A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization

•A coevolutionary multi-swarm particle swarm optimizer is proposed.•All swarms utilize an information sharing strategy to evolve cooperatively.•A velocity update mechanism and a new boundary constraints technique are adopted.•A similarity detection operator is used to detect the environment change.•...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of operational research Ročník 261; číslo 3; s. 1028 - 1051
Hlavní autori: Liu, Ruochen, Li, Jianxia, fan, Jing, Mu, Caihong, Jiao, Licheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 16.09.2017
Predmet:
ISSN:0377-2217, 1872-6860
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A coevolutionary multi-swarm particle swarm optimizer is proposed.•All swarms utilize an information sharing strategy to evolve cooperatively.•A velocity update mechanism and a new boundary constraints technique are adopted.•A similarity detection operator is used to detect the environment change.•It is applied to solve eight benchmark problems, with a good performance obtained. In real-world applications, there are many fields involving dynamic multi-objective optimization problems (DMOPs), in which objectives are in conflict with each other and change over time or environments. In this paper, a modified coevolutionary multi-swarm particle swarm optimizer is proposed to solve DMOPs in the rapidly changing environments (denoted as CMPSODMO). A frame of multi-swarm based particle swarm optimization is adopted to optimize the problem in dynamic environments. In CMPSODMO, the number of swarms (PSO) is determined by the number of the objective functions, and all of these swarms utilize an information sharing strategy to evolve cooperatively. Moreover, a new velocity update equation and an effective boundary constraint technique are developed during evolution of each swarm. Then, a similarity detection operator is used to detect whether a change has occurred, followed by a memory based dynamic mechanism to response to the change. The proposed CMPSODMO has been extensively compared with five state-of-the-art algorithms over a test suit of benchmark problems. Experimental results indicate that the proposed algorithm is promising for dealing with the DMOPs in the rapidly changing environments. The flowchart of the proposed CMPSODMO. [Display omitted]
AbstractList •A coevolutionary multi-swarm particle swarm optimizer is proposed.•All swarms utilize an information sharing strategy to evolve cooperatively.•A velocity update mechanism and a new boundary constraints technique are adopted.•A similarity detection operator is used to detect the environment change.•It is applied to solve eight benchmark problems, with a good performance obtained. In real-world applications, there are many fields involving dynamic multi-objective optimization problems (DMOPs), in which objectives are in conflict with each other and change over time or environments. In this paper, a modified coevolutionary multi-swarm particle swarm optimizer is proposed to solve DMOPs in the rapidly changing environments (denoted as CMPSODMO). A frame of multi-swarm based particle swarm optimization is adopted to optimize the problem in dynamic environments. In CMPSODMO, the number of swarms (PSO) is determined by the number of the objective functions, and all of these swarms utilize an information sharing strategy to evolve cooperatively. Moreover, a new velocity update equation and an effective boundary constraint technique are developed during evolution of each swarm. Then, a similarity detection operator is used to detect whether a change has occurred, followed by a memory based dynamic mechanism to response to the change. The proposed CMPSODMO has been extensively compared with five state-of-the-art algorithms over a test suit of benchmark problems. Experimental results indicate that the proposed algorithm is promising for dealing with the DMOPs in the rapidly changing environments. The flowchart of the proposed CMPSODMO. [Display omitted]
Author fan, Jing
Li, Jianxia
Liu, Ruochen
Jiao, Licheng
Mu, Caihong
Author_xml – sequence: 1
  givenname: Ruochen
  surname: Liu
  fullname: Liu, Ruochen
  email: ruochenliu@xidian.edu.cn
– sequence: 2
  givenname: Jianxia
  surname: Li
  fullname: Li, Jianxia
– sequence: 3
  givenname: Jing
  surname: fan
  fullname: fan, Jing
– sequence: 4
  givenname: Caihong
  surname: Mu
  fullname: Mu, Caihong
– sequence: 5
  givenname: Licheng
  surname: Jiao
  fullname: Jiao, Licheng
BookMark eNp90E1LwzAYwPEgE9ymX8BTvkBrXtomBS9j-AYDL3oOSfoUU9pmptlkfnpbt4sedgqB_MLz_Bdo1vseELqlJKWEFndNCo0PKSNUpISnJJMXaE6lYEkhCzJDc8KFSBij4gothqEhhNCc5nMUV9h62Pt2F53vdTjgCPajd587wEYPUGHf427XRpcMXzp0eKtDdLYFfLz6bXSd-9aTxrUPuDr0unP2ZLxpwEa3hz8Pr9FlrdsBbk7nEr0_Prytn5PN69PLerVJLOcsJpVmeWmsJFTnkJksz6AuecVrKiw3kklmMimspiDrUouiyklmtMkhl0VdyoIvkTz-a4MfhgC1si7-ThCDdq2iRE31VKOmemqqpwhXY72Rsn90G1w39jmP7o8IxqX2DoIarIPeQuXCmEFV3p3jP4PDj5Y
CitedBy_id crossref_primary_10_1007_s00521_023_08369_4
crossref_primary_10_1016_j_asoc_2017_08_051
crossref_primary_10_1109_TASE_2022_3168385
crossref_primary_10_1016_j_ins_2020_08_101
crossref_primary_10_1016_j_future_2024_07_028
crossref_primary_10_1016_j_knosys_2022_108691
crossref_primary_10_1016_j_ins_2019_09_016
crossref_primary_10_1061_JCEMD4_COENG_16034
crossref_primary_10_1007_s10489_022_03421_7
crossref_primary_10_1155_2018_5025672
crossref_primary_10_1109_TCYB_2018_2834466
crossref_primary_10_1016_j_ins_2020_02_034
crossref_primary_10_1155_2018_8250480
crossref_primary_10_1007_s00521_023_08432_0
crossref_primary_10_1016_j_ins_2024_120125
crossref_primary_10_1016_j_ins_2024_121611
crossref_primary_10_1016_j_swevo_2023_101356
crossref_primary_10_1016_j_eswa_2025_128915
crossref_primary_10_1016_j_knosys_2022_108447
crossref_primary_10_1016_j_ins_2023_119256
crossref_primary_10_1109_ACCESS_2019_2916082
crossref_primary_10_1016_j_rineng_2023_101664
crossref_primary_10_1016_j_chaos_2025_117150
crossref_primary_10_1007_s00521_018_3952_9
crossref_primary_10_1007_s10489_021_02665_z
crossref_primary_10_1109_TSMC_2021_3120702
crossref_primary_10_1016_j_ins_2021_04_055
crossref_primary_10_1016_j_ins_2019_04_037
crossref_primary_10_1007_s11276_018_1894_x
crossref_primary_10_1109_ACCESS_2019_2898218
crossref_primary_10_1016_j_swevo_2024_101468
crossref_primary_10_1007_s10515_023_00411_y
crossref_primary_10_1016_j_comcom_2019_06_009
crossref_primary_10_1016_j_eiar_2023_107283
crossref_primary_10_1016_j_ins_2023_119867
crossref_primary_10_1145_3524495
crossref_primary_10_1109_TASE_2021_3084741
crossref_primary_10_1016_j_ejor_2021_01_028
crossref_primary_10_1016_j_eswa_2023_121538
crossref_primary_10_1109_TFUZZ_2018_2826479
crossref_primary_10_1109_TCSS_2023_3293331
crossref_primary_10_1016_j_ins_2020_07_009
crossref_primary_10_1016_j_swevo_2023_101254
crossref_primary_10_1016_j_jclepro_2020_122842
crossref_primary_10_1016_j_swevo_2024_101693
crossref_primary_10_1109_TEVC_2023_3253850
crossref_primary_10_3390_s19091994
crossref_primary_10_1680_jwama_20_00044
crossref_primary_10_1016_j_aei_2021_101433
crossref_primary_10_1016_j_ejor_2021_02_053
crossref_primary_10_1016_j_ins_2022_09_022
crossref_primary_10_1016_j_asoc_2022_108493
crossref_primary_10_1016_j_ejor_2021_08_021
crossref_primary_10_1016_j_asoc_2023_110741
crossref_primary_10_1016_j_isatra_2023_03_038
crossref_primary_10_1016_j_micpro_2020_103050
crossref_primary_10_1088_1742_6596_1267_1_012010
crossref_primary_10_1016_j_swevo_2025_102012
crossref_primary_10_1016_j_ins_2022_05_050
crossref_primary_10_3390_electronics11213454
crossref_primary_10_1016_j_asoc_2018_08_015
crossref_primary_10_1016_j_cie_2021_107229
crossref_primary_10_1007_s10489_018_1258_3
crossref_primary_10_1134_S1054661820040100
crossref_primary_10_1007_s13042_023_01918_2
crossref_primary_10_1016_j_asoc_2024_112022
crossref_primary_10_1016_j_swevo_2021_100987
crossref_primary_10_1016_j_swevo_2023_101317
crossref_primary_10_3389_fenrg_2022_823912
crossref_primary_10_1016_j_swevo_2024_101713
crossref_primary_10_1109_TEVC_2021_3051172
crossref_primary_10_1016_j_ins_2022_06_095
crossref_primary_10_1016_j_ins_2022_08_020
crossref_primary_10_3233_JIFS_223804
crossref_primary_10_12677_aam_2025_144139
crossref_primary_10_1371_journal_pone_0331208
crossref_primary_10_1088_1742_6596_2820_1_012042
crossref_primary_10_1007_s11709_024_1037_7
crossref_primary_10_1109_ACCESS_2019_2932883
crossref_primary_10_1016_j_enconman_2023_117637
crossref_primary_10_1109_TSMC_2023_3298804
crossref_primary_10_1007_s40747_022_00824_4
crossref_primary_10_1016_j_ins_2017_12_058
crossref_primary_10_1016_j_asoc_2024_111317
crossref_primary_10_1109_ACCESS_2022_3167155
crossref_primary_10_1109_ACCESS_2019_2948859
crossref_primary_10_1155_2022_9599417
crossref_primary_10_1016_j_swevo_2018_04_011
crossref_primary_10_1007_s40313_017_0339_6
crossref_primary_10_1007_s11227_024_06480_4
crossref_primary_10_1007_s12293_021_00348_3
crossref_primary_10_1155_2019_8418369
crossref_primary_10_1109_TFUZZ_2023_3259726
crossref_primary_10_1007_s40815_023_01477_2
crossref_primary_10_1016_j_asoc_2018_07_034
crossref_primary_10_1016_j_swevo_2019_03_015
crossref_primary_10_1155_2020_5097589
crossref_primary_10_1016_j_ejor_2020_03_035
crossref_primary_10_1016_j_swevo_2025_102103
crossref_primary_10_1109_TEVC_2024_3424393
crossref_primary_10_1016_j_swevo_2020_100674
crossref_primary_10_1016_j_asoc_2023_111114
crossref_primary_10_1155_2020_7081653
crossref_primary_10_1016_j_physa_2018_09_040
crossref_primary_10_1109_TCYB_2021_3128584
crossref_primary_10_1016_j_ins_2024_120794
crossref_primary_10_1016_j_asoc_2020_106592
Cites_doi 10.1016/j.swevo.2012.05.001
10.1109/TEVC.2016.2574621
10.1109/4235.985692
10.1007/s12293-009-0026-7
10.1023/A:1016568309421
10.1016/j.ins.2010.11.030
10.1109/TEVC.2005.846356
10.1007/s00500-014-1477-4
10.1109/MAP.2014.6867724
10.1109/TEVC.2008.925798
10.1007/s00500-010-0681-0
10.1016/j.cie.2016.04.002
10.1109/TEVC.2004.831456
10.1007/s00500-010-0674-z
10.1109/4235.996017
10.1109/TEVC.2008.920671
10.1016/j.ejor.2015.06.071
10.1109/TCYB.2013.2245892
10.1109/TEVC.2014.2350987
10.1109/TEVC.2007.892759
10.1109/4235.797969
10.1109/TEVC.2007.894202
10.1109/TEVC.2011.2166159
10.1109/TEVC.2013.2281535
10.1016/j.asoc.2016.04.021
10.1109/TSMCB.2012.2209115
10.1016/j.ejor.2009.05.005
10.1007/s00500-013-1175-7
10.1145/2517649
10.1016/j.cor.2004.08.012
10.1109/TEVC.2004.826071
10.1016/j.swevo.2013.08.004
10.1016/j.ejor.2016.01.043
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ejor.2017.03.048
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 1051
ExternalDocumentID 10_1016_j_ejor_2017_03_048
S0377221717302709
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
ID FETCH-LOGICAL-c332t-da259bc801a5e4b454ef93d3f17c3b8282b487ca1e8f9a76d504bab5e586f9863
ISICitedReferencesCount 124
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401889300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Tue Nov 18 22:00:29 EST 2025
Sat Nov 29 05:34:30 EST 2025
Fri Feb 23 02:27:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multi-swarm Particle swarm optimization
Dynamic multi-objective optimization
Coevolution
Multiple objective programming
Similarity detective
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c332t-da259bc801a5e4b454ef93d3f17c3b8282b487ca1e8f9a76d504bab5e586f9863
PageCount 24
ParticipantIDs crossref_citationtrail_10_1016_j_ejor_2017_03_048
crossref_primary_10_1016_j_ejor_2017_03_048
elsevier_sciencedirect_doi_10_1016_j_ejor_2017_03_048
PublicationCentury 2000
PublicationDate 2017-09-16
PublicationDateYYYYMMDD 2017-09-16
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-16
  day: 16
PublicationDecade 2010
PublicationTitle European journal of operational research
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zheng (bib0073) 2007; 5
Kennedy, Eberhart (bib0035) 1995; 4
De, Mamanduru, Gunasekaran, Subramanian, Tiwari (bib0016) 2016; 96
Jiang, Yang (bib0033) 2017; 21
Liu, Chen, Ma, Jiao (bib0041) 2014; 18
Schaffer (bib0051) 1984
De, Awasthi, Tiwari (bib0015) 2015; 48
Ali, Siarry, Pant (bib0002) 2012; 217
Liu, Jiao, Ma, Ma, Shang (bib0042) 2016; 48
Nguyen, Yang, Branke (bib0046) 2012; 6
Fonseca, Fleming (bib0019) 1993
Coello, Lechuga (bib0010) 2002; 2
Wolfe, Hollander (bib0062) 1999
Zhao, Suganthan, Zhang (bib0072) 2012; 16
Zhou, Jin, Zhang (bib0075) 2013; 44
Ma, Liu, Shang (bib0043) 2011
Biswas, Das, Suganthan, Coello (bib0003) 2014
Jin, Branke (bib0034) 2005; 9
Avdagić, Konjicija, Omanović (bib0001) 2009; 203
Shang, Jiao, Gong, Lu (bib0053) 2005; 3801
Zhang, Liu, Li (bib0069) 2009
Clerc, Kennedy (bib0009) 2002; 6
Wang, Jiao, Yao (bib0060) 2015; 19
Ratnaweera, Halgamuge (bib0050) 2004; 8
Deb, Jain (bib0013) 2014; 18
Tinós, Yang (bib0059) 2007; 51
Helbig, Engelbrecht (bib0024) 2011
Chatterjee, Siarry (bib0007) 2004; 33
Zhang, Zhou, Jin (bib0068) 2008; 12
Wu, Jin, Liu (bib0063) 2015; 19
Lechuga (bib0037) 2009
Deb, RaoN, Karthik (bib0014) 2007
Raquel, Yao (bib0049) 2013
Goh, Tan, Chiam, Liu (bib0021) 2010; 202
Mehnen, J., Wagner, T., & Rudolph, G. (2006). Evolutionary optimization of dynamic multiobjective test functions
Lin, Li, Du, Chen, Ming (bib0039) 2015; 247
Zitzler, Laumanns, Thiele (bib0077) 2002
Cámara, Ortega, Toro (bib0005) 2010; 272
Sethanan, Neungmatcha (bib0052) 2016; 252
Goh, Tan (bib0020) 2009; 13
Greeff, Engelbrecht (bib0023) 2010; 261
Zhan, Zhang, Li (bib0065) 2009; 39
Tezuka, Munetomo, Akama (bib0058) 2007; 51
Koo, Gob, Tan (bib0036) 2010; 2
Helbig, Engelbrecht (bib0026) 2013; 17
Zhou, Jin, Zhang (bib0074) 2007; 4403
Carlisle, Dozier (bib0006) 2000
Pelosi, Selleri (bib0048) 2014; 56
Hu, Eberhart (bib0032) 2002
Zhang, Li (bib0067) 2007; 11
Shi, Eberhart (bib0054) 1998
Helbig, Engelbrecht (bib0025) 2012
Farina, Amato, Deb (bib0018) 2004; 8
Michalewicz, Schmidt, Michalewicz, Chiriac (bib0045) 2007; 51
Zitzler, Thiele (bib0076) 1999; 3
Cámara, Ortega, Toro (bib0004) 2009
Deb, Pratap, Agarwal (bib0012) 2002; 6
Cruz, Gonzalez, Pelta (bib0011) 2011; 15
Wei, Zhang (bib0061) 2011
Li, Zhang (bib0038) 2009; 13
Tan, Chew, Lee, Yang (bib0056) 2003; 1
Tantar, Tantar, Bouvry (bib0057) 2011
Shi, Eberhart (bib0055) 1999; 3
Parsopoulos, Vrahatis (bib0047) 2002; 1
Zhang, Xie, Bi (bib0070) 2005; 2
Zhang, Qian (bib0071) 2011; 15
Chu, Gao, Sorooshian (bib0008) 2011; 181
Helbig, Engelbrecht (bib0027) 2013; 433
2017
Greeff, Engelbrecht (bib0022) 2008
Liu, Zhang, Jiao, Liu, Ma (bib0040) 2011
Helbig, Engelbrecht (bib0029) 2014; 46
The Vilfredo Pareto Fund, with manuscripts by Pareto and essays on him, most in Italian, but also in English, especially describing his education as an engineer; especially Alessandro Melazzini's thesis and other essays.
Helwig, Wanka (bib0030) 2007
Zhan, Li, Cao, Zhang, Chung, Shi (bib0066) 2013; 43
Eberhart, Shi (bib0017) 2001
Helbig, Engelbrecht (bib0028) 2014; 14
Zeng, Chen, Zheng (bib0064) 2006
Biswas (10.1016/j.ejor.2017.03.048_bib0003) 2014
Cámara (10.1016/j.ejor.2017.03.048_bib0004) 2009
Zhang (10.1016/j.ejor.2017.03.048_bib0068) 2008; 12
Wu (10.1016/j.ejor.2017.03.048_bib0063) 2015; 19
Wang (10.1016/j.ejor.2017.03.048_bib0060) 2015; 19
Goh (10.1016/j.ejor.2017.03.048_bib0020) 2009; 13
Liu (10.1016/j.ejor.2017.03.048_bib0042) 2016; 48
Tan (10.1016/j.ejor.2017.03.048_bib0056) 2003; 1
Helbig (10.1016/j.ejor.2017.03.048_bib0028) 2014; 14
Parsopoulos (10.1016/j.ejor.2017.03.048_bib0047) 2002; 1
Nguyen (10.1016/j.ejor.2017.03.048_bib0046) 2012; 6
Eberhart (10.1016/j.ejor.2017.03.048_bib0017) 2001
Hu (10.1016/j.ejor.2017.03.048_bib0032) 2002
Pelosi (10.1016/j.ejor.2017.03.048_bib0048) 2014; 56
Carlisle (10.1016/j.ejor.2017.03.048_bib0006) 2000
Chu (10.1016/j.ejor.2017.03.048_bib0008) 2011; 181
De (10.1016/j.ejor.2017.03.048_bib0016) 2016; 96
Koo (10.1016/j.ejor.2017.03.048_bib0036) 2010; 2
Tinós (10.1016/j.ejor.2017.03.048_bib0059) 2007; 51
Goh (10.1016/j.ejor.2017.03.048_bib0021) 2010; 202
Lechuga (10.1016/j.ejor.2017.03.048_bib0037) 2009
Li (10.1016/j.ejor.2017.03.048_bib0038) 2009; 13
10.1016/j.ejor.2017.03.048_bib0031
Tezuka (10.1016/j.ejor.2017.03.048_bib0058) 2007; 51
Farina (10.1016/j.ejor.2017.03.048_bib0018) 2004; 8
Zhan (10.1016/j.ejor.2017.03.048_bib0065) 2009; 39
Greeff (10.1016/j.ejor.2017.03.048_bib0023) 2010; 261
Zhang (10.1016/j.ejor.2017.03.048_bib0070) 2005; 2
Helbig (10.1016/j.ejor.2017.03.048_bib0025) 2012
Kennedy (10.1016/j.ejor.2017.03.048_bib0035) 1995; 4
Zitzler (10.1016/j.ejor.2017.03.048_bib0077) 2002
Zeng (10.1016/j.ejor.2017.03.048_bib0064) 2006
Jiang (10.1016/j.ejor.2017.03.048_bib0033) 2017; 21
Zhou (10.1016/j.ejor.2017.03.048_bib0075) 2013; 44
Deb (10.1016/j.ejor.2017.03.048_bib0013) 2014; 18
Zhang (10.1016/j.ejor.2017.03.048_bib0071) 2011; 15
Zhao (10.1016/j.ejor.2017.03.048_bib0072) 2012; 16
Michalewicz (10.1016/j.ejor.2017.03.048_bib0045) 2007; 51
10.1016/j.ejor.2017.03.048_bib0044
Avdagić (10.1016/j.ejor.2017.03.048_bib0001) 2009; 203
Greeff (10.1016/j.ejor.2017.03.048_bib0022) 2008
Fonseca (10.1016/j.ejor.2017.03.048_bib0019) 1993
Zhou (10.1016/j.ejor.2017.03.048_bib0074) 2007; 4403
Wolfe (10.1016/j.ejor.2017.03.048_bib0062) 1999
De (10.1016/j.ejor.2017.03.048_bib0015) 2015; 48
Jin (10.1016/j.ejor.2017.03.048_bib0034) 2005; 9
Zheng (10.1016/j.ejor.2017.03.048_bib0073) 2007; 5
Chatterjee (10.1016/j.ejor.2017.03.048_bib0007) 2004; 33
Clerc (10.1016/j.ejor.2017.03.048_bib0009) 2002; 6
Cruz (10.1016/j.ejor.2017.03.048_bib0011) 2011; 15
Helbig (10.1016/j.ejor.2017.03.048_bib0026) 2013; 17
Ma (10.1016/j.ejor.2017.03.048_bib0043) 2011
Helwig (10.1016/j.ejor.2017.03.048_bib0030) 2007
Ratnaweera (10.1016/j.ejor.2017.03.048_bib0050) 2004; 8
Liu (10.1016/j.ejor.2017.03.048_bib0040) 2011
Tantar (10.1016/j.ejor.2017.03.048_bib0057) 2011
Sethanan (10.1016/j.ejor.2017.03.048_bib0052) 2016; 252
Ali (10.1016/j.ejor.2017.03.048_bib0002) 2012; 217
Zitzler (10.1016/j.ejor.2017.03.048_bib0076) 1999; 3
Helbig (10.1016/j.ejor.2017.03.048_bib0024) 2011
Shang (10.1016/j.ejor.2017.03.048_bib0053) 2005; 3801
Raquel (10.1016/j.ejor.2017.03.048_bib0049) 2013
Deb (10.1016/j.ejor.2017.03.048_bib0014) 2007
Helbig (10.1016/j.ejor.2017.03.048_bib0029) 2014; 46
Helbig (10.1016/j.ejor.2017.03.048_bib0027) 2013; 433
Zhan (10.1016/j.ejor.2017.03.048_bib0066) 2013; 43
Zhang (10.1016/j.ejor.2017.03.048_bib0067) 2007; 11
Cámara (10.1016/j.ejor.2017.03.048_bib0005) 2010; 272
Coello (10.1016/j.ejor.2017.03.048_bib0010) 2002; 2
Schaffer (10.1016/j.ejor.2017.03.048_bib0051) 1984
Zhang (10.1016/j.ejor.2017.03.048_bib0069) 2009
Lin (10.1016/j.ejor.2017.03.048_bib0039) 2015; 247
Liu (10.1016/j.ejor.2017.03.048_bib0041) 2014; 18
Shi (10.1016/j.ejor.2017.03.048_bib0054) 1998
Deb (10.1016/j.ejor.2017.03.048_bib0012) 2002; 6
Shi (10.1016/j.ejor.2017.03.048_bib0055) 1999; 3
Wei (10.1016/j.ejor.2017.03.048_bib0061) 2011
References_xml – volume: 1
  start-page: 390
  year: 2003
  end-page: 395
  ident: bib0056
  article-title: A cooperative coevolutionary algorithm for multiobjective optimization
  publication-title: Proceedings of the international conference on systems, man and cybernetics
– volume: 5
  start-page: 565
  year: 2007
  end-page: 570
  ident: bib0073
  article-title: A new dynamic multi-objective optimization evolutionary algorithm
  publication-title: Proceedings of third international conference on natural computation
– start-page: 429
  year: 2000
  end-page: 434
  ident: bib0006
  article-title: Adapting Particle swarm optimization to dynamic environments
  publication-title: Proceedings of international conference on artificial intelligence, (ICAI 2000)
– volume: 3
  start-page: 101
  year: 1999
  end-page: 106
  ident: bib0055
  article-title: Empirical study of particle swarm optimization
  publication-title: Proceedings of IEEE international congress evolutionary computation
– volume: 48
  start-page: 368
  year: 2015
  end-page: 373
  ident: bib0015
  article-title: Robust Formulation for optimizing sustainable ship routing and scheduling problem
  publication-title: IfacPapersonline
– volume: 33
  start-page: 859
  year: 2004
  end-page: 871
  ident: bib0007
  article-title: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization
  publication-title: Computer Operation Research
– volume: 19
  start-page: 3221
  year: 2015
  end-page: 3235
  ident: bib0063
  article-title: A directed search strategy for evolutionary dynamic multiobjectiveoptimization
  publication-title: Soft Computing
– start-page: 94
  year: 2001
  end-page: 97
  ident: bib0017
  article-title: Tracking and optimizing dynamic systems with particle swarms
  publication-title: Proceedings of IEEE congress on evolutionary computation 2001
– volume: 43
  start-page: 445
  year: 2013
  end-page: 463
  ident: bib0066
  article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems
  publication-title: IEEE Transaction on Cybernetics
– volume: 13
  start-page: 284
  year: 2009
  end-page: 302
  ident: bib0038
  article-title: Multi-objective optimization problems with complicated Pareto Sets, MOEA/D and NSGAII
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 95
  year: 2002
  end-page: 100
  ident: bib0077
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Proceeding of the evolutionary methods for design, optimization and control
– volume: 46
  start-page: 37:1-37:39
  year: 2014
  ident: bib0029
  article-title: Benchmarks for dynamic multi-objective optimization algorithms
  publication-title: ACM Computing Surveys
– volume: 8
  year: 2004
  ident: bib0050
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 44
  start-page: 40
  year: 2013
  end-page: 53
  ident: bib0075
  article-title: A Population prediction strategy for evolutionary dynamic multi-objective optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 202
  start-page: 42
  year: 2010
  end-page: 54
  ident: bib0021
  article-title: A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design
  publication-title: European Journal of Operational Research
– start-page: 573
  year: 2006
  end-page: 580
  ident: bib0064
  article-title: A dynamic multi-objective evolutionary algorithm based on an orthogonal design
  publication-title: Proceedings of congress on evolutionary computation, Vancouver, Canada
– volume: 15
  start-page: 1333
  year: 2011
  end-page: 1349
  ident: bib0071
  article-title: Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems
  publication-title: Soft Computing
– start-page: 2759
  year: 2011
  end-page: 2766
  ident: bib0057
  article-title: On dynamic multiobjective optimization, classification and performance measures
  publication-title: Proceedings of IEEE congress on evolutionary computation
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0067
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 1
  start-page: 235
  year: 2002
  end-page: 306
  ident: bib0047
  article-title: Recent approaches to global optimization problems through particle swarm optimization
  publication-title: Natural Computing
– volume: 2
  start-page: 87
  year: 2010
  end-page: 110
  ident: bib0036
  article-title: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment
  publication-title: Memetic Computing
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib0013
  article-title: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, Part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 12
  start-page: 41
  year: 2008
  end-page: 63
  ident: bib0068
  article-title: RM-MEDA: A regularity model based multiobjective estimation of distribution algorithm
  publication-title: IEEE Transaction on Evolutionary computation
– volume: 13
  start-page: 103
  year: 2009
  end-page: 127
  ident: bib0020
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 3801
  start-page: 846
  year: 2005
  end-page: 851
  ident: bib0053
  article-title: Clonal selection algorithm for dynamic multiobjective optimization
  publication-title: Computational intelligence and security
– volume: 16
  start-page: 442
  year: 2012
  end-page: 446
  ident: bib0072
  article-title: Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighbourhood Sizes
  publication-title: IEEE Trans on Evolutionary Computation
– start-page: 3192
  year: 2014
  end-page: 3199
  ident: bib0003
  article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions
  publication-title: Proceedings of the IEEE congress on evolutionary computation
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0035
  article-title: Particle swarm optimization
  publication-title: Proceedings of IEEE world conference on neural networks
– volume: 217
  start-page: 404
  year: 2012
  end-page: 416
  ident: bib0002
  article-title: An efficient Differential Evolution based algorithm for solving multi-objective optimization problems
  publication-title: European Journal of Operational Research, 2012
– volume: 17
  start-page: 16
  year: 2013
  end-page: 19
  ident: bib0026
  article-title: Issues with performance measures for dynamic multi-objective optimisation
  publication-title: Proceedings of the IEEE symposium on computational intelligence in dynamic and uncertain environments (CIDUE)
– year: 1999
  ident: bib0062
  article-title: Nonparametric Statistical Methods
– start-page: 372
  year: 2011
  end-page: 381
  ident: bib0061
  article-title: Simplex model based evolutionary algorithm for dynamic multiobjective optimization
  publication-title: Proceedings of Advances in Artificial Intelligence, LNCS 7106, 2011
– volume: 21
  start-page: 65
  year: 2017
  end-page: 82
  ident: bib0033
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 198
  year: 2007
  end-page: 205
  ident: bib0030
  article-title: Particle swarm optimization in high-dimensional bounded search spaces
  publication-title: Swarm Intelligence Symposium
– volume: 181
  start-page: 4569
  year: 2011
  end-page: 4581
  ident: bib0008
  article-title: Handling boundary constraints for particle swarm optimization in high-dimensional search space
  publication-title: Information Sciences
– volume: 252
  start-page: 969
  year: 2016
  end-page: 984
  ident: bib0052
  article-title: Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operations
  publication-title: European Journal of Operational Research
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0012
  article-title: T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computing
– volume: 203
  start-page: 267
  year: 2009
  end-page: 289
  ident: bib0001
  article-title: Evolutionary approach to solving non-stationary dynamic multi-objective problems
  publication-title: Foundations of Computational Intelligence Vol. 3
– volume: 8
  start-page: 425
  year: 2004
  end-page: 442
  ident: bib0018
  article-title: Dynamic multi-objective optimization problems: Test cases, approximations and applications
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 1984
  ident: bib0051
  article-title: Multiple objective optimization with vector evaluated genetic algorithms, PhD thesis
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib0076
  article-title: Multi-objective evolutionary algorithms: A comparative case study and the strength pareto approach
  publication-title: IEEE Transactions on Evolutionary Computing
– volume: 51
  start-page: 105
  year: 2007
  end-page: 127
  ident: bib0059
  article-title: Genetic algorithms with self-organizing behaviour in dynamic environments
  publication-title: Studies in computational intelligence
– volume: 2
  start-page: 1051
  year: 2002
  end-page: 1056
  ident: bib0010
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
  publication-title: Proceedings of congress on evolutionary computation
– start-page: 760
  year: 2009
  end-page: 767
  ident: bib0004
  article-title: Performance measures for dynamic multiobjective optimization
  publication-title: Bio-inspired systems: computational and ambient intelligence, LNCS 5517
– volume: 56
  start-page: 249
  year: 2014
  end-page: 254
  ident: bib0048
  article-title: To Celigny: In the footprints of Vilfredo Pareto's ‘optimum’ [historical corner]
  publication-title: Antennas and Propagation Magazine, IEEE
– volume: 9
  start-page: 303
  year: 2005
  end-page: 317
  ident: bib0034
  article-title: Evolutionary optimization in uncertain environments: A survey
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 203
  year: 2009
  end-page: 208
  ident: bib0069
  article-title: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances,
  publication-title: Proceedings of IEEE conference on evolutionary computation
– volume: 4403
  start-page: 832
  year: 2007
  end-page: 846
  ident: bib0074
  article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization
  publication-title: Proceedings of conference on evolutionary multi-criterion optimization, lecture notes in computer science
– start-page: 2917
  year: 2008
  end-page: 2924
  ident: bib0022
  article-title: Solving dynamic multi-objective problems with vector evaluated particle swarm optimization
  publication-title: Proceedings of world congress on computational intelligence (WCCI)
– volume: 96
  start-page: 201
  year: 2016
  end-page: 215
  ident: bib0016
  article-title: Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization
  publication-title: Computers & Industrial Engineering
– volume: 14
  start-page: 31
  year: 2014
  end-page: 47
  ident: bib0028
  article-title: Population-based metaheuristics for continuous boundary-constrained dynamic multi-objective optimization problems
  publication-title: Swarm and Evolutionary Computation
– volume: 51
  start-page: 179
  year: 2007
  end-page: 196
  ident: bib0045
  article-title: Adaptive business intelligence: Three case studies
  publication-title: Studies in computational intelligence
– volume: 39
  year: 2009
  ident: bib0065
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part B
– volume: 15
  start-page: 1427
  year: 2011
  end-page: 1448
  ident: bib0011
  article-title: Optimization in dynamic environments: A survey on problem methods and measures
  publication-title: Soft Computing
– start-page: 803
  year: 2007
  end-page: 817
  ident: bib0014
  article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling
  publication-title: Proceedings of international conference on evolutionary multi-criterion optimization
– start-page: 416
  year: 1993
  end-page: 423
  ident: bib0019
  article-title: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization
  publication-title: Proceedings of the international conference in genetic algorithms
– volume: 247
  start-page: 732
  year: 2015
  end-page: 744
  ident: bib0039
  article-title: A novel multi-objective particle swarm optimization with multiple search strategies
  publication-title: European Journal of Operational Research
– start-page: 423
  year: 2011
  end-page: 430
  ident: bib0040
  article-title: A sphere-dominance based preference immune-inspired algorithm for dynamic multiobjective optimization
  publication-title: Proceedings of GECCO, 2011
– start-page: 69
  year: 1998
  end-page: 73
  ident: bib0054
  article-title: A modified particle swarm optimizer
  publication-title: Proceedings of IEEE word congress on computational intelligence
– reference: (2017)
– volume: 18
  start-page: 913
  year: 2014
  end-page: 1929
  ident: bib0041
  article-title: A novel cooperative co-evolutionary dynamic multi-objective optimization algorithm using a new predictive model
  publication-title: Soft Computing
– volume: 6
  start-page: 1
  year: 2012
  end-page: 24
  ident: bib0046
  article-title: Evolutionary dynamic optimization: A survey of the state of the art
  publication-title: Swarm and Evolutionary Computing
– volume: 19
  start-page: 524
  year: 2015
  end-page: 541
  ident: bib0060
  article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 48
  start-page: 597
  year: 2016
  end-page: 611
  ident: bib0042
  article-title: Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch
  publication-title: Applied Soft Computing
– start-page: 85
  year: 2013
  end-page: 106
  ident: bib0049
  article-title: Dynamic multi-objective optimization: A survey of the state-of-the-art
  publication-title: Evolutionary computation for dynamic optimization problems
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib0009
  article-title: The particle swarm - explosion, stability, and convergence in a multi-dimension complex space
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 261
  start-page: 105
  year: 2010
  end-page: 123
  ident: bib0023
  article-title: Dynamic multi-objective optimization using PSO
  publication-title: Multi-objective swarm intelligent systems, studies in computational intelligence
– start-page: 1666
  year: 2002
  end-page: 1670
  ident: bib0032
  article-title: Adaptive particle swarm optimization: Detection and response to dynamic systems
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, 2002
– reference: Mehnen, J., Wagner, T., & Rudolph, G. (2006). Evolutionary optimization of dynamic multiobjective test functions,
– start-page: 435
  year: 2011
  end-page: 444
  ident: bib0043
  article-title: A hybrid dynamic multiobjective immune optimization algorithm using prediction strategy and improved differential evolution crossover operator
  publication-title: Proceedings of Neural Information Processing, LNCS 7063
– volume: 2
  start-page: 2307
  year: 2005
  end-page: 2311
  ident: bib0070
  article-title: Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space
  publication-title: Proceedings of Congress on Evolutionary Computation, 2004. CEC2004
– volume: 51
  start-page: 417
  year: 2007
  end-page: 434
  ident: bib0058
  article-title: Genetic algorithm to optimize fitness function with sampling error and its application to financial optimization problem
  publication-title: Studies in computational intelligence
– volume: 272
  start-page: 63
  year: 2010
  end-page: 86
  ident: bib0005
  article-title: Approaching dynamic multi-objective optimization problems by using parallel evolutionary algorithms
  publication-title: Advances in multi-objective nature inspired computing
– start-page: 2047
  year: 2011
  end-page: 2054
  ident: bib0024
  article-title: Archive management for dynamic multi-objective optimization problems using vector evaluated particle swarm optimization
  publication-title: Proceedings of congress on evolutionary computation
– start-page: 28621
  year: 2012
  end-page: 28628
  ident: bib0025
  article-title: Analyses of guide update approaches for vector evaluated particle swarm optimization on dynamic multi-objective optimization problems
  publication-title: Proceedings of world congress on computational intelligence: congress on evolutionary computation
– reference: The Vilfredo Pareto Fund, with manuscripts by Pareto and essays on him, most in Italian, but also in English, especially describing his education as an engineer; especially Alessandro Melazzini's thesis and other essays.
– year: 2009
  ident: bib0037
  article-title: Multi-objective optimization using sharing in swarm optimization algorithms (Ph.D. thesis)
– volume: 433
  start-page: 147
  year: 2013
  end-page: 188
  ident: bib0027
  article-title: Dynamic multi-objective optimization using PSO
  publication-title: Metaheuristics for dynamic optimization
– volume: 6
  start-page: 1
  year: 2012
  ident: 10.1016/j.ejor.2017.03.048_bib0046
  article-title: Evolutionary dynamic optimization: A survey of the state of the art
  publication-title: Swarm and Evolutionary Computing
  doi: 10.1016/j.swevo.2012.05.001
– start-page: 2759
  year: 2011
  ident: 10.1016/j.ejor.2017.03.048_bib0057
  article-title: On dynamic multiobjective optimization, classification and performance measures
– volume: 21
  start-page: 65
  issue: 1
  year: 2017
  ident: 10.1016/j.ejor.2017.03.048_bib0033
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2574621
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.ejor.2017.03.048_bib0009
  article-title: The particle swarm - explosion, stability, and convergence in a multi-dimension complex space
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.985692
– volume: 2
  start-page: 87
  issue: 2
  year: 2010
  ident: 10.1016/j.ejor.2017.03.048_bib0036
  article-title: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment
  publication-title: Memetic Computing
  doi: 10.1007/s12293-009-0026-7
– ident: 10.1016/j.ejor.2017.03.048_bib0031
– year: 1984
  ident: 10.1016/j.ejor.2017.03.048_bib0051
– start-page: 416
  year: 1993
  ident: 10.1016/j.ejor.2017.03.048_bib0019
  article-title: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization
– volume: 39
  issue: 6
  year: 2009
  ident: 10.1016/j.ejor.2017.03.048_bib0065
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part B
– volume: 217
  start-page: 404
  issue: 2
  year: 2012
  ident: 10.1016/j.ejor.2017.03.048_bib0002
  article-title: An efficient Differential Evolution based algorithm for solving multi-objective optimization problems
  publication-title: European Journal of Operational Research, 2012
– volume: 1
  start-page: 235
  year: 2002
  ident: 10.1016/j.ejor.2017.03.048_bib0047
  article-title: Recent approaches to global optimization problems through particle swarm optimization
  publication-title: Natural Computing
  doi: 10.1023/A:1016568309421
– volume: 51
  start-page: 105
  year: 2007
  ident: 10.1016/j.ejor.2017.03.048_bib0059
  article-title: Genetic algorithms with self-organizing behaviour in dynamic environments
– volume: 2
  start-page: 1051
  year: 2002
  ident: 10.1016/j.ejor.2017.03.048_bib0010
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
– year: 1999
  ident: 10.1016/j.ejor.2017.03.048_bib0062
– volume: 181
  start-page: 4569
  issue: 20
  year: 2011
  ident: 10.1016/j.ejor.2017.03.048_bib0008
  article-title: Handling boundary constraints for particle swarm optimization in high-dimensional search space
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.11.030
– volume: 48
  start-page: 368
  issue: 3
  year: 2015
  ident: 10.1016/j.ejor.2017.03.048_bib0015
  article-title: Robust Formulation for optimizing sustainable ship routing and scheduling problem
  publication-title: IfacPapersonline
– start-page: 573
  year: 2006
  ident: 10.1016/j.ejor.2017.03.048_bib0064
  article-title: A dynamic multi-objective evolutionary algorithm based on an orthogonal design
– volume: 4403
  start-page: 832
  year: 2007
  ident: 10.1016/j.ejor.2017.03.048_bib0074
  article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization
– start-page: 1666
  year: 2002
  ident: 10.1016/j.ejor.2017.03.048_bib0032
  article-title: Adaptive particle swarm optimization: Detection and response to dynamic systems
– volume: 9
  start-page: 303
  issue: 3
  year: 2005
  ident: 10.1016/j.ejor.2017.03.048_bib0034
  article-title: Evolutionary optimization in uncertain environments: A survey
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.846356
– year: 2009
  ident: 10.1016/j.ejor.2017.03.048_bib0037
– start-page: 2917
  year: 2008
  ident: 10.1016/j.ejor.2017.03.048_bib0022
  article-title: Solving dynamic multi-objective problems with vector evaluated particle swarm optimization
– volume: 19
  start-page: 3221
  issue: 11
  year: 2015
  ident: 10.1016/j.ejor.2017.03.048_bib0063
  article-title: A directed search strategy for evolutionary dynamic multiobjectiveoptimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-014-1477-4
– volume: 56
  start-page: 249
  issue: 3
  year: 2014
  ident: 10.1016/j.ejor.2017.03.048_bib0048
  article-title: To Celigny: In the footprints of Vilfredo Pareto's ‘optimum’ [historical corner]
  publication-title: Antennas and Propagation Magazine, IEEE
  doi: 10.1109/MAP.2014.6867724
– volume: 13
  start-page: 284
  issue: 2
  year: 2009
  ident: 10.1016/j.ejor.2017.03.048_bib0038
  article-title: Multi-objective optimization problems with complicated Pareto Sets, MOEA/D and NSGAII
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.925798
– volume: 1
  start-page: 390
  year: 2003
  ident: 10.1016/j.ejor.2017.03.048_bib0056
  article-title: A cooperative coevolutionary algorithm for multiobjective optimization
– volume: 203
  start-page: 267
  year: 2009
  ident: 10.1016/j.ejor.2017.03.048_bib0001
  article-title: Evolutionary approach to solving non-stationary dynamic multi-objective problems
– volume: 15
  start-page: 1427
  issue: 7
  year: 2011
  ident: 10.1016/j.ejor.2017.03.048_bib0011
  article-title: Optimization in dynamic environments: A survey on problem methods and measures
  publication-title: Soft Computing
  doi: 10.1007/s00500-010-0681-0
– volume: 272
  start-page: 63
  year: 2010
  ident: 10.1016/j.ejor.2017.03.048_bib0005
  article-title: Approaching dynamic multi-objective optimization problems by using parallel evolutionary algorithms
– volume: 96
  start-page: 201
  year: 2016
  ident: 10.1016/j.ejor.2017.03.048_bib0016
  article-title: Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.04.002
– volume: 8
  start-page: 425
  issue: 5
  year: 2004
  ident: 10.1016/j.ejor.2017.03.048_bib0018
  article-title: Dynamic multi-objective optimization problems: Test cases, approximations and applications
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.831456
– volume: 15
  start-page: 1333
  issue: 7
  year: 2011
  ident: 10.1016/j.ejor.2017.03.048_bib0071
  article-title: Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-010-0674-z
– start-page: 85
  year: 2013
  ident: 10.1016/j.ejor.2017.03.048_bib0049
  article-title: Dynamic multi-objective optimization: A survey of the state-of-the-art
– start-page: 94
  year: 2001
  ident: 10.1016/j.ejor.2017.03.048_bib0017
  article-title: Tracking and optimizing dynamic systems with particle swarms
– start-page: 3192
  year: 2014
  ident: 10.1016/j.ejor.2017.03.048_bib0003
  article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions
– start-page: 95
  year: 2002
  ident: 10.1016/j.ejor.2017.03.048_bib0077
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.ejor.2017.03.048_bib0012
  article-title: T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computing
  doi: 10.1109/4235.996017
– volume: 51
  start-page: 417
  year: 2007
  ident: 10.1016/j.ejor.2017.03.048_bib0058
  article-title: Genetic algorithm to optimize fitness function with sampling error and its application to financial optimization problem
– volume: 261
  start-page: 105
  year: 2010
  ident: 10.1016/j.ejor.2017.03.048_bib0023
  article-title: Dynamic multi-objective optimization using PSO
– volume: 13
  start-page: 103
  issue: 1
  year: 2009
  ident: 10.1016/j.ejor.2017.03.048_bib0020
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.920671
– volume: 247
  start-page: 732
  issue: 3
  year: 2015
  ident: 10.1016/j.ejor.2017.03.048_bib0039
  article-title: A novel multi-objective particle swarm optimization with multiple search strategies
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.06.071
– start-page: 803
  year: 2007
  ident: 10.1016/j.ejor.2017.03.048_bib0014
  article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling
– start-page: 69
  year: 1998
  ident: 10.1016/j.ejor.2017.03.048_bib0054
  article-title: A modified particle swarm optimizer
– volume: 44
  start-page: 40
  issue: 1
  year: 2013
  ident: 10.1016/j.ejor.2017.03.048_bib0075
  article-title: A Population prediction strategy for evolutionary dynamic multi-objective optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2013.2245892
– volume: 19
  start-page: 524
  issue: 4
  year: 2015
  ident: 10.1016/j.ejor.2017.03.048_bib0060
  article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2350987
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.ejor.2017.03.048_bib0067
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– start-page: 372
  year: 2011
  ident: 10.1016/j.ejor.2017.03.048_bib0061
  article-title: Simplex model based evolutionary algorithm for dynamic multiobjective optimization
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.ejor.2017.03.048_bib0076
  article-title: Multi-objective evolutionary algorithms: A comparative case study and the strength pareto approach
  publication-title: IEEE Transactions on Evolutionary Computing
  doi: 10.1109/4235.797969
– start-page: 28621
  year: 2012
  ident: 10.1016/j.ejor.2017.03.048_bib0025
  article-title: Analyses of guide update approaches for vector evaluated particle swarm optimization on dynamic multi-objective optimization problems
– volume: 17
  start-page: 16
  year: 2013
  ident: 10.1016/j.ejor.2017.03.048_bib0026
  article-title: Issues with performance measures for dynamic multi-objective optimisation
– start-page: 423
  year: 2011
  ident: 10.1016/j.ejor.2017.03.048_bib0040
  article-title: A sphere-dominance based preference immune-inspired algorithm for dynamic multiobjective optimization
– start-page: 760
  year: 2009
  ident: 10.1016/j.ejor.2017.03.048_bib0004
  article-title: Performance measures for dynamic multiobjective optimization
– volume: 5
  start-page: 565
  year: 2007
  ident: 10.1016/j.ejor.2017.03.048_bib0073
  article-title: A new dynamic multi-objective optimization evolutionary algorithm
– volume: 51
  start-page: 179
  year: 2007
  ident: 10.1016/j.ejor.2017.03.048_bib0045
  article-title: Adaptive business intelligence: Three case studies
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.ejor.2017.03.048_bib0035
  article-title: Particle swarm optimization
– volume: 2
  start-page: 2307
  year: 2005
  ident: 10.1016/j.ejor.2017.03.048_bib0070
  article-title: Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space
– start-page: 2047
  year: 2011
  ident: 10.1016/j.ejor.2017.03.048_bib0024
  article-title: Archive management for dynamic multi-objective optimization problems using vector evaluated particle swarm optimization
– start-page: 435
  year: 2011
  ident: 10.1016/j.ejor.2017.03.048_bib0043
  article-title: A hybrid dynamic multiobjective immune optimization algorithm using prediction strategy and improved differential evolution crossover operator
– volume: 12
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.ejor.2017.03.048_bib0068
  article-title: RM-MEDA: A regularity model based multiobjective estimation of distribution algorithm
  publication-title: IEEE Transaction on Evolutionary computation
  doi: 10.1109/TEVC.2007.894202
– volume: 16
  start-page: 442
  issue: 3
  year: 2012
  ident: 10.1016/j.ejor.2017.03.048_bib0072
  article-title: Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighbourhood Sizes
  publication-title: IEEE Trans on Evolutionary Computation
  doi: 10.1109/TEVC.2011.2166159
– volume: 3
  start-page: 101
  year: 1999
  ident: 10.1016/j.ejor.2017.03.048_bib0055
  article-title: Empirical study of particle swarm optimization
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.ejor.2017.03.048_bib0013
  article-title: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, Part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– volume: 433
  start-page: 147
  year: 2013
  ident: 10.1016/j.ejor.2017.03.048_bib0027
  article-title: Dynamic multi-objective optimization using PSO
– volume: 48
  start-page: 597
  year: 2016
  ident: 10.1016/j.ejor.2017.03.048_bib0042
  article-title: Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.04.021
– volume: 3801
  start-page: 846
  year: 2005
  ident: 10.1016/j.ejor.2017.03.048_bib0053
  article-title: Clonal selection algorithm for dynamic multiobjective optimization
– start-page: 198
  year: 2007
  ident: 10.1016/j.ejor.2017.03.048_bib0030
  article-title: Particle swarm optimization in high-dimensional bounded search spaces
  publication-title: Swarm Intelligence Symposium
– start-page: 429
  year: 2000
  ident: 10.1016/j.ejor.2017.03.048_bib0006
  article-title: Adapting Particle swarm optimization to dynamic environments
– volume: 43
  start-page: 445
  issue: 2
  year: 2013
  ident: 10.1016/j.ejor.2017.03.048_bib0066
  article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems
  publication-title: IEEE Transaction on Cybernetics
  doi: 10.1109/TSMCB.2012.2209115
– volume: 202
  start-page: 42
  issue: 1
  year: 2010
  ident: 10.1016/j.ejor.2017.03.048_bib0021
  article-title: A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.05.005
– volume: 18
  start-page: 913
  year: 2014
  ident: 10.1016/j.ejor.2017.03.048_bib0041
  article-title: A novel cooperative co-evolutionary dynamic multi-objective optimization algorithm using a new predictive model
  publication-title: Soft Computing
  doi: 10.1007/s00500-013-1175-7
– volume: 46
  start-page: 37:1-37:39
  issue: 3
  year: 2014
  ident: 10.1016/j.ejor.2017.03.048_bib0029
  article-title: Benchmarks for dynamic multi-objective optimization algorithms
  publication-title: ACM Computing Surveys
  doi: 10.1145/2517649
– start-page: 203
  year: 2009
  ident: 10.1016/j.ejor.2017.03.048_bib0069
  article-title: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances,
– volume: 33
  start-page: 859
  issue: 3
  year: 2004
  ident: 10.1016/j.ejor.2017.03.048_bib0007
  article-title: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization
  publication-title: Computer Operation Research
  doi: 10.1016/j.cor.2004.08.012
– volume: 8
  issue: 3
  year: 2004
  ident: 10.1016/j.ejor.2017.03.048_bib0050
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826071
– ident: 10.1016/j.ejor.2017.03.048_bib0044
– volume: 14
  start-page: 31
  year: 2014
  ident: 10.1016/j.ejor.2017.03.048_bib0028
  article-title: Population-based metaheuristics for continuous boundary-constrained dynamic multi-objective optimization problems
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2013.08.004
– volume: 252
  start-page: 969
  issue: 3
  year: 2016
  ident: 10.1016/j.ejor.2017.03.048_bib0052
  article-title: Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operations
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.01.043
SSID ssj0001515
Score 2.564205
Snippet •A coevolutionary multi-swarm particle swarm optimizer is proposed.•All swarms utilize an information sharing strategy to evolve cooperatively.•A velocity...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1028
SubjectTerms Coevolution
Dynamic multi-objective optimization
Multi-swarm Particle swarm optimization
Multiple objective programming
Similarity detective
Title A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization
URI https://dx.doi.org/10.1016/j.ejor.2017.03.048
Volume 261
WOSCitedRecordID wos000401889300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBahHWN72CVbWXdDD3sLLrFkWdJjGB1bKGWwDvJmJFtmCa0d0iTLX9u_25El2U7XlW2wF2MLyXZyPut8OjoXhN5Ju9fEchaplMsoycc8kobEsOZJdF4AxY5VU7XkjJ-fi9lMfh4MfoRYmO0lryqx28nlfxU1tIGwbejsX4i7vSk0wDkIHY4gdjj-keAnNt_H1j_C-sR1aVqtyirs9kDjRhhdf1erq9HS32PkLmuYQ658cGbjg1i4mvV-TK0Xborc6_hb-77nutCwClZHn16oNUOfzTeNnDe2dlfnINR4GUwBvLt5qzlKZ62dBnXbAMW5rcy_1b7RmzBALdoSDGlnV_sltsbFc3EeEeIiO0-Mm54FJ1EqXAWCMH8Tl83dA5X2ZmNLnnqaHahkfKvWcAaMxYlZ1DZFbMybvLeJ6HRk67n4xb6WfauY2x1fGzp6SDiToBMOJ59OZ9OWBlim2Gxh-Z_hI7acc-HNJ93OinpM5-IJeuSXKHjiYPEUDUw1RPdDhMQQPQ6VQLBXDEP0sJfW8hlaT_A-BHELQdxAENcV7kEQBwhid9lHFgYIYg9BfAOCex2fo68fTi_ef4x8dY8op5Sso0LBylvnwJAUM4lOWGJKSQtaxjynWhBBNCymcxUbUUrF04KNE600M0ykpRQpPUIHVV2ZFwjLghTSGFGYWCepgjW_0oaOtWbWx0HSYxSHfzfLfep7W4HlMgs-jovMSiSzEsnGNAOJHKNRO2bpEr_c2ZsFoWWeujpKmgHG7hj38h_HvUIPug_pNTpYrzbmDbqXb9fz69VbD8WfOIDEdQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+coevolutionary+technique+based+on+multi-swarm+particle+swarm+optimization+for+dynamic+multi-objective+optimization&rft.jtitle=European+journal+of+operational+research&rft.au=Liu%2C+Ruochen&rft.au=Li%2C+Jianxia&rft.au=fan%2C+Jing&rft.au=Mu%2C+Caihong&rft.date=2017-09-16&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=261&rft.issue=3&rft.spage=1028&rft.epage=1051&rft_id=info:doi/10.1016%2Fj.ejor.2017.03.048&rft.externalDocID=S0377221717302709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon