On the well-posedness for Keller-Segel system with fractional diffusion
Communicated by M. Costabel In this paper, we study the Cauchy problem for the Keller–Segel system with fractional diffusion generalizing the Keller–Segel model of chemotaxis for the initial data (u0,v0) in critical Fourier‐Herz spaces B˙q2−2αRn×B˙q2−2αRn with q ∈ [2, ∞], where 1 < α ≤ 2. Making...
Saved in:
| Published in: | Mathematical methods in the applied sciences Vol. 34; no. 14; pp. 1739 - 1750 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester, UK
John Wiley & Sons, Ltd
30.09.2011
Wiley |
| Subjects: | |
| ISSN: | 0170-4214, 1099-1476 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Communicated by M. Costabel
In this paper, we study the Cauchy problem for the Keller–Segel system with fractional diffusion generalizing the Keller–Segel model of chemotaxis for the initial data (u0,v0) in critical Fourier‐Herz spaces B˙q2−2αRn×B˙q2−2αRn with q ∈ [2, ∞], where 1 < α ≤ 2. Making use of some estimates of the linear dissipative equation in the frame of mixed time‐space spaces, the Chemin ‘mono‐norm method’, the Fourier localization technique and the Littlewood–Paley theory, we get a local well‐posedness result and a global well‐posedness result with a small initial data. In addition, ill‐posedness for ‘doubly parabolic’ models is also studied. Copyright © 2011 John Wiley & Sons, Ltd. |
|---|---|
| Bibliography: | Chinese Postdoctoral Science Foundation - No. 20090460553 istex:DAAB3592B02342C1BD3920DA905A7BAACEA5AF7A ArticleID:MMA1480 ark:/67375/WNG-BQ34G498-8 |
| ISSN: | 0170-4214 1099-1476 |
| DOI: | 10.1002/mma.1480 |