A randomized algorithm for the decomposition of matrices

Given an m × n matrix A and a positive integer k, we describe a randomized procedure for the approximation of A with a matrix Z of rank k. The procedure relies on applying A T to a collection of l random vectors, where l is an integer equal to or slightly greater than k; the scheme is efficient when...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied and computational harmonic analysis Ročník 30; číslo 1; s. 47 - 68
Hlavní autoři: Martinsson, Per-Gunnar, Rokhlin, Vladimir, Tygert, Mark
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 2011
Témata:
ISSN:1063-5203, 1096-603X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Given an m × n matrix A and a positive integer k, we describe a randomized procedure for the approximation of A with a matrix Z of rank k. The procedure relies on applying A T to a collection of l random vectors, where l is an integer equal to or slightly greater than k; the scheme is efficient whenever A and A T can be applied rapidly to arbitrary vectors. The discrepancy between A and Z is of the same order as l m times the ( k + 1 ) st greatest singular value σ k + 1 of A, with negligible probability of even moderately large deviations. The actual estimates derived in the paper are fairly complicated, but are simpler when l − k is a fixed small nonnegative integer. For example, according to one of our estimates for l − k = 20 , the probability that the spectral norm ‖ A − Z ‖ is greater than 10 ( k + 20 ) m σ k + 1 is less than 10 − 17 . The paper contains a number of estimates for ‖ A − Z ‖ , including several that are stronger (but more detailed) than the preceding example; some of the estimates are effectively independent of m. Thus, given a matrix A of limited numerical rank, such that both A and A T can be applied rapidly to arbitrary vectors, the scheme provides a simple, efficient means for constructing an accurate approximation to a singular value decomposition of A. Furthermore, the algorithm presented here operates reliably independently of the structure of the matrix A. The results are illustrated via several numerical examples.
AbstractList Given an m × n matrix A and a positive integer k, we describe a randomized procedure for the approximation of A with a matrix Z of rank k. The procedure relies on applying A T to a collection of l random vectors, where l is an integer equal to or slightly greater than k; the scheme is efficient whenever A and A T can be applied rapidly to arbitrary vectors. The discrepancy between A and Z is of the same order as l m times the ( k + 1 ) st greatest singular value σ k + 1 of A, with negligible probability of even moderately large deviations. The actual estimates derived in the paper are fairly complicated, but are simpler when l − k is a fixed small nonnegative integer. For example, according to one of our estimates for l − k = 20 , the probability that the spectral norm ‖ A − Z ‖ is greater than 10 ( k + 20 ) m σ k + 1 is less than 10 − 17 . The paper contains a number of estimates for ‖ A − Z ‖ , including several that are stronger (but more detailed) than the preceding example; some of the estimates are effectively independent of m. Thus, given a matrix A of limited numerical rank, such that both A and A T can be applied rapidly to arbitrary vectors, the scheme provides a simple, efficient means for constructing an accurate approximation to a singular value decomposition of A. Furthermore, the algorithm presented here operates reliably independently of the structure of the matrix A. The results are illustrated via several numerical examples.
Given an mxn matrix A and a positive integer k, we describe a randomized procedure for the approximation of A with a matrix Z of rank k. The procedure relies on applying A super(T) to a collection of l random vectors, where l is an integer equal to or slightly greater than k; the scheme is efficient whenever A and A super(T) can be applied rapidly to arbitrary vectors. The discrepancy between A and Z is of the same order as [inline image] times the (k+1)st greatest singular value [sigma] sub()k1of A, with negligible probability of even moderately large deviations. The actual estimates derived in the paper are fairly complicated, but are simpler when l-k is a fixed small nonnegative integer. For example, according to one of our estimates for l-k=20, the probability that the spectral norm [inline image]A-Z[inline image] is greater than [inline image] is less than 10 super(-17). The paper contains a number of estimates for [inline image]A-Z[inline image], including several that are stronger (but more detailed) than the preceding example; some of the estimates are effectively independent of m. Thus, given a matrix A of limited numerical rank, such that both A and A super(T) can be applied rapidly to arbitrary vectors, the scheme provides a simple, efficient means for constructing an accurate approximation to a singular value decomposition of A. Furthermore, the algorithm presented here operates reliably independently of the structure of the matrix A. The results are illustrated via several numerical examples.
Author Rokhlin, Vladimir
Tygert, Mark
Martinsson, Per-Gunnar
Author_xml – sequence: 1
  givenname: Per-Gunnar
  surname: Martinsson
  fullname: Martinsson, Per-Gunnar
  email: per-gunnar.martinsson@colorado.edu
  organization: Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309, United States
– sequence: 2
  givenname: Vladimir
  surname: Rokhlin
  fullname: Rokhlin, Vladimir
  organization: Departments of Computer Science, Mathematics, and Physics, Yale University, New Haven, CT 06511, United States
– sequence: 3
  givenname: Mark
  surname: Tygert
  fullname: Tygert, Mark
  email: tygert@aya.yale.edu
  organization: Courant Institute of Mathematical Sciences, NYU, New York, NY 10012, United States
BookMark eNp9kE1Lw0AQhhepYFv9A55y85Q6m68m4KUUv6DgRcHbMpmd2C1Jtu5uBf31JtSTh55mGN5nmHlmYtLbnoW4lrCQIIvb3QJpi4sEhgEkC4D0TEwlVEVcQPo-GfsijfME0gsx834HIGWWV1NRriKHvbad-WEdYfthnQnbLmqsi8KWI81ku731JhjbR7aJOgzOEPtLcd5g6_nqr87F28P96_op3rw8Pq9Xm5jSNAkxL-u6Ai7rJktyQixqnaGssiatCqKKEo2N1ppQgyaNS5lLWNZI1GRUFcjpXNwc9-6d_TywD6oznrhtsWd78KrMqmxZ5FAOyfKYJGe9d9woMgHHu4ND0yoJanSldmp0pUZXChI1uBrQ5B-6d6ZD930aujtCPLz_ZdgpT4Z7Ym0cU1DamlP4L6Yohqc
CitedBy_id crossref_primary_10_1016_j_acha_2016_04_006
crossref_primary_10_1016_j_cam_2023_115215
crossref_primary_10_1111_joa_12645
crossref_primary_10_1016_j_acha_2017_04_002
crossref_primary_10_1016_j_cam_2024_116143
crossref_primary_10_1137_23M1584733
crossref_primary_10_1007_s00162_017_0432_2
crossref_primary_10_1016_j_jcp_2020_109704
crossref_primary_10_1002_cpa_21755
crossref_primary_10_1137_12087116X
crossref_primary_10_1093_mtomcs_mfac078
crossref_primary_10_1007_s10444_025_10232_0
crossref_primary_10_1109_ACCESS_2023_3325348
crossref_primary_10_1007_s13042_016_0571_6
crossref_primary_10_1109_TAP_2018_2794059
crossref_primary_10_1007_s10489_022_03346_1
crossref_primary_10_1002_nla_2338
crossref_primary_10_1007_s13755_020_00104_w
crossref_primary_10_1016_j_acha_2021_02_005
crossref_primary_10_1016_j_ecolind_2025_113339
crossref_primary_10_1016_j_patcog_2025_111610
crossref_primary_10_1007_s42967_020_00061_x
crossref_primary_10_1007_s00466_021_02096_0
crossref_primary_10_1137_22M148402X
crossref_primary_10_1016_j_apnum_2020_09_013
crossref_primary_10_3390_universe8110570
crossref_primary_10_1016_j_jcp_2015_11_040
crossref_primary_10_1088_1361_6420_aab92d
crossref_primary_10_1016_j_cam_2020_113380
crossref_primary_10_1137_20M1335571
crossref_primary_10_1137_15M1044680
crossref_primary_10_1137_18M118966X
crossref_primary_10_1177_10943420221085000
crossref_primary_10_1038_s41467_024_50150_1
crossref_primary_10_1016_j_jcp_2017_03_060
crossref_primary_10_1137_20M1343993
crossref_primary_10_1137_15M1013894
crossref_primary_10_1190_geo2015_0066_1
crossref_primary_10_1137_17M1150013
crossref_primary_10_1109_TKDE_2020_3015777
crossref_primary_10_1016_j_neuroimage_2013_10_027
crossref_primary_10_1016_j_acha_2015_09_007
crossref_primary_10_1137_15M1030200
crossref_primary_10_1016_j_procs_2015_05_293
crossref_primary_10_1137_21M143786X
crossref_primary_10_1016_j_jcp_2011_12_032
crossref_primary_10_1137_15M1026468
crossref_primary_10_1002_nla_2046
crossref_primary_10_1109_TAP_2022_3181016
crossref_primary_10_1016_j_renene_2022_09_058
crossref_primary_10_1146_annurev_orgpsych_032117_104553
crossref_primary_10_1007_s10444_018_09655_9
crossref_primary_10_1016_j_memsci_2025_124207
crossref_primary_10_1103_PhysRevResearch_2_033172
crossref_primary_10_3390_su16125246
crossref_primary_10_1109_ACCESS_2018_2810267
crossref_primary_10_1016_j_eswa_2023_122984
crossref_primary_10_1016_j_compstruc_2025_107867
crossref_primary_10_1137_19M1237016
crossref_primary_10_1016_j_jcp_2019_108996
crossref_primary_10_1111_jopy_12674
crossref_primary_10_1007_s00454_010_9309_5
crossref_primary_10_1088_2632_2153_ab9c3c
crossref_primary_10_2514_1_J060131
crossref_primary_10_1007_s00466_024_02517_w
crossref_primary_10_1007_s00453_014_9891_7
crossref_primary_10_1109_TAP_2019_2963619
crossref_primary_10_1109_TPAMI_2015_2392754
crossref_primary_10_1016_j_enganabound_2013_10_003
crossref_primary_10_1016_j_jcp_2014_10_009
crossref_primary_10_1016_j_eswa_2018_05_023
crossref_primary_10_1137_090771806
crossref_primary_10_3934_ipi_2013_7_1215
crossref_primary_10_1016_j_jcp_2018_04_015
crossref_primary_10_1016_j_enganabound_2012_02_003
crossref_primary_10_1109_ACCESS_2023_3288889
crossref_primary_10_1016_j_eswa_2024_123462
crossref_primary_10_1155_2023_3819587
crossref_primary_10_4208_nmtma_2017_m1624
crossref_primary_10_1007_s00466_017_1407_2
crossref_primary_10_1016_j_ijepes_2022_108516
crossref_primary_10_1007_s00211_017_0880_z
crossref_primary_10_1016_j_oregeorev_2021_104213
crossref_primary_10_1137_15M1026080
crossref_primary_10_1137_15M1023774
crossref_primary_10_1002_nla_2026
crossref_primary_10_1109_TAP_2017_2727511
crossref_primary_10_1007_s11257_021_09314_7
crossref_primary_10_1137_18M1201068
crossref_primary_10_1016_j_mser_2024_100832
crossref_primary_10_1109_TAP_2019_2952014
crossref_primary_10_1137_16M1081270
crossref_primary_10_1145_3242670
crossref_primary_10_1137_15M1016679
crossref_primary_10_2514_1_J058943
crossref_primary_10_1016_j_cma_2024_117538
crossref_primary_10_1016_j_neucom_2024_127490
crossref_primary_10_1016_j_ymssp_2024_112264
crossref_primary_10_1137_17M1111590
crossref_primary_10_1016_j_advengsoft_2017_12_007
crossref_primary_10_1007_s10957_023_02177_5
crossref_primary_10_3390_rs16061102
crossref_primary_10_1016_j_jcp_2023_112491
crossref_primary_10_1016_j_laa_2012_04_035
crossref_primary_10_1109_TBDATA_2016_2617883
crossref_primary_10_1137_22M1481002
crossref_primary_10_1016_j_laa_2021_01_007
crossref_primary_10_1088_0004_637X_802_2_107
crossref_primary_10_1016_j_jcp_2017_04_054
crossref_primary_10_1137_140990073
crossref_primary_10_1016_j_ultrasmedbio_2024_12_016
crossref_primary_10_1016_j_camwa_2018_04_028
crossref_primary_10_1007_s00211_013_0582_0
crossref_primary_10_1007_s00211_021_01250_3
crossref_primary_10_1016_j_acha_2012_03_002
crossref_primary_10_1016_j_aei_2023_102266
crossref_primary_10_1016_j_crmeth_2025_101181
crossref_primary_10_1016_j_neuroimage_2016_10_045
crossref_primary_10_1088_2515_7639_ad80cd
crossref_primary_10_1107_S1600577523001674
crossref_primary_10_1137_110851110
crossref_primary_10_1038_s41598_024_76491_x
crossref_primary_10_1109_TGRS_2025_3533259
crossref_primary_10_1021_acs_jpcc_5c02779
crossref_primary_10_1137_21M1418319
crossref_primary_10_1088_2632_2153_ab8240
crossref_primary_10_1177_0956797616678187
crossref_primary_10_1145_3725357
crossref_primary_10_1016_j_neuroimage_2014_12_040
crossref_primary_10_1089_cmb_2018_0027
crossref_primary_10_1088_1361_6420_aa6cbd
crossref_primary_10_1016_j_seppur_2023_124964
crossref_primary_10_1137_120874540
crossref_primary_10_1002_nla_2515
crossref_primary_10_1016_j_enganabound_2022_11_035
crossref_primary_10_1016_j_jcp_2011_09_008
crossref_primary_10_1016_j_jcp_2019_07_027
crossref_primary_10_1137_100786617
crossref_primary_10_1186_s13040_024_00373_1
crossref_primary_10_1016_j_cam_2020_112797
crossref_primary_10_1109_TAP_2020_3048497
crossref_primary_10_1016_j_jcp_2011_03_048
crossref_primary_10_1016_j_ccst_2025_100373
crossref_primary_10_1109_TUFFC_2022_3158830
crossref_primary_10_1145_3507466
crossref_primary_10_1080_03081087_2016_1267104
crossref_primary_10_1137_120867287
crossref_primary_10_1137_17M1138480
crossref_primary_10_1063_5_0278371
crossref_primary_10_1177_10943420231179699
crossref_primary_10_1021_acsami_3c13533
crossref_primary_10_1080_15376494_2022_2102274
crossref_primary_10_1007_s10994_020_05937_w
crossref_primary_10_1007_s10444_020_09816_9
crossref_primary_10_1109_TSP_2012_2190410
crossref_primary_10_1371_journal_pone_0225265
crossref_primary_10_1088_1538_3873_abfe9d
crossref_primary_10_1016_j_cviu_2016_02_005
crossref_primary_10_1137_15M104582X
crossref_primary_10_1016_j_camwa_2016_09_014
crossref_primary_10_1137_15M1040827
Cites_doi 10.1016/0024-3795(94)90493-6
10.1007/s006070070031
10.1145/1067967.1067972
10.1090/S0002-9939-1951-0041539-X
10.1137/0913043
10.1137/040616413
10.21236/ADA458927
10.1016/S0024-3795(96)00301-1
10.1137/030602678
10.2140/camcos.2006.1.133
10.1007/BF02358985
10.1007/s002110050451
10.1137/0917055
10.1006/jcss.2000.1711
ContentType Journal Article
Copyright 2010 Elsevier Inc.
Copyright_xml – notice: 2010 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1016/j.acha.2010.02.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1096-603X
EndPage 68
ExternalDocumentID 10_1016_j_acha_2010_02_003
S1063520310000242
GrantInformation_xml – fundername: DARPA
  grantid: HR0011-05-1-0002
– fundername: U.S. DoD
  grantid: F49620-03-C-0031
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M26
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
8FD
L7M
ID FETCH-LOGICAL-c332t-e7bb90e8bf425caa6bd4a194f396cc9c2dafdddcad0dcda715107baccf4c96ae3
ISICitedReferencesCount 234
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285223600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-5203
IngestDate Wed Oct 01 15:03:50 EDT 2025
Tue Nov 18 22:42:26 EST 2025
Sat Nov 29 05:58:34 EST 2025
Fri Feb 23 02:28:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords SVD
Lanczos
Randomized
Matrix
Algorithm
Low rank
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c332t-e7bb90e8bf425caa6bd4a194f396cc9c2dafdddcad0dcda715107baccf4c96ae3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.acha.2010.02.003
PQID 849476508
PQPubID 23500
PageCount 22
ParticipantIDs proquest_miscellaneous_849476508
crossref_citationtrail_10_1016_j_acha_2010_02_003
crossref_primary_10_1016_j_acha_2010_02_003
elsevier_sciencedirect_doi_10_1016_j_acha_2010_02_003
PublicationCentury 2000
PublicationDate 2011
2011-01-00
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationTitle Applied and computational harmonic analysis
PublicationYear 2011
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Goreinov, Tyrtyshnikov, Zamarashkin (br0090) 1997; 62
P.-G. Martinsson, V. Rokhlin, M. Tygert, A randomized algorithm for the approximation of matrices, Tech. Rep., 1361, Yale University Department of Computer Science, June 2006.
Goreinov, Tyrtyshnikov, Zamarashkin (br0100) 1997; 261
Goreinov, Tyrtyshnikov (br0080) 2001; vol. 280
Sarlós (br0160) 2006
Gu, Eisenstat (br0110) 1996; 17
Press, Teukolsky, Vetterling, Flannery (br0150) 1992
Tyrtyshnikov (br0180) 2000; 64
Stewart (br0170) 1999; 83
Björck (br0020) 1994; 197–198
Goldstine, von Neumann (br0060) 1951; 2
Martinsson, Rokhlin, Tygert (br0120) 2006; 1
Berry, Pulatova, Stewart (br0010) 2005; 31
Cheng, Gimbutas, Martinsson, Rokhlin (br0050) 2005; 26
Chan, Hansen (br0030) 1992; 13
Wilkinson (br0190) 1965
Golub, Van Loan (br0070) 1996
Papadimitriou, Raghavan, Tamaki, Vempala (br0140) 2000; 61
Chen, Dongarra (br0040) 2005; 27
Chen (10.1016/j.acha.2010.02.003_br0040) 2005; 27
Tyrtyshnikov (10.1016/j.acha.2010.02.003_br0180) 2000; 64
Björck (10.1016/j.acha.2010.02.003_br0020) 1994; 197–198
10.1016/j.acha.2010.02.003_br0130
Chan (10.1016/j.acha.2010.02.003_br0030) 1992; 13
Martinsson (10.1016/j.acha.2010.02.003_br0120) 2006; 1
Papadimitriou (10.1016/j.acha.2010.02.003_br0140) 2000; 61
Berry (10.1016/j.acha.2010.02.003_br0010) 2005; 31
Goreinov (10.1016/j.acha.2010.02.003_br0090) 1997; 62
Goreinov (10.1016/j.acha.2010.02.003_br0080) 2001; vol. 280
Wilkinson (10.1016/j.acha.2010.02.003_br0190) 1965
Sarlós (10.1016/j.acha.2010.02.003_br0160) 2006
Press (10.1016/j.acha.2010.02.003_br0150) 1992
Stewart (10.1016/j.acha.2010.02.003_br0170) 1999; 83
Goldstine (10.1016/j.acha.2010.02.003_br0060) 1951; 2
Golub (10.1016/j.acha.2010.02.003_br0070) 1996
Gu (10.1016/j.acha.2010.02.003_br0110) 1996; 17
Cheng (10.1016/j.acha.2010.02.003_br0050) 2005; 26
Goreinov (10.1016/j.acha.2010.02.003_br0100) 1997; 261
References_xml – volume: 13
  start-page: 727
  year: 1992
  end-page: 741
  ident: br0030
  article-title: Some applications of the rank-revealing QR factorization
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 61
  start-page: 217
  year: 2000
  end-page: 235
  ident: br0140
  article-title: Latent semantic indexing: A probabilistic analysis
  publication-title: J. Comput. System Sci.
– reference: P.-G. Martinsson, V. Rokhlin, M. Tygert, A randomized algorithm for the approximation of matrices, Tech. Rep., 1361, Yale University Department of Computer Science, June 2006.
– volume: 64
  start-page: 367
  year: 2000
  end-page: 380
  ident: br0180
  article-title: Incomplete cross approximation in the mosaic-skeleton method
  publication-title: Computing
– volume: 27
  start-page: 603
  year: 2005
  end-page: 620
  ident: br0040
  article-title: Condition numbers of Gaussian random matrices
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 62
  start-page: 515
  year: 1997
  end-page: 519
  ident: br0090
  article-title: Pseudo-skeleton approximations by matrices of maximal volume
  publication-title: Math. Notes
– volume: 83
  start-page: 313
  year: 1999
  end-page: 323
  ident: br0170
  article-title: Four algorithms for the efficient computation of truncated pivoted QR approximations to a sparse matrix
  publication-title: Numer. Math.
– year: 1965
  ident: br0190
  article-title: The Algebraic Eigenvalue Problem
– volume: 31
  start-page: 252
  year: 2005
  end-page: 269
  ident: br0010
  article-title: Algorithm 844: Computing sparse reduced-rank approximations to sparse matrices
  publication-title: ACM Trans. Math. Software
– volume: 17
  start-page: 848
  year: 1996
  end-page: 869
  ident: br0110
  article-title: Efficient algorithms for computing a strong rank-revealing QR factorization
  publication-title: SIAM J. Sci. Comput.
– volume: vol. 280
  start-page: 47
  year: 2001
  end-page: 51
  ident: br0080
  article-title: The maximal-volume concept in approximation by low-rank matrices
  publication-title: Structured Matrices in Mathematics, Computer Science, and Engineering I: Proceedings of an AMS–IMS–SIAM Joint Summer Research Conference
– volume: 2
  start-page: 188
  year: 1951
  end-page: 202
  ident: br0060
  article-title: Numerical inverting of matrices of high order, II
  publication-title: Proc. Amer. Math. Soc.
– year: 1992
  ident: br0150
  article-title: Numerical Recipes
– start-page: 143
  year: 2006
  end-page: 152
  ident: br0160
  article-title: Improved approximation algorithms for large matrices via random projections
  publication-title: Proceedings of FOCS 2006, the 47th Annual IEEE Symposium on Foundations of Computer Science
– year: 1996
  ident: br0070
  article-title: Matrix Computations
– volume: 1
  start-page: 133
  year: 2006
  end-page: 142
  ident: br0120
  article-title: On interpolation and integration in finite-dimensional spaces of bounded functions
  publication-title: Commun. Appl. Math. Comput. Sci.
– volume: 261
  start-page: 1
  year: 1997
  end-page: 21
  ident: br0100
  article-title: A theory of pseudoskeleton approximations
  publication-title: Linear Algebra Appl.
– volume: 26
  start-page: 1389
  year: 2005
  end-page: 1404
  ident: br0050
  article-title: On the compression of low rank matrices
  publication-title: SIAM J. Sci. Comput.
– volume: 197–198
  start-page: 297
  year: 1994
  end-page: 316
  ident: br0020
  article-title: Numerics of Gram–Schmidt orthogonalization
  publication-title: Linear Algebra Appl.
– volume: 197–198
  start-page: 297
  year: 1994
  ident: 10.1016/j.acha.2010.02.003_br0020
  article-title: Numerics of Gram–Schmidt orthogonalization
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(94)90493-6
– volume: 64
  start-page: 367
  issue: 4
  year: 2000
  ident: 10.1016/j.acha.2010.02.003_br0180
  article-title: Incomplete cross approximation in the mosaic-skeleton method
  publication-title: Computing
  doi: 10.1007/s006070070031
– volume: 31
  start-page: 252
  issue: 2
  year: 2005
  ident: 10.1016/j.acha.2010.02.003_br0010
  article-title: Algorithm 844: Computing sparse reduced-rank approximations to sparse matrices
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/1067967.1067972
– volume: 2
  start-page: 188
  year: 1951
  ident: 10.1016/j.acha.2010.02.003_br0060
  article-title: Numerical inverting of matrices of high order, II
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1951-0041539-X
– start-page: 143
  year: 2006
  ident: 10.1016/j.acha.2010.02.003_br0160
  article-title: Improved approximation algorithms for large matrices via random projections
– volume: 13
  start-page: 727
  issue: 3
  year: 1992
  ident: 10.1016/j.acha.2010.02.003_br0030
  article-title: Some applications of the rank-revealing QR factorization
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0913043
– volume: 27
  start-page: 603
  issue: 3
  year: 2005
  ident: 10.1016/j.acha.2010.02.003_br0040
  article-title: Condition numbers of Gaussian random matrices
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/040616413
– ident: 10.1016/j.acha.2010.02.003_br0130
  doi: 10.21236/ADA458927
– volume: vol. 280
  start-page: 47
  year: 2001
  ident: 10.1016/j.acha.2010.02.003_br0080
  article-title: The maximal-volume concept in approximation by low-rank matrices
– volume: 261
  start-page: 1
  issue: 1–3
  year: 1997
  ident: 10.1016/j.acha.2010.02.003_br0100
  article-title: A theory of pseudoskeleton approximations
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(96)00301-1
– year: 1992
  ident: 10.1016/j.acha.2010.02.003_br0150
– year: 1996
  ident: 10.1016/j.acha.2010.02.003_br0070
– volume: 26
  start-page: 1389
  issue: 4
  year: 2005
  ident: 10.1016/j.acha.2010.02.003_br0050
  article-title: On the compression of low rank matrices
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/030602678
– year: 1965
  ident: 10.1016/j.acha.2010.02.003_br0190
– volume: 1
  start-page: 133
  year: 2006
  ident: 10.1016/j.acha.2010.02.003_br0120
  article-title: On interpolation and integration in finite-dimensional spaces of bounded functions
  publication-title: Commun. Appl. Math. Comput. Sci.
  doi: 10.2140/camcos.2006.1.133
– volume: 62
  start-page: 515
  issue: 4
  year: 1997
  ident: 10.1016/j.acha.2010.02.003_br0090
  article-title: Pseudo-skeleton approximations by matrices of maximal volume
  publication-title: Math. Notes
  doi: 10.1007/BF02358985
– volume: 83
  start-page: 313
  issue: 2
  year: 1999
  ident: 10.1016/j.acha.2010.02.003_br0170
  article-title: Four algorithms for the efficient computation of truncated pivoted QR approximations to a sparse matrix
  publication-title: Numer. Math.
  doi: 10.1007/s002110050451
– volume: 17
  start-page: 848
  issue: 4
  year: 1996
  ident: 10.1016/j.acha.2010.02.003_br0110
  article-title: Efficient algorithms for computing a strong rank-revealing QR factorization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0917055
– volume: 61
  start-page: 217
  year: 2000
  ident: 10.1016/j.acha.2010.02.003_br0140
  article-title: Latent semantic indexing: A probabilistic analysis
  publication-title: J. Comput. System Sci.
  doi: 10.1006/jcss.2000.1711
SSID ssj0011459
Score 2.456462
Snippet Given an m × n matrix A and a positive integer k, we describe a randomized procedure for the approximation of A with a matrix Z of rank k. The procedure relies...
Given an mxn matrix A and a positive integer k, we describe a randomized procedure for the approximation of A with a matrix Z of rank k. The procedure relies...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 47
SubjectTerms Algorithm
Algorithms
Approximation
Decomposition
Estimates
Integers
Lanczos
Low rank
Mathematical analysis
Matrix
Randomized
SVD
Vectors (mathematics)
Title A randomized algorithm for the decomposition of matrices
URI https://dx.doi.org/10.1016/j.acha.2010.02.003
https://www.proquest.com/docview/849476508
Volume 30
WOSCitedRecordID wos000285223600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-603X
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011459
  issn: 1063-5203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag4wEeEFcxbvIDb5OlXNwkfqzQuAmmCcrUN8uxnbVbm1RNiwa_nuNrtyImQEKqota5NPE5OT7X7yD0qqgTIWWqSFopTagoamI6HREThEpy1eTU1ladfCyPjqrJhB17r1Jv2wmUbVtdXLDlfyU1jAGxTensX5A7XhQG4DsQHbZAdtj-EeFHB7D8qG4x-wG6pJifdmD-TxcxnVBpk0XuU7VsdN2C9PtUwoBH63VTX_S23KyDz9AgXdumOcKjmWxd2gaPoPcFXMd6Rd6Cbixi7u_n7nzqm8OfzIWaLWZx1_j76W7lkAqO1a1bLJTGXMncBFMzBys3cdJL-zFWkCKxDYCj-PVhmcts5mSpQ-L0q7LrvfOLvHeuhzPgvanweXoGgDXfrm4x5_CLuSNzQzaiAZrJTbSXlWBPDdDe6P3h5EMMPqXU9tiLT-BrrVxa4O4__U6f2VnZrboyvofuejsDjxx_3Ec3dPsA3bmEPgm_PkXI3v4hqkZ4yzc48g0GvsFwGL7CN7hrcOCbR-jrm8Px63fEt9UgMs-zNdFlXbNEV3UD8loKeD0VFSmjTc4KKZnMlGiUUlKoREklStAJk7KGN7qhkhVC54_RoO1a_QThqhg2qR5mOmOCalrVoE4LsGgbUByZrob7KA2Tw6XHnDetT-Y8JBeecTOh3EwoTzKDVLuPDuI5S4e4cu3RwzDn3OuMThfkwCLXnocDgTgIVBMlE63uNj2vKKOlsVue_uOln6HbLvBgPs_RYL3a6Bfolvy2nvWrl57ZfgLdZ59h
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+randomized+algorithm+for+the+decomposition+of+matrices&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Martinsson%2C+Per-Gunnar&rft.au=Rokhlin%2C+Vladimir&rft.au=Tygert%2C+Mark&rft.date=2011&rft.pub=Elsevier+Inc&rft.issn=1063-5203&rft.eissn=1096-603X&rft.volume=30&rft.issue=1&rft.spage=47&rft.epage=68&rft_id=info:doi/10.1016%2Fj.acha.2010.02.003&rft.externalDocID=S1063520310000242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon