AI-Augmented 3D Craniofacial Reconstruction for Enhanced Surgical Planning: A Novel Integration of Depth-Augmented Vision Transformers and MeshCNN for Structural Fidelity

Craniosynostosis, a craniofacial malformation characterized by premature suture fusion, poses significant challenges for surgical correction. Current methods for cranial reconstruction lack the precision required for accurate defect inpainting and depth awareness, limiting their clinical application...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Egyptian informatics journal Jg. 32; S. 100810
Hauptverfasser: Vishal, Kukreja, Vinay, Ahuja, Vandana, Mehta, Shiva, Dogra, Ayush, Tejani, Ghanshyam G., Mousavirad, Seyed Jalaleddin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2025
Schlagworte:
ISSN:1110-8665
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Craniosynostosis, a craniofacial malformation characterized by premature suture fusion, poses significant challenges for surgical correction. Current methods for cranial reconstruction lack the precision required for accurate defect inpainting and depth awareness, limiting their clinical application in complex craniosynostosis cases. This study aims to develop a novel AI-driven framework to enhance the accuracy of 3D craniofacial reconstruction for pre-surgical planning, with a specific focus on large cranial defects. By integrating advanced Artificial Intelligence (AI) techniques, it enhances the accuracy and efficiency of cranial models, enabling surgeons to plan interventions with greater confidence and to potentially improve patient outcomes. The framework’s computational efficiency, achieved through model quantization, further broadens its applicability in resource-limited clinical settings. The framework begins with 3D U-Net-based segmentation, followed by depth map generation using Mixed Depth-of-Scale Models (MiDaS). Cranial defect inpainting is accomplished with Depth-augmented Vision Transformers (DA-ViT) guided by depth cues and edge detection, where MeshCNN and bilateral filtering refine the final mesh. Quantization-aware training (QAT) and post-training quantization (PTQ) reduce model size and memory footprint. The framework achieved a Chamfer Distance of 0.14 mm and a Hausdorff Distance of 0.33 mm, significantly outperforming previous methods. Landmark accuracy was 0.10 mm with a consistency ratio of 0.91. After quantization, these values remained similar (0.15 mm, 0.35 mm, and 0.11 mm, respectively), while inference time decreased by 20% (from 35 ms to 28 ms), and memory usage dropped from 12 GB to 5 GB, allowing deployment on mid-range Graphics processing Unit (GPU).
AbstractList Background: Craniosynostosis, a craniofacial malformation characterized by premature suture fusion, poses significant challenges for surgical correction. Current methods for cranial reconstruction lack the precision required for accurate defect inpainting and depth awareness, limiting their clinical application in complex craniosynostosis cases. Objective: This study aims to develop a novel AI-driven framework to enhance the accuracy of 3D craniofacial reconstruction for pre-surgical planning, with a specific focus on large cranial defects. By integrating advanced Artificial Intelligence (AI) techniques, it enhances the accuracy and efficiency of cranial models, enabling surgeons to plan interventions with greater confidence and to potentially improve patient outcomes. The framework's computational efficiency, achieved through model quantization, further broadens its applicability in resource-limited clinical settings. Methodology: The framework begins with 3D U-Net-based segmentation, followed by depth map generation using Mixed Depth-of-Scale Models (MiDaS). Cranial defect inpainting is accomplished with Depth-augmented Vision Transformers (DA-ViT) guided by depth cues and edge detection, where MeshCNN and bilateral filtering refine the final mesh. Quantization-aware training (QAT) and post-training quantization (PTQ) reduce model size and memory footprint. Results: The framework achieved a Chamfer Distance of 0.14 mm and a Hausdorff Distance of 0.33 mm, significantly outperforming previous methods. Landmark accuracy was 0.10 mm with a consistency ratio of 0.91. After quantization, these values remained similar (0.15 mm, 0.35 mm, and 0.11 mm, respectively), while inference time decreased by 20% (from 35 ms to 28 ms), and memory usage dropped from 12 GB to 5 GB, allowing deployment on mid-range Graphics processing Unit (GPU). 
Craniosynostosis, a craniofacial malformation characterized by premature suture fusion, poses significant challenges for surgical correction. Current methods for cranial reconstruction lack the precision required for accurate defect inpainting and depth awareness, limiting their clinical application in complex craniosynostosis cases. This study aims to develop a novel AI-driven framework to enhance the accuracy of 3D craniofacial reconstruction for pre-surgical planning, with a specific focus on large cranial defects. By integrating advanced Artificial Intelligence (AI) techniques, it enhances the accuracy and efficiency of cranial models, enabling surgeons to plan interventions with greater confidence and to potentially improve patient outcomes. The framework’s computational efficiency, achieved through model quantization, further broadens its applicability in resource-limited clinical settings. The framework begins with 3D U-Net-based segmentation, followed by depth map generation using Mixed Depth-of-Scale Models (MiDaS). Cranial defect inpainting is accomplished with Depth-augmented Vision Transformers (DA-ViT) guided by depth cues and edge detection, where MeshCNN and bilateral filtering refine the final mesh. Quantization-aware training (QAT) and post-training quantization (PTQ) reduce model size and memory footprint. The framework achieved a Chamfer Distance of 0.14 mm and a Hausdorff Distance of 0.33 mm, significantly outperforming previous methods. Landmark accuracy was 0.10 mm with a consistency ratio of 0.91. After quantization, these values remained similar (0.15 mm, 0.35 mm, and 0.11 mm, respectively), while inference time decreased by 20% (from 35 ms to 28 ms), and memory usage dropped from 12 GB to 5 GB, allowing deployment on mid-range Graphics processing Unit (GPU).
ArticleNumber 100810
Author Tejani, Ghanshyam G.
Mousavirad, Seyed Jalaleddin
Dogra, Ayush
Kukreja, Vinay
Vishal
Mehta, Shiva
Ahuja, Vandana
Author_xml – sequence: 1
  surname: Vishal
  fullname: Vishal
  email: vishal.1018@chitkara.edu.in
  organization: Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
– sequence: 2
  givenname: Vinay
  orcidid: 0000-0002-9760-0824
  surname: Kukreja
  fullname: Kukreja, Vinay
  email: onlyvinaykukreja@gmail.com
  organization: Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
– sequence: 3
  givenname: Vandana
  surname: Ahuja
  fullname: Ahuja, Vandana
  email: vandanapushe@gmail.com
  organization: Department of Computer Science & Engineering, Swami Vivekanand Institute of Engineering and Technology, Ramnagar, Punjab, India
– sequence: 4
  givenname: Shiva
  surname: Mehta
  fullname: Mehta, Shiva
  email: shiva.2387@chitkara.edu.in
  organization: Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
– sequence: 5
  givenname: Ayush
  surname: Dogra
  fullname: Dogra, Ayush
  email: ayush123456789@gmail.com
  organization: Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
– sequence: 6
  givenname: Ghanshyam G.
  orcidid: 0000-0001-9106-0313
  surname: Tejani
  fullname: Tejani, Ghanshyam G.
  email: p.shyam23@gmail.com
  organization: Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 India
– sequence: 7
  givenname: Seyed Jalaleddin
  orcidid: 0000-0001-8661-7578
  surname: Mousavirad
  fullname: Mousavirad, Seyed Jalaleddin
  email: Seyedjalaleddin.mousavirad@miun.se
  organization: Department of Computer and Electrical Engineering, Mid Sweden University, Sundsvall, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-55894$$DView record from Swedish Publication Index (Mittuniversitetet)
BookMark eNp9UUtu2zAQ5SIFmro5QHa8gFx-JEVOVoLtpAZSp8hvS9DkSB5DIg1SSpEr9ZSl7aLoKrMhBvM-eHxfyJnzDgi55GzKGS-_7aaAu6lgokg7qzg7I-ecc5ZVZVl8Jhcx7liakou8KM_J73qV1WPbgxvAUrmg86Ad-kYb1B19BONdHMJoBvSONj7QpdtqZxL2aQwtmgT62Wnn0LXXtKZr_wYdXSWxNugjxzd0Afth-5_LK8bD5Tk5xSTZQ4hUO0t_QNzO1-ujzdPRdAxJ_xYtdDi8fyWfGt1FuPj7TsjL7fJ5_j27f7hbzev7zEgphsyCtMIwpmcpdgVMgthUZqOvZpuZgcpYa5iQKYEVmufGFjKXheA6B142Uho5IdlJN_6C_bhR-4C9Du_Ka1QLfK2VD63qcXSqKKpZnvD8hDfBxxig-cfgTB06UTuVOlGHTtSpk8S5OXEgBXlDCCoahMO_YgAzKOvxA_YfCvCbtw
Cites_doi 10.31616/asj.2022.0374
10.1016/B978-0-12-823913-1.00024-5
10.1007/978-3-030-53099-0_6
10.1016/j.inat.2023.101887
10.1097/GOX.0000000000004608
10.7759/cureus.33153
10.1007/s00530-024-01611-6
10.1177/10556656221151096
10.1038/s41598-020-75747-6
10.3390/children8090727
10.1007/978-3-031-31168-0_7
10.2139/ssrn.5039948
10.1155/2022/6797745
10.1088/2516-1091/ad3a4b
10.1111/jspn.12370
10.1007/978-3-030-91920-7_58
10.3390/diagnostics14040435
10.3390/ma15144731
10.1016/j.actbio.2022.10.030
10.1007/s00381-025-06870-w
10.1097/SCS.0000000000007154
10.1016/B978-0-323-65381-7.00020-4
10.1016/j.medntd.2025.100370
10.1109/TPAMI.2023.3272925
10.1016/j.ijporl.2021.110873
10.1007/978-3-319-92105-1_2
10.3390/tomography9060169
10.1109/ACCESS.2024.3415173
10.1097/SCS.0000000000009433
10.3389/fbioe.2023.1297933
10.1016/j.jcms.2024.02.010
10.1007/978-981-97-4608-8_10
10.3390/jpm14020187
10.1097/SCS.0000000000009143
10.1016/j.cmpb.2023.107689
10.1007/978-3-030-72338-5_14
10.1016/j.media.2023.102793
10.1016/j.bspc.2024.107376
10.1016/j.bspc.2023.105939
10.7759/cureus.60831
10.1016/j.wneu.2020.12.148
10.1007/s00381-022-05744-9
10.1080/02688697.2021.1919599
10.1097/SCS.0000000000007379
10.1007/978-3-030-54932-9_6
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
ADTPV
AKRZP
AOWAS
D8T
DG5
ZZAVC
DOI 10.1016/j.eij.2025.100810
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SwePub
SWEPUB Mittuniversitetet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Mittuniversitetet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_DiVA_org_miun_55894
10_1016_j_eij_2025_100810
S1110866525002038
GroupedDBID --K
0R~
1B1
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
E3Z
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
O-L
O9-
OK1
RIG
ROL
SES
SSZ
AAYXX
CITATION
ADTPV
AKRZP
AOWAS
D8T
DG5
ZZAVC
ID FETCH-LOGICAL-c332t-de3d2c00a91118e03e2b8cba79b9ce8cddc023cedd2a14cd5343521a4e16f33c3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001605459800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1110-8665
IngestDate Wed Nov 05 04:04:42 EST 2025
Thu Nov 27 00:53:22 EST 2025
Sat Nov 22 16:52:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords AI-augmented pre-surgical planning
Craniosynostosis reconstruction
3D U-net segmentation
Depth-Augmented Vision Transformers
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c332t-de3d2c00a91118e03e2b8cba79b9ce8cddc023cedd2a14cd5343521a4e16f33c3
ORCID 0000-0002-9760-0824
0000-0001-8661-7578
0000-0001-9106-0313
OpenAccessLink http://dx.doi.org/10.1016/j.eij.2025.100810
ParticipantIDs swepub_primary_oai_DiVA_org_miun_55894
crossref_primary_10_1016_j_eij_2025_100810
elsevier_sciencedirect_doi_10_1016_j_eij_2025_100810
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Egyptian informatics journal
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kesornsri (b0270) 2024; 12
H. Qin
Wodzinski M, M. Daniol, D. Hemmerling, Automatic Skull Reconstruction by Deep Learnable Symmetry Enforcement
Jegadeesan, Baldia, Basu (b0120) 2022; 154
Motie (b0185) 2023
Archer (b0175) 2023; 93
Qin, Ding, Zhang, Wang, Liu, Lu (b0295) 2023; 45
Hennocq (b0230) 2024; 52
L. S. Van De Lande, A. V. H. Greig, D. J. Dunaway, Craniosynostosis, in
vol. 14, no. 12, 2022.
Cornejo (b0160) 2022; 2022
Wang, Jin, Chen (b0235) 2025; 103
Accurate lora-finetuning quantization of llms via information retention
doi: 10.5281/zenodo.5638148.
F. de León, J. A. Franco-Jiménez, Types of Craniosynostosis and their Etiology, Pathophysiology and Epidemiology, in
Abdel-Alim (b0045) 2021; 32
Park, Tripathi, Al-Mufarrej (b0140) 2021; 149
A. Shehata, M. Salem, M. A. R. Ahad, Image Processing in Health Informatics
vol. 16, no. 5, 2024.
Czyżewski (b0155) 2022; 15
Zhang (b0255) 2025; 31
Frassanito, Palombi, Tamburrini (b0005) 2021
Cacciaguerra (b0145) 2021; 8
Exploring Different Management Modalities of Non-syndromic Craniosynostosis
Muthukrishnan, Jaipurkar, Damodaran (b0025) 2024; 4
Habibi (b0130) 2023; 39
Wong RCW, C. W. Yong, M. W. J. Chen, T. J. H. Sng, K. H. Tan, and R. Lim, The virtual patient model for correction of facial deformity and accuracy of simulation and surgical guide construction, in
Wright (b0030) 2023; 89
Elsevier, 2023, pp. 783–803.
Springer, 2023, pp. 231–256.
Faasse, Mathijssen (b0115) 2023; 34
Wu, Yang, Chang (b0260) 2023; 11
Vezirska D, Milev M, L. Laleva, V. Nakov, T. Spiriev, Three-dimensional printing in neurosurgery: a review of current indications and applications and a basic methodology for creating a three-dimensional printed model for the neurosurgical practice
Pombo, van Mourik Zoio, Santos, Faria, Miguéns, Guimarães-Ferreira (b0105) 2024
Qin (b0285) 2023; 36
Sabeti, Boostani, Taheri, Moradi (b0245) 2024; 36
Zerpe, Nowinski, Ramklint, Öster (b0135) 2022; 27
Chuxi, Xinkang, Xiaokun, Shilei, Xinrong (b0250) 2024; 91
A statistical shape model of craniosynostosis patients and 100 model instances of each pathology, 2021
pp. 297–343, 2021.
Rengasamy Venugopalan S, V. Allareddy, Craniofacial Growth and Development, in
Schaufelberger M
Fouda (b0110) 2023
Memon, Shi, Memon, Egger, Chen (b0265) 2025
Springer, 2022, pp. 1729–1765.
Hedaoo (b0225) 2024
Al-Murad BM
Simms N, Poots J. “The Skull, Brain and Associated Structures: Part I Applied Anatomy and Physiology,”
pp. 145–170, 2021.
Kim, Park, Chang, Lee (b0050) 2022; 16
Tokgöz E, Carro MA. Cosmetic and reconstructive facial plastic surgery related simulation and optimization efforts, in
Marani E, C. Heida, E. Marani, C. Heida, The Skullcap, Cranial Vault or Calvarium
Rahman, Khan, Sadiq, Farooqi, Khan, Lim (b0035) 2023; 9
Spoer (b0205) 2022; 10
Rodgers (b0180) 2021
Zinati, Sabeti, Kamyab, Moradi (b0240) 2025
Springer, 2024, pp. 131–141.
Maragkos (b0190) 2021; 148
Elsevier, 2022, pp. 267–282.
Spazzapan, Velnar (b0015) 2024; 14
Ferri, Schlund, Touzet-Roumazeille (b0100) 2021; 32
Springer, 2021, pp. 201–231.
Yang, Huang, Yang, Zhao, Zhou (b0070) 2024; 8
Stein, Rohrich (b0075) 2023
González-López (b0170) 2024; 14
Nguyen (b0095) 2023; 34
John, Konar, Shukla, Salian, Srivinias (b0275) 2025; 41
Elkhill (b0040) 2023; 240
Sriraam, Chinta, Suresh, Sudharshan (b0195) 2024; 6
Bozkurt, Borghi, van de Lande, Jeelani, Dunaway, Schievano (b0220) 2020; 10
N. M. Rao, B. C. Neelapu, Segmentation of 3D Craniofacial Imaging and Volumetric Measurement, in
2024.
pp. 15–49, 2018.
Wright (b0165) 2024; 61
Tan (b0065) 2023; 37
Aniceto, Girod, Leung, Parmar (b0215) 2022; 15
10.1016/j.eij.2025.100810_b0300
Kesornsri (10.1016/j.eij.2025.100810_b0270) 2024; 12
Pombo (10.1016/j.eij.2025.100810_b0105) 2024
Hedaoo (10.1016/j.eij.2025.100810_b0225) 2024
Cornejo (10.1016/j.eij.2025.100810_b0160) 2022; 2022
Tan (10.1016/j.eij.2025.100810_b0065) 2023; 37
Nguyen (10.1016/j.eij.2025.100810_b0095) 2023; 34
10.1016/j.eij.2025.100810_b0060
Park (10.1016/j.eij.2025.100810_b0140) 2021; 149
Rahman (10.1016/j.eij.2025.100810_b0035) 2023; 9
10.1016/j.eij.2025.100810_b0020
Abdel-Alim (10.1016/j.eij.2025.100810_b0045) 2021; 32
Aniceto (10.1016/j.eij.2025.100810_b0215) 2022; 15
Czyżewski (10.1016/j.eij.2025.100810_b0155) 2022; 15
John (10.1016/j.eij.2025.100810_b0275) 2025; 41
Zerpe (10.1016/j.eij.2025.100810_b0135) 2022; 27
Wright (10.1016/j.eij.2025.100810_b0165) 2024; 61
Zinati (10.1016/j.eij.2025.100810_b0240) 2025
Memon (10.1016/j.eij.2025.100810_b0265) 2025
10.1016/j.eij.2025.100810_b0290
10.1016/j.eij.2025.100810_b0090
Muthukrishnan (10.1016/j.eij.2025.100810_b0025) 2024; 4
Jegadeesan (10.1016/j.eij.2025.100810_b0120) 2022; 154
Spazzapan (10.1016/j.eij.2025.100810_b0015) 2024; 14
10.1016/j.eij.2025.100810_b0210
10.1016/j.eij.2025.100810_b0055
10.1016/j.eij.2025.100810_b0010
Qin (10.1016/j.eij.2025.100810_b0295) 2023; 45
Sriraam (10.1016/j.eij.2025.100810_b0195) 2024; 6
10.1016/j.eij.2025.100810_b0125
Wu (10.1016/j.eij.2025.100810_b0260) 2023; 11
Fouda (10.1016/j.eij.2025.100810_b0110) 2023
10.1016/j.eij.2025.100810_b0200
Faasse (10.1016/j.eij.2025.100810_b0115) 2023; 34
Rodgers (10.1016/j.eij.2025.100810_b0180) 2021
Qin (10.1016/j.eij.2025.100810_b0285) 2023; 36
Elkhill (10.1016/j.eij.2025.100810_b0040) 2023; 240
Hennocq (10.1016/j.eij.2025.100810_b0230) 2024; 52
Motie (10.1016/j.eij.2025.100810_b0185) 2023
Frassanito (10.1016/j.eij.2025.100810_b0005) 2021
Yang (10.1016/j.eij.2025.100810_b0070) 2024; 8
10.1016/j.eij.2025.100810_b0080
Cacciaguerra (10.1016/j.eij.2025.100810_b0145) 2021; 8
10.1016/j.eij.2025.100810_b0085
González-López (10.1016/j.eij.2025.100810_b0170) 2024; 14
Spoer (10.1016/j.eij.2025.100810_b0205) 2022; 10
Zhang (10.1016/j.eij.2025.100810_b0255) 2025; 31
10.1016/j.eij.2025.100810_b0280
Habibi (10.1016/j.eij.2025.100810_b0130) 2023; 39
Maragkos (10.1016/j.eij.2025.100810_b0190) 2021; 148
Wright (10.1016/j.eij.2025.100810_b0030) 2023; 89
Sabeti (10.1016/j.eij.2025.100810_b0245) 2024; 36
Archer (10.1016/j.eij.2025.100810_b0175) 2023; 93
Kim (10.1016/j.eij.2025.100810_b0050) 2022; 16
Wang (10.1016/j.eij.2025.100810_b0235) 2025; 103
10.1016/j.eij.2025.100810_b0150
Bozkurt (10.1016/j.eij.2025.100810_b0220) 2020; 10
Stein (10.1016/j.eij.2025.100810_b0075) 2023
Chuxi (10.1016/j.eij.2025.100810_b0250) 2024; 91
Ferri (10.1016/j.eij.2025.100810_b0100) 2021; 32
References_xml – volume: 12
  start-page: 84907
  year: 2024
  end-page: 84922
  ident: b0270
  article-title: CraNeXt: automatic reconstruction of skull implants with skull categorization technique
  publication-title: IEEE Access
– year: 2024
  ident: b0225
  article-title: Neuroendoscopy training
  publication-title: Asian J Neurosurg
– volume: 2022
  year: 2022
  ident: b0160
  article-title: Anatomical Engineering and 3D printing for surgery and medical devices: International review and future exponential innovations
  publication-title: Biomed Res Int
– volume: 14
  start-page: 187
  year: 2024
  ident: b0170
  article-title: The integration of 3D virtual reality and 3D printing technology as innovative approaches to preoperative planning in neuro-oncology
  publication-title: J Pers Med
– volume: 36
  year: 2024
  ident: b0245
  article-title: Image processing and machine learning for diagnosis and screening of craniosynostosis in children
  publication-title: Interdiscip Neurosurg
– reference: Wong RCW, C. W. Yong, M. W. J. Chen, T. J. H. Sng, K. H. Tan, and R. Lim, The virtual patient model for correction of facial deformity and accuracy of simulation and surgical guide construction, in
– volume: 16
  start-page: 764
  year: 2022
  ident: b0050
  article-title: Diagnostic technology for spine pathology
  publication-title: Asian Spine J
– volume: 8
  year: 2024
  ident: b0070
  article-title: Biomedical big data technologies, applications, and challenges for precision medicine: a review
  publication-title: Glob Challenges
– reference: L. S. Van De Lande, A. V. H. Greig, D. J. Dunaway, Craniosynostosis, in:
– volume: 11
  year: 2023
  ident: b0260
  article-title: Creating high-resolution 3D cranial implant geometry using deep learning techniques
  publication-title: Front Bioeng Biotechnol
– reference: Marani E, C. Heida, E. Marani, C. Heida, The Skullcap, Cranial Vault or Calvarium,
– year: 2021
  ident: b0180
  article-title: Development of a personalised 3D mandibular distraction device for the management of craniofacial microsomia
– reference: , Exploring Different Management Modalities of Non-syndromic Craniosynostosis,
– volume: 34
  start-page: 1677
  year: 2023
  end-page: 1681
  ident: b0095
  article-title: Characterization of regional morphological changes in sagittal craniosynostosis following endoscopic strip craniectomy with post-operative helmeting: predictors for success
  publication-title: J Craniofac Surg
– reference: . doi: 10.5281/zenodo.5638148.
– volume: 10
  start-page: 18693
  year: 2020
  ident: b0220
  article-title: Computational modelling of patient specific spring assisted lambdoid craniosynostosis correction
  publication-title: Sci Rep
– volume: 9
  start-page: 2158
  year: 2023
  end-page: 2189
  ident: b0035
  article-title: A systematic literature review of 3D deep learning techniques in computed tomography reconstruction
  publication-title: Tomography
– reference: Vezirska D, Milev M, L. Laleva, V. Nakov, T. Spiriev, Three-dimensional printing in neurosurgery: a review of current indications and applications and a basic methodology for creating a three-dimensional printed model for the neurosurgical practice,
– volume: 91
  year: 2024
  ident: b0250
  article-title: CMF defects database: a craniomaxillofacial defects dataset and a data-driven repair method
  publication-title: Biomed Signal Process Control
– volume: 8
  start-page: 727
  year: 2021
  ident: b0145
  article-title: The evolution of the role of imaging in the diagnosis of craniosynostosis: a narrative review
  publication-title: Children
– reference: Tokgöz E, Carro MA. Cosmetic and reconstructive facial plastic surgery related simulation and optimization efforts, in
– volume: 240
  year: 2023
  ident: b0040
  article-title: Geometric learning and statistical modeling for surgical outcomes evaluation in craniosynostosis using 3D photogrammetry
  publication-title: Comput Methods Programs Biomed
– reference: N. M. Rao, B. C. Neelapu, Segmentation of 3D Craniofacial Imaging and Volumetric Measurement, in:
– volume: 34
  start-page: 418
  year: 2023
  end-page: 433
  ident: b0115
  article-title: Guideline on treatment and management of craniosynostosis: patient and family version
  publication-title: J Craniofac Surg
– year: 2023
  ident: b0075
  article-title: Artificial intelligence and post-operative monitoring in plastic surgery
  publication-title: Plast Surg
– reference: Schaufelberger M
– volume: 6
  start-page: 23002
  year: 2024
  ident: b0195
  article-title: Ultrasound imaging based recognition of prenatal anomalies: a systematic clinical engineering review
  publication-title: Prog Biomed Eng
– start-page: 1
  year: 2025
  end-page: 12
  ident: b0265
  article-title: Deep learning-based automatic cranial implant design through direct defect shape prediction and its comparison study
  publication-title: Med Biol Eng Compu
– volume: 41
  start-page: 1
  year: 2025
  end-page: 5
  ident: b0275
  article-title: Quantitative analysis of intracranial and intraorbital volume changes following craniosynostosis surgery: a retrospective imaging study
  publication-title: Child’s Nerv Syst
– reference: A. Shehata, M. Salem, M. A. R. Ahad, Image Processing in Health Informatics,
– volume: 149
  year: 2021
  ident: b0140
  article-title: Quality of life in patients with craniosynostosis and deformational plagiocephaly: a systematic review
  publication-title: Int J Pediatr Otorhinolaryngol
– reference: , Springer, 2024, pp. 131–141.
– volume: 10
  start-page: e4608
  year: 2022
  ident: b0205
  article-title: A systematic review of artificial intelligence applications in plastic surgery: looking to the future
  publication-title: Plast Reconstr Surgery-Global Open
– reference: , Elsevier, 2023, pp. 783–803.
– volume: 32
  start-page: 956
  year: 2021
  end-page: 963
  ident: b0045
  article-title: Three-dimensional stereophotogrammetry in the evaluation of craniosynostosis: current and potential use cases
  publication-title: J Craniofac Surg
– volume: 4
  year: 2024
  ident: b0025
  article-title: Continuum topological derivative-a novel application tool for segmentation of CT and MRI images
  publication-title: Neuroimage: Reports
– year: 2023
  ident: b0110
  article-title: Surgical management of craniosynostosis—between the past and the future: a comprehensive review of the literature
  publication-title: J Pediatr Neurol
– volume: 14
  start-page: 435
  year: 2024
  ident: b0015
  article-title: Isolated sagittal craniosynostosis: a comprehensive review
  publication-title: Diagnostics
– reference: , Elsevier, 2022, pp. 267–282.
– volume: 39
  start-page: 953
  year: 2023
  end-page: 961
  ident: b0130
  article-title: External–internal cranial expansion to treat patients with craniocerebral disproportion due to post-shunt craniosynostosis: a case series
  publication-title: Child’s Nerv Syst
– volume: 27
  year: 2022
  ident: b0135
  article-title: ‘When the surgery was over, I felt like the worst part had passed’: experiences of parents of children with craniosynostosis
  publication-title: J Spec Pediatr Nurs
– reference: , “Accurate lora-finetuning quantization of llms via information retention,”
– volume: 103
  year: 2025
  ident: b0235
  article-title: CDRMamba: a framework for automated craniomaxillofacial defect reconstruction using Mamba-based modeling
  publication-title: Biomed Signal Process Control
– year: 2024
  ident: b0105
  article-title: Metopic craniosynostosis: dynamic cranioplasty for trigonocephaly versus fronto-orbital remodeling and advancement—a retrospective study
  publication-title: J Cranio-Maxillofacial Surg
– volume: 89
  year: 2023
  ident: b0030
  article-title: Fast fetal head compounding from multi-view 3D ultrasound
  publication-title: Med Image Anal
– volume: 154
  start-page: 63
  year: 2022
  end-page: 82
  ident: b0120
  article-title: Next-generation personalized cranioplasty treatment
  publication-title: Acta Biomater
– volume: 15
  start-page: 4731
  year: 2022
  ident: b0155
  article-title: Low-cost cranioplasty—a systematic review of 3D printing in medicine
  publication-title: Materials (basel)
– volume: 52
  start-page: 1172
  year: 2024
  end-page: 1187
  ident: b0230
  article-title: AI-based diagnosis and phenotype–genotype correlations in syndromic craniosynostoses
  publication-title: J Cranio-Maxillofacial Surg
– reference: , A statistical shape model of craniosynostosis patients and 100 model instances of each pathology, 2021,
– volume: 148
  start-page: e363
  year: 2021
  end-page: e373
  ident: b0190
  article-title: Automated lateral ventricular and cranial vault volume measurements in 13,851 patients using deep learning algorithms
  publication-title: World Neurosurg
– reference: , vol. 16, no. 5, 2024.
– volume: 15
  start-page: 1
  year: 2022
  end-page: 49
  ident: b0215
  article-title: Face Ahead 2022 Abstracts Supplement
  publication-title: Reconstruction
– volume: 31
  start-page: 1
  year: 2025
  end-page: 16
  ident: b0255
  article-title: CR-DM: a novel craniofacial reconstruction framework based on diffusion model
  publication-title: Multimed Syst
– reference: H. Qin
– start-page: 287
  year: 2023
  end-page: 328
  ident: b0185
  article-title: Application of artificial intelligence in diagnosing oral and maxillofacial lesions, facial corrective surgeries, and maxillofacial reconstructive procedures
– reference: , Springer, 2023, pp. 231–256.
– reference: Simms N, Poots J. “The Skull, Brain and Associated Structures: Part I Applied Anatomy and Physiology,”
– reference: , pp. 145–170, 2021.
– reference: Rengasamy Venugopalan S, V. Allareddy, Craniofacial Growth and Development, in
– volume: 61
  start-page: 997
  year: 2024
  end-page: 1006
  ident: b0165
  article-title: Design and validation of a 3D printed cranio-facial simulator: a novel tool for surgical education
  publication-title: Cleft Palate Craniofacial J
– volume: 45
  start-page: 11689
  year: 2023
  end-page: 11706
  ident: b0295
  article-title: Diverse sample generation: pushing the limit of generative data-free quantization
  publication-title: IEEE Trans Pattern Anal Mach Intell
– reference: , pp. 297–343, 2021.
– year: 2025
  ident: b0240
  article-title: Diagnosis of different types of single suture craniosynostosis in infants with deep learning techniques
  publication-title: Med Nov Technol Devices
– reference: , vol. 14, no. 12, 2022.
– start-page: 1
  year: 2021
  end-page: 9
  ident: b0005
  article-title: Craniosynostosis and hydrocephalus: relevance and treatment modalities
  publication-title: Child’s Nerv Syst
– volume: 36
  start-page: 56838
  year: 2023
  end-page: 56848
  ident: b0285
  article-title: QuantSR: accurate low-bit quantization for efficient image super-resolution
  publication-title: Adv Neural Inf Process Syst
– volume: 37
  start-page: 986
  year: 2023
  end-page: 999
  ident: b0065
  article-title: An algorithmic clinicoradiological approach to paediatric cranial vault lesions: distinguishing normal variants from pathologies
  publication-title: Br J Neurosurg
– reference: , Springer, 2022, pp. 1729–1765.
– reference: , Springer, 2021, pp. 201–231.
– volume: 32
  start-page: 141
  year: 2021
  end-page: 148
  ident: b0100
  article-title: Orthognathic surgery in craniosynostosis
  publication-title: J Craniofac Surg
– reference: F. de León, J. A. Franco-Jiménez, Types of Craniosynostosis and their Etiology, Pathophysiology and Epidemiology, in:
– reference: , 2024.
– reference: Al-Murad BM
– volume: 93
  start-page: 184
  year: 2023
  end-page: 214
  ident: b0175
  article-title: The Seldinger technique: a revolution in medicine
  publication-title: ANZ J Surg
– reference: Wodzinski M, M. Daniol, D. Hemmerling, Automatic Skull Reconstruction by Deep Learnable Symmetry Enforcement,
– reference: , pp. 15–49, 2018.
– volume: 16
  start-page: 764
  issue: 5
  year: 2022
  ident: 10.1016/j.eij.2025.100810_b0050
  article-title: Diagnostic technology for spine pathology
  publication-title: Asian Spine J
  doi: 10.31616/asj.2022.0374
– ident: 10.1016/j.eij.2025.100810_b0150
  doi: 10.1016/B978-0-12-823913-1.00024-5
– ident: 10.1016/j.eij.2025.100810_b0290
– ident: 10.1016/j.eij.2025.100810_b0125
  doi: 10.1007/978-3-030-53099-0_6
– volume: 36
  year: 2024
  ident: 10.1016/j.eij.2025.100810_b0245
  article-title: Image processing and machine learning for diagnosis and screening of craniosynostosis in children
  publication-title: Interdiscip Neurosurg
  doi: 10.1016/j.inat.2023.101887
– volume: 10
  start-page: e4608
  issue: 12
  year: 2022
  ident: 10.1016/j.eij.2025.100810_b0205
  article-title: A systematic review of artificial intelligence applications in plastic surgery: looking to the future
  publication-title: Plast Reconstr Surgery-Global Open
  doi: 10.1097/GOX.0000000000004608
– year: 2021
  ident: 10.1016/j.eij.2025.100810_b0180
– ident: 10.1016/j.eij.2025.100810_b0210
  doi: 10.7759/cureus.33153
– volume: 31
  start-page: 1
  issue: 1
  year: 2025
  ident: 10.1016/j.eij.2025.100810_b0255
  article-title: CR-DM: a novel craniofacial reconstruction framework based on diffusion model
  publication-title: Multimed Syst
  doi: 10.1007/s00530-024-01611-6
– volume: 61
  start-page: 997
  issue: 6
  year: 2024
  ident: 10.1016/j.eij.2025.100810_b0165
  article-title: Design and validation of a 3D printed cranio-facial simulator: a novel tool for surgical education
  publication-title: Cleft Palate Craniofacial J
  doi: 10.1177/10556656221151096
– volume: 10
  start-page: 18693
  issue: 1
  year: 2020
  ident: 10.1016/j.eij.2025.100810_b0220
  article-title: Computational modelling of patient specific spring assisted lambdoid craniosynostosis correction
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-75747-6
– volume: 8
  start-page: 727
  issue: 9
  year: 2021
  ident: 10.1016/j.eij.2025.100810_b0145
  article-title: The evolution of the role of imaging in the diagnosis of craniosynostosis: a narrative review
  publication-title: Children
  doi: 10.3390/children8090727
– ident: 10.1016/j.eij.2025.100810_b0200
  doi: 10.1007/978-3-031-31168-0_7
– ident: 10.1016/j.eij.2025.100810_b0300
  doi: 10.2139/ssrn.5039948
– volume: 2022
  issue: 1
  year: 2022
  ident: 10.1016/j.eij.2025.100810_b0160
  article-title: Anatomical Engineering and 3D printing for surgery and medical devices: International review and future exponential innovations
  publication-title: Biomed Res Int
  doi: 10.1155/2022/6797745
– volume: 6
  start-page: 23002
  issue: 2
  year: 2024
  ident: 10.1016/j.eij.2025.100810_b0195
  article-title: Ultrasound imaging based recognition of prenatal anomalies: a systematic clinical engineering review
  publication-title: Prog Biomed Eng
  doi: 10.1088/2516-1091/ad3a4b
– volume: 27
  issue: 2
  year: 2022
  ident: 10.1016/j.eij.2025.100810_b0135
  article-title: ‘When the surgery was over, I felt like the worst part had passed’: experiences of parents of children with craniosynostosis
  publication-title: J Spec Pediatr Nurs
  doi: 10.1111/jspn.12370
– ident: 10.1016/j.eij.2025.100810_b0080
  doi: 10.1007/978-3-030-91920-7_58
– volume: 14
  start-page: 435
  issue: 4
  year: 2024
  ident: 10.1016/j.eij.2025.100810_b0015
  article-title: Isolated sagittal craniosynostosis: a comprehensive review
  publication-title: Diagnostics
  doi: 10.3390/diagnostics14040435
– volume: 15
  start-page: 4731
  issue: 14
  year: 2022
  ident: 10.1016/j.eij.2025.100810_b0155
  article-title: Low-cost cranioplasty—a systematic review of 3D printing in medicine
  publication-title: Materials (basel)
  doi: 10.3390/ma15144731
– year: 2024
  ident: 10.1016/j.eij.2025.100810_b0225
  article-title: Neuroendoscopy training
  publication-title: Asian J Neurosurg
– volume: 154
  start-page: 63
  year: 2022
  ident: 10.1016/j.eij.2025.100810_b0120
  article-title: Next-generation personalized cranioplasty treatment
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2022.10.030
– volume: 41
  start-page: 1
  issue: 1
  year: 2025
  ident: 10.1016/j.eij.2025.100810_b0275
  article-title: Quantitative analysis of intracranial and intraorbital volume changes following craniosynostosis surgery: a retrospective imaging study
  publication-title: Child’s Nerv Syst
  doi: 10.1007/s00381-025-06870-w
– volume: 15
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.eij.2025.100810_b0215
  article-title: Face Ahead 2022 Abstracts Supplement
  publication-title: Reconstruction
– volume: 32
  start-page: 141
  issue: 1
  year: 2021
  ident: 10.1016/j.eij.2025.100810_b0100
  article-title: Orthognathic surgery in craniosynostosis
  publication-title: J Craniofac Surg
  doi: 10.1097/SCS.0000000000007154
– ident: 10.1016/j.eij.2025.100810_b0020
  doi: 10.1016/B978-0-323-65381-7.00020-4
– year: 2025
  ident: 10.1016/j.eij.2025.100810_b0240
  article-title: Diagnosis of different types of single suture craniosynostosis in infants with deep learning techniques
  publication-title: Med Nov Technol Devices
  doi: 10.1016/j.medntd.2025.100370
– volume: 45
  start-page: 11689
  issue: 10
  year: 2023
  ident: 10.1016/j.eij.2025.100810_b0295
  article-title: Diverse sample generation: pushing the limit of generative data-free quantization
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2023.3272925
– volume: 149
  year: 2021
  ident: 10.1016/j.eij.2025.100810_b0140
  article-title: Quality of life in patients with craniosynostosis and deformational plagiocephaly: a systematic review
  publication-title: Int J Pediatr Otorhinolaryngol
  doi: 10.1016/j.ijporl.2021.110873
– volume: 4
  issue: 3
  year: 2024
  ident: 10.1016/j.eij.2025.100810_b0025
  article-title: Continuum topological derivative-a novel application tool for segmentation of CT and MRI images
  publication-title: Neuroimage: Reports
– year: 2023
  ident: 10.1016/j.eij.2025.100810_b0110
  article-title: Surgical management of craniosynostosis—between the past and the future: a comprehensive review of the literature
  publication-title: J Pediatr Neurol
– ident: 10.1016/j.eij.2025.100810_b0085
  doi: 10.1007/978-3-319-92105-1_2
– volume: 9
  start-page: 2158
  issue: 6
  year: 2023
  ident: 10.1016/j.eij.2025.100810_b0035
  article-title: A systematic literature review of 3D deep learning techniques in computed tomography reconstruction
  publication-title: Tomography
  doi: 10.3390/tomography9060169
– volume: 12
  start-page: 84907
  year: 2024
  ident: 10.1016/j.eij.2025.100810_b0270
  article-title: CraNeXt: automatic reconstruction of skull implants with skull categorization technique
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3415173
– volume: 34
  start-page: 1677
  issue: 6
  year: 2023
  ident: 10.1016/j.eij.2025.100810_b0095
  article-title: Characterization of regional morphological changes in sagittal craniosynostosis following endoscopic strip craniectomy with post-operative helmeting: predictors for success
  publication-title: J Craniofac Surg
  doi: 10.1097/SCS.0000000000009433
– volume: 11
  year: 2023
  ident: 10.1016/j.eij.2025.100810_b0260
  article-title: Creating high-resolution 3D cranial implant geometry using deep learning techniques
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2023.1297933
– start-page: 287
  year: 2023
  ident: 10.1016/j.eij.2025.100810_b0185
  article-title: Application of artificial intelligence in diagnosing oral and maxillofacial lesions, facial corrective surgeries, and maxillofacial reconstructive procedures
– year: 2024
  ident: 10.1016/j.eij.2025.100810_b0105
  article-title: Metopic craniosynostosis: dynamic cranioplasty for trigonocephaly versus fronto-orbital remodeling and advancement—a retrospective study
  publication-title: J Cranio-Maxillofacial Surg
– volume: 52
  start-page: 1172
  issue: 10
  year: 2024
  ident: 10.1016/j.eij.2025.100810_b0230
  article-title: AI-based diagnosis and phenotype–genotype correlations in syndromic craniosynostoses
  publication-title: J Cranio-Maxillofacial Surg
  doi: 10.1016/j.jcms.2024.02.010
– ident: 10.1016/j.eij.2025.100810_b0055
  doi: 10.1007/978-981-97-4608-8_10
– year: 2023
  ident: 10.1016/j.eij.2025.100810_b0075
  article-title: Artificial intelligence and post-operative monitoring in plastic surgery
  publication-title: Plast Surg
– start-page: 1
  year: 2025
  ident: 10.1016/j.eij.2025.100810_b0265
  article-title: Deep learning-based automatic cranial implant design through direct defect shape prediction and its comparison study
  publication-title: Med Biol Eng Compu
– volume: 36
  start-page: 56838
  year: 2023
  ident: 10.1016/j.eij.2025.100810_b0285
  article-title: QuantSR: accurate low-bit quantization for efficient image super-resolution
  publication-title: Adv Neural Inf Process Syst
– start-page: 1
  year: 2021
  ident: 10.1016/j.eij.2025.100810_b0005
  article-title: Craniosynostosis and hydrocephalus: relevance and treatment modalities
  publication-title: Child’s Nerv Syst
– volume: 8
  issue: 1
  year: 2024
  ident: 10.1016/j.eij.2025.100810_b0070
  article-title: Biomedical big data technologies, applications, and challenges for precision medicine: a review
  publication-title: Glob Challenges
– volume: 14
  start-page: 187
  issue: 2
  year: 2024
  ident: 10.1016/j.eij.2025.100810_b0170
  article-title: The integration of 3D virtual reality and 3D printing technology as innovative approaches to preoperative planning in neuro-oncology
  publication-title: J Pers Med
  doi: 10.3390/jpm14020187
– volume: 34
  start-page: 418
  issue: 1
  year: 2023
  ident: 10.1016/j.eij.2025.100810_b0115
  article-title: Guideline on treatment and management of craniosynostosis: patient and family version
  publication-title: J Craniofac Surg
  doi: 10.1097/SCS.0000000000009143
– volume: 93
  start-page: 184
  issue: S1
  year: 2023
  ident: 10.1016/j.eij.2025.100810_b0175
  article-title: The Seldinger technique: a revolution in medicine
  publication-title: ANZ J Surg
– volume: 240
  year: 2023
  ident: 10.1016/j.eij.2025.100810_b0040
  article-title: Geometric learning and statistical modeling for surgical outcomes evaluation in craniosynostosis using 3D photogrammetry
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2023.107689
– ident: 10.1016/j.eij.2025.100810_b0010
  doi: 10.1007/978-3-030-72338-5_14
– volume: 89
  year: 2023
  ident: 10.1016/j.eij.2025.100810_b0030
  article-title: Fast fetal head compounding from multi-view 3D ultrasound
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2023.102793
– volume: 103
  year: 2025
  ident: 10.1016/j.eij.2025.100810_b0235
  article-title: CDRMamba: a framework for automated craniomaxillofacial defect reconstruction using Mamba-based modeling
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2024.107376
– volume: 91
  year: 2024
  ident: 10.1016/j.eij.2025.100810_b0250
  article-title: CMF defects database: a craniomaxillofacial defects dataset and a data-driven repair method
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105939
– ident: 10.1016/j.eij.2025.100810_b0090
  doi: 10.7759/cureus.60831
– volume: 148
  start-page: e363
  year: 2021
  ident: 10.1016/j.eij.2025.100810_b0190
  article-title: Automated lateral ventricular and cranial vault volume measurements in 13,851 patients using deep learning algorithms
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2020.12.148
– ident: 10.1016/j.eij.2025.100810_b0280
– volume: 39
  start-page: 953
  issue: 4
  year: 2023
  ident: 10.1016/j.eij.2025.100810_b0130
  article-title: External–internal cranial expansion to treat patients with craniocerebral disproportion due to post-shunt craniosynostosis: a case series
  publication-title: Child’s Nerv Syst
  doi: 10.1007/s00381-022-05744-9
– volume: 37
  start-page: 986
  issue: 5
  year: 2023
  ident: 10.1016/j.eij.2025.100810_b0065
  article-title: An algorithmic clinicoradiological approach to paediatric cranial vault lesions: distinguishing normal variants from pathologies
  publication-title: Br J Neurosurg
  doi: 10.1080/02688697.2021.1919599
– volume: 32
  start-page: 956
  issue: 3
  year: 2021
  ident: 10.1016/j.eij.2025.100810_b0045
  article-title: Three-dimensional stereophotogrammetry in the evaluation of craniosynostosis: current and potential use cases
  publication-title: J Craniofac Surg
  doi: 10.1097/SCS.0000000000007379
– ident: 10.1016/j.eij.2025.100810_b0060
  doi: 10.1007/978-3-030-54932-9_6
SSID ssj0000612456
Score 2.3375676
Snippet Craniosynostosis, a craniofacial malformation characterized by premature suture fusion, poses significant challenges for surgical correction. Current methods...
Background: Craniosynostosis, a craniofacial malformation characterized by premature suture fusion, poses significant challenges for surgical correction....
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 100810
SubjectTerms 3D U-net segmentation
AI-augmented pre-surgical planning
Craniosynostosis reconstruction
Depth-Augmented Vision Transformers
Title AI-Augmented 3D Craniofacial Reconstruction for Enhanced Surgical Planning: A Novel Integration of Depth-Augmented Vision Transformers and MeshCNN for Structural Fidelity
URI https://dx.doi.org/10.1016/j.eij.2025.100810
https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-55894
Volume 32
WOSCitedRecordID wos001605459800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1110-8665
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0000612456
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLXKwAIWiKcYXvICsWCUqo7zcNhFbUcgIELqUM0ucm2nSRnSKtNU8038BX-GH3m4RYOYBZsotRrbzT21j6-vzwXgDXJdSjPCHcQi4ng8YA5F4cJBgYgIwiHJ9Eb7_HOYJOT8PPo6GPxqz8LsLsKyJFdX0ea_mlqWSWOro7M3MHdXqSyQ99Lo8irNLq__ZPj4oxPXS621yU_w5GQsZ6NinVHtG1erzV4zVscYTsvcRAHM6soMg20iI3NqPVnvxIX2HC6rjl9OxGabW-3M9RF1I5WuaLA6FqxDOMRlPk4S3dBMN6tlPk6VuFax3dtSnqqEaGq4abRctX60_YtVWjCVK7r79Kn-XomVZr_zouyjgeK8bkqVm6TsJp4vIjdceZYXO2r7O1zfih0xQ7QkLI5S6bPH8MZHagZhpVdkYmX_mB-Mq2I1FMVqqCof9t_d1-I-mCO7yMU2KG6VyipSVUVqqrgFbruhHxFrVW_IAFJbyzrFT9Pvdm9dRxkedORadmTL2Grqc_YA3G_WLDA2WHsIBqJ8BO5ZSpaPwU8bdRBPoI06uI86KM0LW9TBFnWwRd17GEONOWhhDq4zeIA5aDAHbcxBaXDYYE4302MOtph7Ar6dTs_GH5wmDYjDMHa3DheYu2w0ompeJmKEhbsgbEHDaBExQRjnTBJP2WPuUuQx7mO5BHAR9QQKMowZfgqOynUpngE4ykggMuZxkhGPRX7kM4R9TkWABHV9dgzeta8_3Ri1l_Raix8DrzVQ2tBVQ0NTiba_PfbWGLNrQSm8T4p5nK6rZfqjqMvU90nkPb9JZ16Au_2f5SU4km9XvAJ32G5bXFavNSZ_A3o3yUw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-Augmented+3D+Craniofacial+Reconstruction+for+Enhanced+Surgical+Planning%3A+A+Novel+Integration+of+Depth-Augmented+Vision+Transformers+and+MeshCNN+for+Structural+Fidelity&rft.jtitle=Egyptian+informatics+journal&rft.au=Vishal&rft.au=Kukreja%2C+Vinay&rft.au=Ahuja%2C+Vandana&rft.au=Mehta%2C+Shiva&rft.date=2025-12-01&rft.issn=1110-8665&rft.volume=32&rft.spage=100810&rft_id=info:doi/10.1016%2Fj.eij.2025.100810&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eij_2025_100810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-8665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-8665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-8665&client=summon