez V, Corrias L. The parabolic-parabolic Keller-Segel model in ℝ2. Communications in Mathematical Sciences 2008; 6(2):417-447.
Biler P, Woyczyński WA. Global and exploding solutions for nonlocal quadratic evolution problems. SIAM Journal on Applied Mathematics 1998; 59:845-869.
Iwabuchi T. Global well-posedness for Keller-Segel system in Besov type spaces. Journal of Mathematical Analysis and Applications 2011; 379(2):930-948.
Bejenaru I, Tao T. Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrodinger equation. Journal of Functional Analysis 2006; 233(1):228-259.
Wu G, Yuan J. Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces. Journal of Mathematical Analysis and Applications 2008; 340:1326-1335.
Biler P. Local and global solvability of parabolic systems modelling chemotaxis. Advances in Mathematical Sciences and Applications 1998; 8:715-743.
Naito Y, Suzuki T, Yoshida K. Self-similar solutions to a parabolic system modeling chemotaxis. Journal of Differential Equations 2002; 184:386-421.
Yoneda T. Ill-posedness of the 3D-Navier-Stokes equations in a generalized Besov space near BMO−1. Journal of Functional Analysis 2010; 258(10):3376-3387.
Miao C, Yuan B. Solutions to some nonlinear parabolic equations in pseudomeasure spaces. Mathematische Nachrichten 2007; 280:171-186.
Bourgain J, Pavlovic N. Ill-posedness of the Navier-Stokes equations in a critical space in 3D. Journal of Functional Analysis 2008; 255(9):2233-2247.
Stein EM. Singular Integrals and Differentiability Properties of Functions. Princeton University Press: Princeton, NJ, 1970.
2011; 379
1998; 59
2006; 74
2002; 184
2007; 280
2009; 61
2010; 258
2008; 6
2004
1970
2008; 255
2008; 340
2006; 233
1998; 8
Bejenaru (10.1002/mma.1480-BIB0015|mma1480-cit-0015) 2006; 233
Cannone (10.1002/mma.1480-BIB0012|mma1480-cit-0012) 2004
Wu (10.1002/mma.1480-BIB0010|mma1480-cit-0010) 2008; 340
Naito (10.1002/mma.1480-BIB0005|mma1480-cit-0005) 2002; 184
Yoneda (10.1002/mma.1480-BIB0009|mma1480-cit-0009) 2010; 258
Bourgain (10.1002/mma.1480-BIB0008|mma1480-cit-0008) 2008; 255
Stein (10.1002/mma.1480-BIB0011|mma1480-cit-0011) 1970
Iwabuchi (10.1002/mma.1480-BIB0001|mma1480-cit-0001) 2011; 379
Biler (10.1002/mma.1480-BIB0002|mma1480-cit-0002) 1998; 59
Naito (10.1002/mma.1480-BIB0006|mma1480-cit-0006) 2006; 74
Miao (10.1002/mma.1480-BIB0013|mma1480-cit-0013) 2007; 280
Calvez (10.1002/mma.1480-BIB0003|mma1480-cit-0003) 2008; 6
Biler (10.1002/mma.1480-BIB0007|mma1480-cit-0007) 2006; 74
Raczyński (10.1002/mma.1480-BIB0014|mma1480-cit-0014) 2009; 61
Biler (10.1002/mma.1480-BIB0004|mma1480-cit-0004) 1998; 8
References_xml – reference: Biler P, Woyczyński WA. Global and exploding solutions for nonlocal quadratic evolution problems. SIAM Journal on Applied Mathematics 1998; 59:845-869.
– reference: Miao C, Yuan B. Solutions to some nonlinear parabolic equations in pseudomeasure spaces. Mathematische Nachrichten 2007; 280:171-186.
– reference: Iwabuchi T. Global well-posedness for Keller-Segel system in Besov type spaces. Journal of Mathematical Analysis and Applications 2011; 379(2):930-948.
– reference: Bejenaru I, Tao T. Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrodinger equation. Journal of Functional Analysis 2006; 233(1):228-259.
– reference: Wu G, Yuan J. Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces. Journal of Mathematical Analysis and Applications 2008; 340:1326-1335.
– reference: Biler P. Local and global solvability of parabolic systems modelling chemotaxis. Advances in Mathematical Sciences and Applications 1998; 8:715-743.
– reference: Stein EM. Singular Integrals and Differentiability Properties of Functions. Princeton University Press: Princeton, NJ, 1970.
– reference: Naito Y, Suzuki T, Yoshida K. Self-similar solutions to a parabolic system modeling chemotaxis. Journal of Differential Equations 2002; 184:386-421.
– reference: Calvez V, Corrias L. The parabolic-parabolic Keller-Segel model in ℝ2. Communications in Mathematical Sciences 2008; 6(2):417-447.
– reference: Bourgain J, Pavlovic N. Ill-posedness of the Navier-Stokes equations in a critical space in 3D. Journal of Functional Analysis 2008; 255(9):2233-2247.
– reference: Raczyński A. Stability property of the two-dimensional Keller-Segel model. Asymptotic Analysis 2009; 61:35-59.
– reference: Yoneda T. Ill-posedness of the 3D-Navier-Stokes equations in a generalized Besov space near BMO−1. Journal of Functional Analysis 2010; 258(10):3376-3387.
– volume: 74
  start-page: 149
  year: 2006
  end-page: 160
– volume: 255
  start-page: 2233
  issue: 9
  year: 2008
  end-page: 2247
  article-title: Ill‐posedness of the Navier‐Stokes equations in a critical space in 3D
  publication-title: Journal of Functional Analysis
– volume: 280
  start-page: 171
  year: 2007
  end-page: 186
  article-title: Solutions to some nonlinear parabolic equations in pseudomeasure spaces
  publication-title: Mathematische Nachrichten
– volume: 74
  start-page: 33
  year: 2006
  end-page: 40
– volume: 379
  start-page: 930
  issue: 2
  year: 2011
  end-page: 948
  article-title: Global well‐posedness for Keller–Segel system in Besov type spaces
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 184
  start-page: 386
  year: 2002
  end-page: 421
  article-title: Self‐similar solutions to a parabolic system modeling chemotaxis
  publication-title: Journal of Differential Equations
– volume: 61
  start-page: 35
  year: 2009
  end-page: 59
  article-title: Stability property of the two‐dimensional Keller‐Segel model
  publication-title: Asymptotic Analysis
– volume: 59
  start-page: 845
  year: 1998
  end-page: 869
  article-title: Global and exploding solutions for nonlocal quadratic evolution problems
  publication-title: SIAM Journal on Applied Mathematics
– volume: 8
  start-page: 715
  year: 1998
  end-page: 743
  article-title: Local and global solvability of parabolic systems modelling chemotaxis
  publication-title: Advances in Mathematical Sciences and Applications
– volume: 233
  start-page: 228
  issue: 1
  year: 2006
  end-page: 259
  article-title: Sharp well‐posedness and ill‐posedness results for a quadratic non‐linear Schrodinger equation
  publication-title: Journal of Functional Analysis
– start-page: 161
  year: 2004
  end-page: 244
– year: 1970
– volume: 6
  start-page: 417
  issue: 2
  year: 2008
  end-page: 447
  article-title: The parabolic‐parabolic Keller–Segel model in ℝ
  publication-title: Communications in Mathematical Sciences
– volume: 340
  start-page: 1326
  year: 2008
  end-page: 1335
  article-title: Well‐posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 258
  start-page: 3376
  issue: 10
  year: 2010
  end-page: 3387
  article-title: Ill‐posedness of the 3D‐Navier–Stokes equations in a generalized Besov space near
  publication-title: Journal of Functional Analysis
– volume-title: Singular Integrals and Differentiability Properties of Functions
  year: 1970
  ident: 10.1002/mma.1480-BIB0011|mma1480-cit-0011
– volume: 255
  start-page: 2233
  issue: 9
  year: 2008
  ident: 10.1002/mma.1480-BIB0008|mma1480-cit-0008
  article-title: Ill-posedness of the Navier-Stokes equations in a critical space in 3D
  publication-title: Journal of Functional Analysis
  doi: 10.1016/j.jfa.2008.07.008
– volume: 233
  start-page: 228
  issue: 1
  year: 2006
  ident: 10.1002/mma.1480-BIB0015|mma1480-cit-0015
  article-title: Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrodinger equation
  publication-title: Journal of Functional Analysis
  doi: 10.1016/j.jfa.2005.08.004
– volume: 59
  start-page: 845
  year: 1998
  ident: 10.1002/mma.1480-BIB0002|mma1480-cit-0002
  article-title: Global and exploding solutions for nonlocal quadratic evolution problems
  publication-title: SIAM Journal on Applied Mathematics
  doi: 10.1137/S0036139996313447
– volume: 74
  start-page: 149
  volume-title: Self-similar Solutions in Nonlinear PDE
  year: 2006
  ident: 10.1002/mma.1480-BIB0006|mma1480-cit-0006
  doi: 10.4064/bc74-0-9
– volume: 6
  start-page: 417
  issue: 2
  year: 2008
  ident: 10.1002/mma.1480-BIB0003|mma1480-cit-0003
  article-title: The parabolic-parabolic Keller-Segel model in ℝ2
  publication-title: Communications in Mathematical Sciences
  doi: 10.4310/CMS.2008.v6.n2.a8
– volume: 184
  start-page: 386
  year: 2002
  ident: 10.1002/mma.1480-BIB0005|mma1480-cit-0005
  article-title: Self-similar solutions to a parabolic system modeling chemotaxis
  publication-title: Journal of Differential Equations
  doi: 10.1006/jdeq.2001.4146
– volume: 61
  start-page: 35
  year: 2009
  ident: 10.1002/mma.1480-BIB0014|mma1480-cit-0014
  article-title: Stability property of the two-dimensional Keller-Segel model
  publication-title: Asymptotic Analysis
  doi: 10.3233/ASY-2008-0907
– start-page: 161
  volume-title: Handbook of Mathematical Fluid Dynamics
  year: 2004
  ident: 10.1002/mma.1480-BIB0012|mma1480-cit-0012
– volume: 379
  start-page: 930
  issue: 2
  year: 2011
  ident: 10.1002/mma.1480-BIB0001|mma1480-cit-0001
  article-title: Global well-posedness for Keller-Segel system in Besov type spaces
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/j.jmaa.2011.02.010
– volume: 340
  start-page: 1326
  year: 2008
  ident: 10.1002/mma.1480-BIB0010|mma1480-cit-0010
  article-title: Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/j.jmaa.2007.09.060
– volume: 280
  start-page: 171
  year: 2007
  ident: 10.1002/mma.1480-BIB0013|mma1480-cit-0013
  article-title: Solutions to some nonlinear parabolic equations in pseudomeasure spaces
  publication-title: Mathematische Nachrichten
  doi: 10.1002/mana.200410472
– volume: 74
  start-page: 33
  volume-title: Self-similar Solutions in Nonlinear PDE
  year: 2006
  ident: 10.1002/mma.1480-BIB0007|mma1480-cit-0007
  doi: 10.4064/bc74-0-2
– volume: 258
  start-page: 3376
  issue: 10
  year: 2010
  ident: 10.1002/mma.1480-BIB0009|mma1480-cit-0009
  article-title: Ill-posedness of the 3D-Navier-Stokes equations in a generalized Besov space near BMO−1
  publication-title: Journal of Functional Analysis
  doi: 10.1016/j.jfa.2010.02.005
– volume: 8
  start-page: 715
  year: 1998
  ident: 10.1002/mma.1480-BIB0004|mma1480-cit-0004
  article-title: Local and global solvability of parabolic systems modelling chemotaxis
  publication-title: Advances in Mathematical Sciences and Applications
SSID ssj0008112
Score 2.0589705
Snippet Communicated by M. Costabel In this paper, we study the Cauchy problem for the Keller–Segel system with fractional diffusion generalizing the Keller–Segel...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 1739
SubjectTerms Exact sciences and technology
fractional diffusion
Functional analysis
Global analysis, analysis on manifolds
Ill-posedness
Keller-Segel model
Mathematical analysis
Mathematics
nonlinear evolution equations
nonlinear parabolic equations
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Partial differential equations
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Well-posedness
Title On the well-posedness for Keller-Segel system with fractional diffusion
URI https://api.istex.fr/ark:/67375/WNG-BQ34G498-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.1480
Volume 34
WOSCitedRecordID wos000294324900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEA5ifdAHtR5YjxJBPB4Wu9ns9ehVBW290bcl14Kotey24mN_guA_9Jc4s7tdKSgIPi2ESbJMMpOZyeQbQjag2XjaZZbyjbS4lKAHeRxbGqFXwsDV3GTo-md-ux3c34cXRVYlvoXJ8SHKgBtKRqavUcCFTHe_QUOfnwWIeQDuegXfVIHjVTm8at6elXo4sLO7TgSIsTiz-RB6tsF2h31HDqMK8vUNkyNFCvyJ88IWo0Zrduo0Z_7zv7NkurA16V6-OapkzHTmyFSrBGpN50i1kO2UbhcA1Dvz5PS8Q4GGYlzvc_DefUmNRo1IwcClpxjpTz4HH9d4205zJGiK4VwaJ_krCZgT6670MRC3QG6bRzcHJ1ZRdMFSjuM0LNsOhcOUMOCh-q4PAq48KXweaF9Jj2lPMqk8G3HhYjA2dAwOWhiHDniaErF2nEUy3nnpmCVC44BpKbjjGSa4ZjqULgwmwKBkSoOdWCNbQ-5HqkAkx8IYT1GOpcwi4FmEPKuR9ZKym6Nw_ECzmS1gSSCSR8xa893orn0c7V86_JiHQRTUSH1khcsOYOlw1vAYjJQt5K9TRa3WHn6X_0q4QibzWDTmmayS8V7SN2tkQr32HtKkXmzcLzLo8do
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB7CbqHtQ9OkLd0eqQqlx4PJWpJtmTylxyZlj14JyZvQZShtNsFOSh_zEwL5h_klnbG9LgstFPpkMCPZjDSjmU_SNwDP8HVIfcIjlwUbSWvRD8qiiDxRr-Qq8TLU7PqTbDZTh4f5xxXYWtyFafghOsCNLKP212TgBEhv_mYNPToyaOcK8_W-TEWmetB_-3m0P-kcsYrrzU5iiIkkj-WCe3bINxdtl1ajPin2J52ONBUqqGgqWyxHrfWyM1r9rx--DbfaaJNtN9NjDVbCfB1uTjuq1mod1lrrrtjLloL61R0Yf5gzlGGE7F2dX5wcV8GTT2QY4rIxYf3l1fnlF9pvZw0XNCNAlxVlc08Cv0mVV84IirsL-6N3e292o7bsQuSEEMMojnMjuDMBc9QsydDEXWpNJpXPnE25Ty23Lo2JGa7AcMMXmKLlRS4w17TEtiPuQW9-PA_3gRWKe2ukSAM30nOf2wQ7MxhScucxUhzAi4X6tWs5yak0xnfdsClzjTrTpLMBPO0kTxoejj_IPK9HsBMw5Tc6t5Yl-mC2o19_EnJH5kqrAWwsDXHXAGMdyYcpx57qkfzrp_R0uk3PB_8q-ASu7-5NJ3ryfjZ-CDcaZJpOnTyC3ml5Fh7DNffj9GtVbrSz-Beq-fXK
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZaxRBEC7Crog-qImGrJqkBfF4GLLT03PhU66NsofxCMlb0ydIks0yk4iP-QmC_zC_JFUzsyMLCoJPA0N1z1DdVf1VdfdXAC_xtUtszAOTOh0IrdEPCu8DS9QreRZb4Sp2_VE6mWQnJ_nhEryb34Wp-SHahBtZRuWvycDdzPqt36yh5-cK7TzDeL0r4jwWHejufR4cjVpHnIXVZicxxASCh2LOPdvnW_O2C6tRlxT7g05HqhIV5OvKFouotVp2Bg__64cfwYMGbbLtenosw5KbrsD9cUvVWq7AcmPdJXvTUFC_fQzDj1OGMowyezfXP2cXpbPkExlCXDakXH9xc_3rC-23s5oLmlFCl_mivieB36TKK1eUinsCR4P9r7vvg6bsQmCiKOoHYZiriBvlMEZN4xRN3CRapSKzqdEJt4nm2iQhMcN5hBvWY4iW-zzCWFMT2060Cp3pxdStAfMZt1qJKHFcCcttrmPsTCGk5MYiUuzB67n6pWk4yak0xpms2ZS5RJ1J0lkPXrSSs5qH4w8yr6oRbAVUcUrn1tJYHk8O5M6nSByIPJNZDzYWhrhtgFhH8H7CsadqJP_6KTkeb9Pz6b8KbsLdw72BHH2YDJ_BvToxTYdOnkPnsrhy63DHfL_8VhYbzSS-BUZK9UU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+well-posedness+for+Keller-Segel+system+with+fractional+diffusion&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=GANG+WU&rft.au=XIAOXIN+ZHENG&rft.date=2011-09-30&rft.pub=Wiley&rft.issn=0170-4214&rft.volume=34&rft.issue=14&rft.spage=1739&rft.epage=1750&rft_id=info:doi/10.1002%2Fmma.1480&rft.externalDBID=n%2Fa&rft.externalDocID=24442062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon