AI-Augmented 3D Craniofacial Reconstruction for Enhanced Surgical Planning: A Novel Integration of Depth-Augmented Vision Transformers and MeshCNN for Structural Fidelity
Craniosynostosis, a craniofacial malformation characterized by premature suture fusion, poses significant challenges for surgical correction. Current methods for cranial reconstruction lack the precision required for accurate defect inpainting and depth awareness, limiting their clinical application...
Saved in:
| Published in: | Egyptian informatics journal Vol. 32; p. 100810 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.12.2025
|
| Subjects: | |
| ISSN: | 1110-8665 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Craniosynostosis, a craniofacial malformation characterized by premature suture fusion, poses significant challenges for surgical correction. Current methods for cranial reconstruction lack the precision required for accurate defect inpainting and depth awareness, limiting their clinical application in complex craniosynostosis cases.
This study aims to develop a novel AI-driven framework to enhance the accuracy of 3D craniofacial reconstruction for pre-surgical planning, with a specific focus on large cranial defects. By integrating advanced Artificial Intelligence (AI) techniques, it enhances the accuracy and efficiency of cranial models, enabling surgeons to plan interventions with greater confidence and to potentially improve patient outcomes. The framework’s computational efficiency, achieved through model quantization, further broadens its applicability in resource-limited clinical settings.
The framework begins with 3D U-Net-based segmentation, followed by depth map generation using Mixed Depth-of-Scale Models (MiDaS). Cranial defect inpainting is accomplished with Depth-augmented Vision Transformers (DA-ViT) guided by depth cues and edge detection, where MeshCNN and bilateral filtering refine the final mesh. Quantization-aware training (QAT) and post-training quantization (PTQ) reduce model size and memory footprint.
The framework achieved a Chamfer Distance of 0.14 mm and a Hausdorff Distance of 0.33 mm, significantly outperforming previous methods. Landmark accuracy was 0.10 mm with a consistency ratio of 0.91. After quantization, these values remained similar (0.15 mm, 0.35 mm, and 0.11 mm, respectively), while inference time decreased by 20% (from 35 ms to 28 ms), and memory usage dropped from 12 GB to 5 GB, allowing deployment on mid-range Graphics processing Unit (GPU). |
|---|---|
| AbstractList | Background: Craniosynostosis, a craniofacial malformation characterized by premature suture fusion, poses significant challenges for surgical correction. Current methods for cranial reconstruction lack the precision required for accurate defect inpainting and depth awareness, limiting their clinical application in complex craniosynostosis cases. Objective: This study aims to develop a novel AI-driven framework to enhance the accuracy of 3D craniofacial reconstruction for pre-surgical planning, with a specific focus on large cranial defects. By integrating advanced Artificial Intelligence (AI) techniques, it enhances the accuracy and efficiency of cranial models, enabling surgeons to plan interventions with greater confidence and to potentially improve patient outcomes. The framework's computational efficiency, achieved through model quantization, further broadens its applicability in resource-limited clinical settings. Methodology: The framework begins with 3D U-Net-based segmentation, followed by depth map generation using Mixed Depth-of-Scale Models (MiDaS). Cranial defect inpainting is accomplished with Depth-augmented Vision Transformers (DA-ViT) guided by depth cues and edge detection, where MeshCNN and bilateral filtering refine the final mesh. Quantization-aware training (QAT) and post-training quantization (PTQ) reduce model size and memory footprint. Results: The framework achieved a Chamfer Distance of 0.14 mm and a Hausdorff Distance of 0.33 mm, significantly outperforming previous methods. Landmark accuracy was 0.10 mm with a consistency ratio of 0.91. After quantization, these values remained similar (0.15 mm, 0.35 mm, and 0.11 mm, respectively), while inference time decreased by 20% (from 35 ms to 28 ms), and memory usage dropped from 12 GB to 5 GB, allowing deployment on mid-range Graphics processing Unit (GPU). Craniosynostosis, a craniofacial malformation characterized by premature suture fusion, poses significant challenges for surgical correction. Current methods for cranial reconstruction lack the precision required for accurate defect inpainting and depth awareness, limiting their clinical application in complex craniosynostosis cases. This study aims to develop a novel AI-driven framework to enhance the accuracy of 3D craniofacial reconstruction for pre-surgical planning, with a specific focus on large cranial defects. By integrating advanced Artificial Intelligence (AI) techniques, it enhances the accuracy and efficiency of cranial models, enabling surgeons to plan interventions with greater confidence and to potentially improve patient outcomes. The framework’s computational efficiency, achieved through model quantization, further broadens its applicability in resource-limited clinical settings. The framework begins with 3D U-Net-based segmentation, followed by depth map generation using Mixed Depth-of-Scale Models (MiDaS). Cranial defect inpainting is accomplished with Depth-augmented Vision Transformers (DA-ViT) guided by depth cues and edge detection, where MeshCNN and bilateral filtering refine the final mesh. Quantization-aware training (QAT) and post-training quantization (PTQ) reduce model size and memory footprint. The framework achieved a Chamfer Distance of 0.14 mm and a Hausdorff Distance of 0.33 mm, significantly outperforming previous methods. Landmark accuracy was 0.10 mm with a consistency ratio of 0.91. After quantization, these values remained similar (0.15 mm, 0.35 mm, and 0.11 mm, respectively), while inference time decreased by 20% (from 35 ms to 28 ms), and memory usage dropped from 12 GB to 5 GB, allowing deployment on mid-range Graphics processing Unit (GPU). |
| ArticleNumber | 100810 |
| Author | Tejani, Ghanshyam G. Mousavirad, Seyed Jalaleddin Dogra, Ayush Kukreja, Vinay Vishal Mehta, Shiva Ahuja, Vandana |
| Author_xml | – sequence: 1 surname: Vishal fullname: Vishal email: vishal.1018@chitkara.edu.in organization: Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India – sequence: 2 givenname: Vinay orcidid: 0000-0002-9760-0824 surname: Kukreja fullname: Kukreja, Vinay email: onlyvinaykukreja@gmail.com organization: Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India – sequence: 3 givenname: Vandana surname: Ahuja fullname: Ahuja, Vandana email: vandanapushe@gmail.com organization: Department of Computer Science & Engineering, Swami Vivekanand Institute of Engineering and Technology, Ramnagar, Punjab, India – sequence: 4 givenname: Shiva surname: Mehta fullname: Mehta, Shiva email: shiva.2387@chitkara.edu.in organization: Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India – sequence: 5 givenname: Ayush surname: Dogra fullname: Dogra, Ayush email: ayush123456789@gmail.com organization: Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India – sequence: 6 givenname: Ghanshyam G. orcidid: 0000-0001-9106-0313 surname: Tejani fullname: Tejani, Ghanshyam G. email: p.shyam23@gmail.com organization: Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 India – sequence: 7 givenname: Seyed Jalaleddin orcidid: 0000-0001-8661-7578 surname: Mousavirad fullname: Mousavirad, Seyed Jalaleddin email: Seyedjalaleddin.mousavirad@miun.se organization: Department of Computer and Electrical Engineering, Mid Sweden University, Sundsvall, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-55894$$DView record from Swedish Publication Index (Mittuniversitetet) |
| BookMark | eNp9UUtu2zAQ5SIFmro5QHa8gFx-JEVOVoLtpAZSp8hvS9DkSB5DIg1SSpEr9ZSl7aLoKrMhBvM-eHxfyJnzDgi55GzKGS-_7aaAu6lgokg7qzg7I-ecc5ZVZVl8Jhcx7liakou8KM_J73qV1WPbgxvAUrmg86Ad-kYb1B19BONdHMJoBvSONj7QpdtqZxL2aQwtmgT62Wnn0LXXtKZr_wYdXSWxNugjxzd0Afth-5_LK8bD5Tk5xSTZQ4hUO0t_QNzO1-ujzdPRdAxJ_xYtdDi8fyWfGt1FuPj7TsjL7fJ5_j27f7hbzev7zEgphsyCtMIwpmcpdgVMgthUZqOvZpuZgcpYa5iQKYEVmufGFjKXheA6B142Uho5IdlJN_6C_bhR-4C9Du_Ka1QLfK2VD63qcXSqKKpZnvD8hDfBxxig-cfgTB06UTuVOlGHTtSpk8S5OXEgBXlDCCoahMO_YgAzKOvxA_YfCvCbtw |
| Cites_doi | 10.31616/asj.2022.0374 10.1016/B978-0-12-823913-1.00024-5 10.1007/978-3-030-53099-0_6 10.1016/j.inat.2023.101887 10.1097/GOX.0000000000004608 10.7759/cureus.33153 10.1007/s00530-024-01611-6 10.1177/10556656221151096 10.1038/s41598-020-75747-6 10.3390/children8090727 10.1007/978-3-031-31168-0_7 10.2139/ssrn.5039948 10.1155/2022/6797745 10.1088/2516-1091/ad3a4b 10.1111/jspn.12370 10.1007/978-3-030-91920-7_58 10.3390/diagnostics14040435 10.3390/ma15144731 10.1016/j.actbio.2022.10.030 10.1007/s00381-025-06870-w 10.1097/SCS.0000000000007154 10.1016/B978-0-323-65381-7.00020-4 10.1016/j.medntd.2025.100370 10.1109/TPAMI.2023.3272925 10.1016/j.ijporl.2021.110873 10.1007/978-3-319-92105-1_2 10.3390/tomography9060169 10.1109/ACCESS.2024.3415173 10.1097/SCS.0000000000009433 10.3389/fbioe.2023.1297933 10.1016/j.jcms.2024.02.010 10.1007/978-981-97-4608-8_10 10.3390/jpm14020187 10.1097/SCS.0000000000009143 10.1016/j.cmpb.2023.107689 10.1007/978-3-030-72338-5_14 10.1016/j.media.2023.102793 10.1016/j.bspc.2024.107376 10.1016/j.bspc.2023.105939 10.7759/cureus.60831 10.1016/j.wneu.2020.12.148 10.1007/s00381-022-05744-9 10.1080/02688697.2021.1919599 10.1097/SCS.0000000000007379 10.1007/978-3-030-54932-9_6 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | 6I. AAFTH AAYXX CITATION ADTPV AKRZP AOWAS D8T DG5 ZZAVC |
| DOI | 10.1016/j.eij.2025.100810 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SwePub SWEPUB Mittuniversitetet full text SwePub Articles SWEPUB Freely available online SWEPUB Mittuniversitetet SwePub Articles full text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | oai_DiVA_org_miun_55894 10_1016_j_eij_2025_100810 S1110866525002038 |
| GroupedDBID | --K 0R~ 1B1 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV E3Z EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 O-L O9- OK1 RIG ROL SES SSZ AAYXX CITATION ADTPV AKRZP AOWAS D8T DG5 ZZAVC |
| ID | FETCH-LOGICAL-c332t-de3d2c00a91118e03e2b8cba79b9ce8cddc023cedd2a14cd5343521a4e16f33c3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001605459800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1110-8665 |
| IngestDate | Wed Nov 05 04:04:42 EST 2025 Thu Nov 27 00:53:22 EST 2025 Sat Nov 22 16:52:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | AI-augmented pre-surgical planning Craniosynostosis reconstruction 3D U-net segmentation Depth-Augmented Vision Transformers |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c332t-de3d2c00a91118e03e2b8cba79b9ce8cddc023cedd2a14cd5343521a4e16f33c3 |
| ORCID | 0000-0002-9760-0824 0000-0001-8661-7578 0000-0001-9106-0313 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.eij.2025.100810 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_miun_55894 crossref_primary_10_1016_j_eij_2025_100810 elsevier_sciencedirect_doi_10_1016_j_eij_2025_100810 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Egyptian informatics journal |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kesornsri (b0270) 2024; 12 H. Qin Wodzinski M, M. Daniol, D. Hemmerling, Automatic Skull Reconstruction by Deep Learnable Symmetry Enforcement Jegadeesan, Baldia, Basu (b0120) 2022; 154 Motie (b0185) 2023 Archer (b0175) 2023; 93 Qin, Ding, Zhang, Wang, Liu, Lu (b0295) 2023; 45 Hennocq (b0230) 2024; 52 L. S. Van De Lande, A. V. H. Greig, D. J. Dunaway, Craniosynostosis, in vol. 14, no. 12, 2022. Cornejo (b0160) 2022; 2022 Wang, Jin, Chen (b0235) 2025; 103 Accurate lora-finetuning quantization of llms via information retention doi: 10.5281/zenodo.5638148. F. de León, J. A. Franco-Jiménez, Types of Craniosynostosis and their Etiology, Pathophysiology and Epidemiology, in Abdel-Alim (b0045) 2021; 32 Park, Tripathi, Al-Mufarrej (b0140) 2021; 149 A. Shehata, M. Salem, M. A. R. Ahad, Image Processing in Health Informatics vol. 16, no. 5, 2024. Czyżewski (b0155) 2022; 15 Zhang (b0255) 2025; 31 Frassanito, Palombi, Tamburrini (b0005) 2021 Cacciaguerra (b0145) 2021; 8 Exploring Different Management Modalities of Non-syndromic Craniosynostosis Muthukrishnan, Jaipurkar, Damodaran (b0025) 2024; 4 Habibi (b0130) 2023; 39 Wong RCW, C. W. Yong, M. W. J. Chen, T. J. H. Sng, K. H. Tan, and R. Lim, The virtual patient model for correction of facial deformity and accuracy of simulation and surgical guide construction, in Wright (b0030) 2023; 89 Elsevier, 2023, pp. 783–803. Springer, 2023, pp. 231–256. Faasse, Mathijssen (b0115) 2023; 34 Wu, Yang, Chang (b0260) 2023; 11 Vezirska D, Milev M, L. Laleva, V. Nakov, T. Spiriev, Three-dimensional printing in neurosurgery: a review of current indications and applications and a basic methodology for creating a three-dimensional printed model for the neurosurgical practice Pombo, van Mourik Zoio, Santos, Faria, Miguéns, Guimarães-Ferreira (b0105) 2024 Qin (b0285) 2023; 36 Sabeti, Boostani, Taheri, Moradi (b0245) 2024; 36 Zerpe, Nowinski, Ramklint, Öster (b0135) 2022; 27 Chuxi, Xinkang, Xiaokun, Shilei, Xinrong (b0250) 2024; 91 A statistical shape model of craniosynostosis patients and 100 model instances of each pathology, 2021 pp. 297–343, 2021. Rengasamy Venugopalan S, V. Allareddy, Craniofacial Growth and Development, in Schaufelberger M Fouda (b0110) 2023 Memon, Shi, Memon, Egger, Chen (b0265) 2025 Springer, 2022, pp. 1729–1765. Hedaoo (b0225) 2024 Al-Murad BM Simms N, Poots J. “The Skull, Brain and Associated Structures: Part I Applied Anatomy and Physiology,” pp. 145–170, 2021. Kim, Park, Chang, Lee (b0050) 2022; 16 Tokgöz E, Carro MA. Cosmetic and reconstructive facial plastic surgery related simulation and optimization efforts, in Marani E, C. Heida, E. Marani, C. Heida, The Skullcap, Cranial Vault or Calvarium Rahman, Khan, Sadiq, Farooqi, Khan, Lim (b0035) 2023; 9 Spoer (b0205) 2022; 10 Rodgers (b0180) 2021 Zinati, Sabeti, Kamyab, Moradi (b0240) 2025 Springer, 2024, pp. 131–141. Maragkos (b0190) 2021; 148 Elsevier, 2022, pp. 267–282. Spazzapan, Velnar (b0015) 2024; 14 Ferri, Schlund, Touzet-Roumazeille (b0100) 2021; 32 Springer, 2021, pp. 201–231. Yang, Huang, Yang, Zhao, Zhou (b0070) 2024; 8 Stein, Rohrich (b0075) 2023 González-López (b0170) 2024; 14 Nguyen (b0095) 2023; 34 John, Konar, Shukla, Salian, Srivinias (b0275) 2025; 41 Elkhill (b0040) 2023; 240 Sriraam, Chinta, Suresh, Sudharshan (b0195) 2024; 6 Bozkurt, Borghi, van de Lande, Jeelani, Dunaway, Schievano (b0220) 2020; 10 N. M. Rao, B. C. Neelapu, Segmentation of 3D Craniofacial Imaging and Volumetric Measurement, in 2024. pp. 15–49, 2018. Wright (b0165) 2024; 61 Tan (b0065) 2023; 37 Aniceto, Girod, Leung, Parmar (b0215) 2022; 15 10.1016/j.eij.2025.100810_b0300 Kesornsri (10.1016/j.eij.2025.100810_b0270) 2024; 12 Pombo (10.1016/j.eij.2025.100810_b0105) 2024 Hedaoo (10.1016/j.eij.2025.100810_b0225) 2024 Cornejo (10.1016/j.eij.2025.100810_b0160) 2022; 2022 Tan (10.1016/j.eij.2025.100810_b0065) 2023; 37 Nguyen (10.1016/j.eij.2025.100810_b0095) 2023; 34 10.1016/j.eij.2025.100810_b0060 Park (10.1016/j.eij.2025.100810_b0140) 2021; 149 Rahman (10.1016/j.eij.2025.100810_b0035) 2023; 9 10.1016/j.eij.2025.100810_b0020 Abdel-Alim (10.1016/j.eij.2025.100810_b0045) 2021; 32 Aniceto (10.1016/j.eij.2025.100810_b0215) 2022; 15 Czyżewski (10.1016/j.eij.2025.100810_b0155) 2022; 15 John (10.1016/j.eij.2025.100810_b0275) 2025; 41 Zerpe (10.1016/j.eij.2025.100810_b0135) 2022; 27 Wright (10.1016/j.eij.2025.100810_b0165) 2024; 61 Zinati (10.1016/j.eij.2025.100810_b0240) 2025 Memon (10.1016/j.eij.2025.100810_b0265) 2025 10.1016/j.eij.2025.100810_b0290 10.1016/j.eij.2025.100810_b0090 Muthukrishnan (10.1016/j.eij.2025.100810_b0025) 2024; 4 Jegadeesan (10.1016/j.eij.2025.100810_b0120) 2022; 154 Spazzapan (10.1016/j.eij.2025.100810_b0015) 2024; 14 10.1016/j.eij.2025.100810_b0210 10.1016/j.eij.2025.100810_b0055 10.1016/j.eij.2025.100810_b0010 Qin (10.1016/j.eij.2025.100810_b0295) 2023; 45 Sriraam (10.1016/j.eij.2025.100810_b0195) 2024; 6 10.1016/j.eij.2025.100810_b0125 Wu (10.1016/j.eij.2025.100810_b0260) 2023; 11 Fouda (10.1016/j.eij.2025.100810_b0110) 2023 10.1016/j.eij.2025.100810_b0200 Faasse (10.1016/j.eij.2025.100810_b0115) 2023; 34 Rodgers (10.1016/j.eij.2025.100810_b0180) 2021 Qin (10.1016/j.eij.2025.100810_b0285) 2023; 36 Elkhill (10.1016/j.eij.2025.100810_b0040) 2023; 240 Hennocq (10.1016/j.eij.2025.100810_b0230) 2024; 52 Motie (10.1016/j.eij.2025.100810_b0185) 2023 Frassanito (10.1016/j.eij.2025.100810_b0005) 2021 Yang (10.1016/j.eij.2025.100810_b0070) 2024; 8 10.1016/j.eij.2025.100810_b0080 Cacciaguerra (10.1016/j.eij.2025.100810_b0145) 2021; 8 10.1016/j.eij.2025.100810_b0085 González-López (10.1016/j.eij.2025.100810_b0170) 2024; 14 Spoer (10.1016/j.eij.2025.100810_b0205) 2022; 10 Zhang (10.1016/j.eij.2025.100810_b0255) 2025; 31 10.1016/j.eij.2025.100810_b0280 Habibi (10.1016/j.eij.2025.100810_b0130) 2023; 39 Maragkos (10.1016/j.eij.2025.100810_b0190) 2021; 148 Wright (10.1016/j.eij.2025.100810_b0030) 2023; 89 Sabeti (10.1016/j.eij.2025.100810_b0245) 2024; 36 Archer (10.1016/j.eij.2025.100810_b0175) 2023; 93 Kim (10.1016/j.eij.2025.100810_b0050) 2022; 16 Wang (10.1016/j.eij.2025.100810_b0235) 2025; 103 10.1016/j.eij.2025.100810_b0150 Bozkurt (10.1016/j.eij.2025.100810_b0220) 2020; 10 Stein (10.1016/j.eij.2025.100810_b0075) 2023 Chuxi (10.1016/j.eij.2025.100810_b0250) 2024; 91 Ferri (10.1016/j.eij.2025.100810_b0100) 2021; 32 |
| References_xml | – volume: 12 start-page: 84907 year: 2024 end-page: 84922 ident: b0270 article-title: CraNeXt: automatic reconstruction of skull implants with skull categorization technique publication-title: IEEE Access – year: 2024 ident: b0225 article-title: Neuroendoscopy training publication-title: Asian J Neurosurg – volume: 2022 year: 2022 ident: b0160 article-title: Anatomical Engineering and 3D printing for surgery and medical devices: International review and future exponential innovations publication-title: Biomed Res Int – volume: 14 start-page: 187 year: 2024 ident: b0170 article-title: The integration of 3D virtual reality and 3D printing technology as innovative approaches to preoperative planning in neuro-oncology publication-title: J Pers Med – volume: 36 year: 2024 ident: b0245 article-title: Image processing and machine learning for diagnosis and screening of craniosynostosis in children publication-title: Interdiscip Neurosurg – reference: Wong RCW, C. W. Yong, M. W. J. Chen, T. J. H. Sng, K. H. Tan, and R. Lim, The virtual patient model for correction of facial deformity and accuracy of simulation and surgical guide construction, in – volume: 16 start-page: 764 year: 2022 ident: b0050 article-title: Diagnostic technology for spine pathology publication-title: Asian Spine J – volume: 8 year: 2024 ident: b0070 article-title: Biomedical big data technologies, applications, and challenges for precision medicine: a review publication-title: Glob Challenges – reference: L. S. Van De Lande, A. V. H. Greig, D. J. Dunaway, Craniosynostosis, in: – volume: 11 year: 2023 ident: b0260 article-title: Creating high-resolution 3D cranial implant geometry using deep learning techniques publication-title: Front Bioeng Biotechnol – reference: Marani E, C. Heida, E. Marani, C. Heida, The Skullcap, Cranial Vault or Calvarium, – year: 2021 ident: b0180 article-title: Development of a personalised 3D mandibular distraction device for the management of craniofacial microsomia – reference: , Exploring Different Management Modalities of Non-syndromic Craniosynostosis, – volume: 34 start-page: 1677 year: 2023 end-page: 1681 ident: b0095 article-title: Characterization of regional morphological changes in sagittal craniosynostosis following endoscopic strip craniectomy with post-operative helmeting: predictors for success publication-title: J Craniofac Surg – reference: . doi: 10.5281/zenodo.5638148. – volume: 10 start-page: 18693 year: 2020 ident: b0220 article-title: Computational modelling of patient specific spring assisted lambdoid craniosynostosis correction publication-title: Sci Rep – volume: 9 start-page: 2158 year: 2023 end-page: 2189 ident: b0035 article-title: A systematic literature review of 3D deep learning techniques in computed tomography reconstruction publication-title: Tomography – reference: Vezirska D, Milev M, L. Laleva, V. Nakov, T. Spiriev, Three-dimensional printing in neurosurgery: a review of current indications and applications and a basic methodology for creating a three-dimensional printed model for the neurosurgical practice, – volume: 91 year: 2024 ident: b0250 article-title: CMF defects database: a craniomaxillofacial defects dataset and a data-driven repair method publication-title: Biomed Signal Process Control – volume: 8 start-page: 727 year: 2021 ident: b0145 article-title: The evolution of the role of imaging in the diagnosis of craniosynostosis: a narrative review publication-title: Children – reference: Tokgöz E, Carro MA. Cosmetic and reconstructive facial plastic surgery related simulation and optimization efforts, in – volume: 240 year: 2023 ident: b0040 article-title: Geometric learning and statistical modeling for surgical outcomes evaluation in craniosynostosis using 3D photogrammetry publication-title: Comput Methods Programs Biomed – reference: N. M. Rao, B. C. Neelapu, Segmentation of 3D Craniofacial Imaging and Volumetric Measurement, in: – volume: 34 start-page: 418 year: 2023 end-page: 433 ident: b0115 article-title: Guideline on treatment and management of craniosynostosis: patient and family version publication-title: J Craniofac Surg – year: 2023 ident: b0075 article-title: Artificial intelligence and post-operative monitoring in plastic surgery publication-title: Plast Surg – reference: Schaufelberger M – volume: 6 start-page: 23002 year: 2024 ident: b0195 article-title: Ultrasound imaging based recognition of prenatal anomalies: a systematic clinical engineering review publication-title: Prog Biomed Eng – start-page: 1 year: 2025 end-page: 12 ident: b0265 article-title: Deep learning-based automatic cranial implant design through direct defect shape prediction and its comparison study publication-title: Med Biol Eng Compu – volume: 41 start-page: 1 year: 2025 end-page: 5 ident: b0275 article-title: Quantitative analysis of intracranial and intraorbital volume changes following craniosynostosis surgery: a retrospective imaging study publication-title: Child’s Nerv Syst – reference: A. Shehata, M. Salem, M. A. R. Ahad, Image Processing in Health Informatics, – volume: 149 year: 2021 ident: b0140 article-title: Quality of life in patients with craniosynostosis and deformational plagiocephaly: a systematic review publication-title: Int J Pediatr Otorhinolaryngol – reference: , Springer, 2024, pp. 131–141. – volume: 10 start-page: e4608 year: 2022 ident: b0205 article-title: A systematic review of artificial intelligence applications in plastic surgery: looking to the future publication-title: Plast Reconstr Surgery-Global Open – reference: , Elsevier, 2023, pp. 783–803. – volume: 32 start-page: 956 year: 2021 end-page: 963 ident: b0045 article-title: Three-dimensional stereophotogrammetry in the evaluation of craniosynostosis: current and potential use cases publication-title: J Craniofac Surg – volume: 4 year: 2024 ident: b0025 article-title: Continuum topological derivative-a novel application tool for segmentation of CT and MRI images publication-title: Neuroimage: Reports – year: 2023 ident: b0110 article-title: Surgical management of craniosynostosis—between the past and the future: a comprehensive review of the literature publication-title: J Pediatr Neurol – volume: 14 start-page: 435 year: 2024 ident: b0015 article-title: Isolated sagittal craniosynostosis: a comprehensive review publication-title: Diagnostics – reference: , Elsevier, 2022, pp. 267–282. – volume: 39 start-page: 953 year: 2023 end-page: 961 ident: b0130 article-title: External–internal cranial expansion to treat patients with craniocerebral disproportion due to post-shunt craniosynostosis: a case series publication-title: Child’s Nerv Syst – volume: 27 year: 2022 ident: b0135 article-title: ‘When the surgery was over, I felt like the worst part had passed’: experiences of parents of children with craniosynostosis publication-title: J Spec Pediatr Nurs – reference: , “Accurate lora-finetuning quantization of llms via information retention,” – volume: 103 year: 2025 ident: b0235 article-title: CDRMamba: a framework for automated craniomaxillofacial defect reconstruction using Mamba-based modeling publication-title: Biomed Signal Process Control – year: 2024 ident: b0105 article-title: Metopic craniosynostosis: dynamic cranioplasty for trigonocephaly versus fronto-orbital remodeling and advancement—a retrospective study publication-title: J Cranio-Maxillofacial Surg – volume: 89 year: 2023 ident: b0030 article-title: Fast fetal head compounding from multi-view 3D ultrasound publication-title: Med Image Anal – volume: 154 start-page: 63 year: 2022 end-page: 82 ident: b0120 article-title: Next-generation personalized cranioplasty treatment publication-title: Acta Biomater – volume: 15 start-page: 4731 year: 2022 ident: b0155 article-title: Low-cost cranioplasty—a systematic review of 3D printing in medicine publication-title: Materials (basel) – volume: 52 start-page: 1172 year: 2024 end-page: 1187 ident: b0230 article-title: AI-based diagnosis and phenotype–genotype correlations in syndromic craniosynostoses publication-title: J Cranio-Maxillofacial Surg – reference: , A statistical shape model of craniosynostosis patients and 100 model instances of each pathology, 2021, – volume: 148 start-page: e363 year: 2021 end-page: e373 ident: b0190 article-title: Automated lateral ventricular and cranial vault volume measurements in 13,851 patients using deep learning algorithms publication-title: World Neurosurg – reference: , vol. 16, no. 5, 2024. – volume: 15 start-page: 1 year: 2022 end-page: 49 ident: b0215 article-title: Face Ahead 2022 Abstracts Supplement publication-title: Reconstruction – volume: 31 start-page: 1 year: 2025 end-page: 16 ident: b0255 article-title: CR-DM: a novel craniofacial reconstruction framework based on diffusion model publication-title: Multimed Syst – reference: H. Qin – start-page: 287 year: 2023 end-page: 328 ident: b0185 article-title: Application of artificial intelligence in diagnosing oral and maxillofacial lesions, facial corrective surgeries, and maxillofacial reconstructive procedures – reference: , Springer, 2023, pp. 231–256. – reference: Simms N, Poots J. “The Skull, Brain and Associated Structures: Part I Applied Anatomy and Physiology,” – reference: , pp. 145–170, 2021. – reference: Rengasamy Venugopalan S, V. Allareddy, Craniofacial Growth and Development, in – volume: 61 start-page: 997 year: 2024 end-page: 1006 ident: b0165 article-title: Design and validation of a 3D printed cranio-facial simulator: a novel tool for surgical education publication-title: Cleft Palate Craniofacial J – volume: 45 start-page: 11689 year: 2023 end-page: 11706 ident: b0295 article-title: Diverse sample generation: pushing the limit of generative data-free quantization publication-title: IEEE Trans Pattern Anal Mach Intell – reference: , pp. 297–343, 2021. – year: 2025 ident: b0240 article-title: Diagnosis of different types of single suture craniosynostosis in infants with deep learning techniques publication-title: Med Nov Technol Devices – reference: , vol. 14, no. 12, 2022. – start-page: 1 year: 2021 end-page: 9 ident: b0005 article-title: Craniosynostosis and hydrocephalus: relevance and treatment modalities publication-title: Child’s Nerv Syst – volume: 36 start-page: 56838 year: 2023 end-page: 56848 ident: b0285 article-title: QuantSR: accurate low-bit quantization for efficient image super-resolution publication-title: Adv Neural Inf Process Syst – volume: 37 start-page: 986 year: 2023 end-page: 999 ident: b0065 article-title: An algorithmic clinicoradiological approach to paediatric cranial vault lesions: distinguishing normal variants from pathologies publication-title: Br J Neurosurg – reference: , Springer, 2022, pp. 1729–1765. – reference: , Springer, 2021, pp. 201–231. – volume: 32 start-page: 141 year: 2021 end-page: 148 ident: b0100 article-title: Orthognathic surgery in craniosynostosis publication-title: J Craniofac Surg – reference: F. de León, J. A. Franco-Jiménez, Types of Craniosynostosis and their Etiology, Pathophysiology and Epidemiology, in: – reference: , 2024. – reference: Al-Murad BM – volume: 93 start-page: 184 year: 2023 end-page: 214 ident: b0175 article-title: The Seldinger technique: a revolution in medicine publication-title: ANZ J Surg – reference: Wodzinski M, M. Daniol, D. Hemmerling, Automatic Skull Reconstruction by Deep Learnable Symmetry Enforcement, – reference: , pp. 15–49, 2018. – volume: 16 start-page: 764 issue: 5 year: 2022 ident: 10.1016/j.eij.2025.100810_b0050 article-title: Diagnostic technology for spine pathology publication-title: Asian Spine J doi: 10.31616/asj.2022.0374 – ident: 10.1016/j.eij.2025.100810_b0150 doi: 10.1016/B978-0-12-823913-1.00024-5 – ident: 10.1016/j.eij.2025.100810_b0290 – ident: 10.1016/j.eij.2025.100810_b0125 doi: 10.1007/978-3-030-53099-0_6 – volume: 36 year: 2024 ident: 10.1016/j.eij.2025.100810_b0245 article-title: Image processing and machine learning for diagnosis and screening of craniosynostosis in children publication-title: Interdiscip Neurosurg doi: 10.1016/j.inat.2023.101887 – volume: 10 start-page: e4608 issue: 12 year: 2022 ident: 10.1016/j.eij.2025.100810_b0205 article-title: A systematic review of artificial intelligence applications in plastic surgery: looking to the future publication-title: Plast Reconstr Surgery-Global Open doi: 10.1097/GOX.0000000000004608 – year: 2021 ident: 10.1016/j.eij.2025.100810_b0180 – ident: 10.1016/j.eij.2025.100810_b0210 doi: 10.7759/cureus.33153 – volume: 31 start-page: 1 issue: 1 year: 2025 ident: 10.1016/j.eij.2025.100810_b0255 article-title: CR-DM: a novel craniofacial reconstruction framework based on diffusion model publication-title: Multimed Syst doi: 10.1007/s00530-024-01611-6 – volume: 61 start-page: 997 issue: 6 year: 2024 ident: 10.1016/j.eij.2025.100810_b0165 article-title: Design and validation of a 3D printed cranio-facial simulator: a novel tool for surgical education publication-title: Cleft Palate Craniofacial J doi: 10.1177/10556656221151096 – volume: 10 start-page: 18693 issue: 1 year: 2020 ident: 10.1016/j.eij.2025.100810_b0220 article-title: Computational modelling of patient specific spring assisted lambdoid craniosynostosis correction publication-title: Sci Rep doi: 10.1038/s41598-020-75747-6 – volume: 8 start-page: 727 issue: 9 year: 2021 ident: 10.1016/j.eij.2025.100810_b0145 article-title: The evolution of the role of imaging in the diagnosis of craniosynostosis: a narrative review publication-title: Children doi: 10.3390/children8090727 – ident: 10.1016/j.eij.2025.100810_b0200 doi: 10.1007/978-3-031-31168-0_7 – ident: 10.1016/j.eij.2025.100810_b0300 doi: 10.2139/ssrn.5039948 – volume: 2022 issue: 1 year: 2022 ident: 10.1016/j.eij.2025.100810_b0160 article-title: Anatomical Engineering and 3D printing for surgery and medical devices: International review and future exponential innovations publication-title: Biomed Res Int doi: 10.1155/2022/6797745 – volume: 6 start-page: 23002 issue: 2 year: 2024 ident: 10.1016/j.eij.2025.100810_b0195 article-title: Ultrasound imaging based recognition of prenatal anomalies: a systematic clinical engineering review publication-title: Prog Biomed Eng doi: 10.1088/2516-1091/ad3a4b – volume: 27 issue: 2 year: 2022 ident: 10.1016/j.eij.2025.100810_b0135 article-title: ‘When the surgery was over, I felt like the worst part had passed’: experiences of parents of children with craniosynostosis publication-title: J Spec Pediatr Nurs doi: 10.1111/jspn.12370 – ident: 10.1016/j.eij.2025.100810_b0080 doi: 10.1007/978-3-030-91920-7_58 – volume: 14 start-page: 435 issue: 4 year: 2024 ident: 10.1016/j.eij.2025.100810_b0015 article-title: Isolated sagittal craniosynostosis: a comprehensive review publication-title: Diagnostics doi: 10.3390/diagnostics14040435 – volume: 15 start-page: 4731 issue: 14 year: 2022 ident: 10.1016/j.eij.2025.100810_b0155 article-title: Low-cost cranioplasty—a systematic review of 3D printing in medicine publication-title: Materials (basel) doi: 10.3390/ma15144731 – year: 2024 ident: 10.1016/j.eij.2025.100810_b0225 article-title: Neuroendoscopy training publication-title: Asian J Neurosurg – volume: 154 start-page: 63 year: 2022 ident: 10.1016/j.eij.2025.100810_b0120 article-title: Next-generation personalized cranioplasty treatment publication-title: Acta Biomater doi: 10.1016/j.actbio.2022.10.030 – volume: 41 start-page: 1 issue: 1 year: 2025 ident: 10.1016/j.eij.2025.100810_b0275 article-title: Quantitative analysis of intracranial and intraorbital volume changes following craniosynostosis surgery: a retrospective imaging study publication-title: Child’s Nerv Syst doi: 10.1007/s00381-025-06870-w – volume: 15 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.eij.2025.100810_b0215 article-title: Face Ahead 2022 Abstracts Supplement publication-title: Reconstruction – volume: 32 start-page: 141 issue: 1 year: 2021 ident: 10.1016/j.eij.2025.100810_b0100 article-title: Orthognathic surgery in craniosynostosis publication-title: J Craniofac Surg doi: 10.1097/SCS.0000000000007154 – ident: 10.1016/j.eij.2025.100810_b0020 doi: 10.1016/B978-0-323-65381-7.00020-4 – year: 2025 ident: 10.1016/j.eij.2025.100810_b0240 article-title: Diagnosis of different types of single suture craniosynostosis in infants with deep learning techniques publication-title: Med Nov Technol Devices doi: 10.1016/j.medntd.2025.100370 – volume: 45 start-page: 11689 issue: 10 year: 2023 ident: 10.1016/j.eij.2025.100810_b0295 article-title: Diverse sample generation: pushing the limit of generative data-free quantization publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2023.3272925 – volume: 149 year: 2021 ident: 10.1016/j.eij.2025.100810_b0140 article-title: Quality of life in patients with craniosynostosis and deformational plagiocephaly: a systematic review publication-title: Int J Pediatr Otorhinolaryngol doi: 10.1016/j.ijporl.2021.110873 – volume: 4 issue: 3 year: 2024 ident: 10.1016/j.eij.2025.100810_b0025 article-title: Continuum topological derivative-a novel application tool for segmentation of CT and MRI images publication-title: Neuroimage: Reports – year: 2023 ident: 10.1016/j.eij.2025.100810_b0110 article-title: Surgical management of craniosynostosis—between the past and the future: a comprehensive review of the literature publication-title: J Pediatr Neurol – ident: 10.1016/j.eij.2025.100810_b0085 doi: 10.1007/978-3-319-92105-1_2 – volume: 9 start-page: 2158 issue: 6 year: 2023 ident: 10.1016/j.eij.2025.100810_b0035 article-title: A systematic literature review of 3D deep learning techniques in computed tomography reconstruction publication-title: Tomography doi: 10.3390/tomography9060169 – volume: 12 start-page: 84907 year: 2024 ident: 10.1016/j.eij.2025.100810_b0270 article-title: CraNeXt: automatic reconstruction of skull implants with skull categorization technique publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3415173 – volume: 34 start-page: 1677 issue: 6 year: 2023 ident: 10.1016/j.eij.2025.100810_b0095 article-title: Characterization of regional morphological changes in sagittal craniosynostosis following endoscopic strip craniectomy with post-operative helmeting: predictors for success publication-title: J Craniofac Surg doi: 10.1097/SCS.0000000000009433 – volume: 11 year: 2023 ident: 10.1016/j.eij.2025.100810_b0260 article-title: Creating high-resolution 3D cranial implant geometry using deep learning techniques publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2023.1297933 – start-page: 287 year: 2023 ident: 10.1016/j.eij.2025.100810_b0185 article-title: Application of artificial intelligence in diagnosing oral and maxillofacial lesions, facial corrective surgeries, and maxillofacial reconstructive procedures – year: 2024 ident: 10.1016/j.eij.2025.100810_b0105 article-title: Metopic craniosynostosis: dynamic cranioplasty for trigonocephaly versus fronto-orbital remodeling and advancement—a retrospective study publication-title: J Cranio-Maxillofacial Surg – volume: 52 start-page: 1172 issue: 10 year: 2024 ident: 10.1016/j.eij.2025.100810_b0230 article-title: AI-based diagnosis and phenotype–genotype correlations in syndromic craniosynostoses publication-title: J Cranio-Maxillofacial Surg doi: 10.1016/j.jcms.2024.02.010 – ident: 10.1016/j.eij.2025.100810_b0055 doi: 10.1007/978-981-97-4608-8_10 – year: 2023 ident: 10.1016/j.eij.2025.100810_b0075 article-title: Artificial intelligence and post-operative monitoring in plastic surgery publication-title: Plast Surg – start-page: 1 year: 2025 ident: 10.1016/j.eij.2025.100810_b0265 article-title: Deep learning-based automatic cranial implant design through direct defect shape prediction and its comparison study publication-title: Med Biol Eng Compu – volume: 36 start-page: 56838 year: 2023 ident: 10.1016/j.eij.2025.100810_b0285 article-title: QuantSR: accurate low-bit quantization for efficient image super-resolution publication-title: Adv Neural Inf Process Syst – start-page: 1 year: 2021 ident: 10.1016/j.eij.2025.100810_b0005 article-title: Craniosynostosis and hydrocephalus: relevance and treatment modalities publication-title: Child’s Nerv Syst – volume: 8 issue: 1 year: 2024 ident: 10.1016/j.eij.2025.100810_b0070 article-title: Biomedical big data technologies, applications, and challenges for precision medicine: a review publication-title: Glob Challenges – volume: 14 start-page: 187 issue: 2 year: 2024 ident: 10.1016/j.eij.2025.100810_b0170 article-title: The integration of 3D virtual reality and 3D printing technology as innovative approaches to preoperative planning in neuro-oncology publication-title: J Pers Med doi: 10.3390/jpm14020187 – volume: 34 start-page: 418 issue: 1 year: 2023 ident: 10.1016/j.eij.2025.100810_b0115 article-title: Guideline on treatment and management of craniosynostosis: patient and family version publication-title: J Craniofac Surg doi: 10.1097/SCS.0000000000009143 – volume: 93 start-page: 184 issue: S1 year: 2023 ident: 10.1016/j.eij.2025.100810_b0175 article-title: The Seldinger technique: a revolution in medicine publication-title: ANZ J Surg – volume: 240 year: 2023 ident: 10.1016/j.eij.2025.100810_b0040 article-title: Geometric learning and statistical modeling for surgical outcomes evaluation in craniosynostosis using 3D photogrammetry publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2023.107689 – ident: 10.1016/j.eij.2025.100810_b0010 doi: 10.1007/978-3-030-72338-5_14 – volume: 89 year: 2023 ident: 10.1016/j.eij.2025.100810_b0030 article-title: Fast fetal head compounding from multi-view 3D ultrasound publication-title: Med Image Anal doi: 10.1016/j.media.2023.102793 – volume: 103 year: 2025 ident: 10.1016/j.eij.2025.100810_b0235 article-title: CDRMamba: a framework for automated craniomaxillofacial defect reconstruction using Mamba-based modeling publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2024.107376 – volume: 91 year: 2024 ident: 10.1016/j.eij.2025.100810_b0250 article-title: CMF defects database: a craniomaxillofacial defects dataset and a data-driven repair method publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.105939 – ident: 10.1016/j.eij.2025.100810_b0090 doi: 10.7759/cureus.60831 – volume: 148 start-page: e363 year: 2021 ident: 10.1016/j.eij.2025.100810_b0190 article-title: Automated lateral ventricular and cranial vault volume measurements in 13,851 patients using deep learning algorithms publication-title: World Neurosurg doi: 10.1016/j.wneu.2020.12.148 – ident: 10.1016/j.eij.2025.100810_b0280 – volume: 39 start-page: 953 issue: 4 year: 2023 ident: 10.1016/j.eij.2025.100810_b0130 article-title: External–internal cranial expansion to treat patients with craniocerebral disproportion due to post-shunt craniosynostosis: a case series publication-title: Child’s Nerv Syst doi: 10.1007/s00381-022-05744-9 – volume: 37 start-page: 986 issue: 5 year: 2023 ident: 10.1016/j.eij.2025.100810_b0065 article-title: An algorithmic clinicoradiological approach to paediatric cranial vault lesions: distinguishing normal variants from pathologies publication-title: Br J Neurosurg doi: 10.1080/02688697.2021.1919599 – volume: 32 start-page: 956 issue: 3 year: 2021 ident: 10.1016/j.eij.2025.100810_b0045 article-title: Three-dimensional stereophotogrammetry in the evaluation of craniosynostosis: current and potential use cases publication-title: J Craniofac Surg doi: 10.1097/SCS.0000000000007379 – ident: 10.1016/j.eij.2025.100810_b0060 doi: 10.1007/978-3-030-54932-9_6 |
| SSID | ssj0000612456 |
| Score | 2.3375676 |
| Snippet | Craniosynostosis, a craniofacial malformation characterized by premature suture fusion, poses significant challenges for surgical correction. Current methods... Background: Craniosynostosis, a craniofacial malformation characterized by premature suture fusion, poses significant challenges for surgical correction.... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 100810 |
| SubjectTerms | 3D U-net segmentation AI-augmented pre-surgical planning Craniosynostosis reconstruction Depth-Augmented Vision Transformers |
| Title | AI-Augmented 3D Craniofacial Reconstruction for Enhanced Surgical Planning: A Novel Integration of Depth-Augmented Vision Transformers and MeshCNN for Structural Fidelity |
| URI | https://dx.doi.org/10.1016/j.eij.2025.100810 https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-55894 |
| Volume | 32 |
| WOSCitedRecordID | wos001605459800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1110-8665 databaseCode: DOA dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0000612456 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwGLXK4AAHxE-xDZAPiANTpjZOWodb1HYCARVSR7Vb5CROkzKSKmuq_UUc-Cv5Pjtu3U4gQOIStZbqL817sZ_tz8-EvOoyluGCpuNlXuZ4woNXKoNRq0hFV0re91PlwDf7OJhM-MVF8LnT-W72wqwvB2XJr6-D5X-FGsoAbNw6-xdwbyqFAvgMoMMVYIfrHwEfvnfCZq68NtMTNjoZQm9UVJlQc-M42tx6xqocw3GZ6yyAaVPrZtAcZKR3rU-qtbxUM4fzeqMvR3K5yq04M7VFXVulowzGbcEqhUNe5cPJRAWaqrDK5uMMzbWK1c6S8hgPRMPmpvVyVf7R9j_GY8HwrOjNtw_N11oulPqdFeU2GyjMm7YUp0nKTcfzSeZaK0_zYi3s-Q7X38sdubkRR7XboGIctO6zG3Y9cXqjj9DTFYtTWSxOMQAmivA2t3bXenuK1WKtoBNxxZbfIrfdgR9wa-iue_werh-rc3za-zAL6CqVcC_SLyWQ7VWr9M35A3K_HZjQUBPqIenI8hG5Z9lVPiY_bGpRNqI2tegutShgSA21qKEWNdR6S0OqiEUtYtEqo3vEoppY1CYWBVRpSywVZkssaoj1hHw5G58P3zntWR9Owpi7clLJUjfpdgV2vlx2mXRjnsRiEMRBInmSpgmoS7jj1BU9L0l9Bjrf7QlP9voZYwl7Sg7KqpTPCI0RLyFiBiN1D_RszGWfx1CJ5-Miee-QvDGPP1pqS5fI5DouIsAqQqwijdUh8QxAUatJtdaMgE6_-9lrDeYmAtq4j4pZGFX1PPpWNGXk-zzwjv6t_mNyd_tuPCcH8JzlC3InWa-Kq_qlYudPmr7DdQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-Augmented+3D+Craniofacial+Reconstruction+for+Enhanced+Surgical+Planning%3A+A+Novel+Integration+of+Depth-Augmented+Vision+Transformers+and+MeshCNN+for+Structural+Fidelity&rft.jtitle=Egyptian+informatics+journal&rft.au=Vishal&rft.au=Kukreja%2C+Vinay&rft.au=Ahuja%2C+Vandana&rft.au=Mehta%2C+Shiva&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=1110-8665&rft.volume=32&rft_id=info:doi/10.1016%2Fj.eij.2025.100810&rft.externalDocID=S1110866525002038 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-8665&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-8665&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-8665&client=summon |