On the well-posedness for Keller-Segel system with fractional diffusion

Communicated by M. Costabel In this paper, we study the Cauchy problem for the Keller–Segel system with fractional diffusion generalizing the Keller–Segel model of chemotaxis for the initial data (u0,v0) in critical Fourier‐Herz spaces B˙q2−2αRn×B˙q2−2αRn with q ∈ [2, ∞], where 1 < α ≤ 2. Making...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences Vol. 34; no. 14; pp. 1739 - 1750
Main Authors: Wu, Gang, Zheng, Xiaoxin
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 30.09.2011
Wiley
Subjects:
ISSN:0170-4214, 1099-1476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Communicated by M. Costabel In this paper, we study the Cauchy problem for the Keller–Segel system with fractional diffusion generalizing the Keller–Segel model of chemotaxis for the initial data (u0,v0) in critical Fourier‐Herz spaces B˙q2−2αRn×B˙q2−2αRn with q ∈ [2, ∞], where 1 < α ≤ 2. Making use of some estimates of the linear dissipative equation in the frame of mixed time‐space spaces, the Chemin ‘mono‐norm method’, the Fourier localization technique and the Littlewood–Paley theory, we get a local well‐posedness result and a global well‐posedness result with a small initial data. In addition, ill‐posedness for ‘doubly parabolic’ models is also studied. Copyright © 2011 John Wiley & Sons, Ltd.
Bibliography:Chinese Postdoctoral Science Foundation - No. 20090460553
istex:DAAB3592B02342C1BD3920DA905A7BAACEA5AF7A
ArticleID:MMA1480
ark:/67375/WNG-BQ34G498-8
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.1480