A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization
•A coevolutionary multi-swarm particle swarm optimizer is proposed.•All swarms utilize an information sharing strategy to evolve cooperatively.•A velocity update mechanism and a new boundary constraints technique are adopted.•A similarity detection operator is used to detect the environment change.•...
Uložené v:
| Vydané v: | European journal of operational research Ročník 261; číslo 3; s. 1028 - 1051 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
16.09.2017
|
| Predmet: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A coevolutionary multi-swarm particle swarm optimizer is proposed.•All swarms utilize an information sharing strategy to evolve cooperatively.•A velocity update mechanism and a new boundary constraints technique are adopted.•A similarity detection operator is used to detect the environment change.•It is applied to solve eight benchmark problems, with a good performance obtained.
In real-world applications, there are many fields involving dynamic multi-objective optimization problems (DMOPs), in which objectives are in conflict with each other and change over time or environments. In this paper, a modified coevolutionary multi-swarm particle swarm optimizer is proposed to solve DMOPs in the rapidly changing environments (denoted as CMPSODMO). A frame of multi-swarm based particle swarm optimization is adopted to optimize the problem in dynamic environments. In CMPSODMO, the number of swarms (PSO) is determined by the number of the objective functions, and all of these swarms utilize an information sharing strategy to evolve cooperatively. Moreover, a new velocity update equation and an effective boundary constraint technique are developed during evolution of each swarm. Then, a similarity detection operator is used to detect whether a change has occurred, followed by a memory based dynamic mechanism to response to the change. The proposed CMPSODMO has been extensively compared with five state-of-the-art algorithms over a test suit of benchmark problems. Experimental results indicate that the proposed algorithm is promising for dealing with the DMOPs in the rapidly changing environments.
The flowchart of the proposed CMPSODMO. [Display omitted] |
|---|---|
| AbstractList | •A coevolutionary multi-swarm particle swarm optimizer is proposed.•All swarms utilize an information sharing strategy to evolve cooperatively.•A velocity update mechanism and a new boundary constraints technique are adopted.•A similarity detection operator is used to detect the environment change.•It is applied to solve eight benchmark problems, with a good performance obtained.
In real-world applications, there are many fields involving dynamic multi-objective optimization problems (DMOPs), in which objectives are in conflict with each other and change over time or environments. In this paper, a modified coevolutionary multi-swarm particle swarm optimizer is proposed to solve DMOPs in the rapidly changing environments (denoted as CMPSODMO). A frame of multi-swarm based particle swarm optimization is adopted to optimize the problem in dynamic environments. In CMPSODMO, the number of swarms (PSO) is determined by the number of the objective functions, and all of these swarms utilize an information sharing strategy to evolve cooperatively. Moreover, a new velocity update equation and an effective boundary constraint technique are developed during evolution of each swarm. Then, a similarity detection operator is used to detect whether a change has occurred, followed by a memory based dynamic mechanism to response to the change. The proposed CMPSODMO has been extensively compared with five state-of-the-art algorithms over a test suit of benchmark problems. Experimental results indicate that the proposed algorithm is promising for dealing with the DMOPs in the rapidly changing environments.
The flowchart of the proposed CMPSODMO. [Display omitted] |
| Author | fan, Jing Li, Jianxia Liu, Ruochen Jiao, Licheng Mu, Caihong |
| Author_xml | – sequence: 1 givenname: Ruochen surname: Liu fullname: Liu, Ruochen email: ruochenliu@xidian.edu.cn – sequence: 2 givenname: Jianxia surname: Li fullname: Li, Jianxia – sequence: 3 givenname: Jing surname: fan fullname: fan, Jing – sequence: 4 givenname: Caihong surname: Mu fullname: Mu, Caihong – sequence: 5 givenname: Licheng surname: Jiao fullname: Jiao, Licheng |
| BookMark | eNp90E1LwzAYwPEgE9ymX8BTvkBrXtomBS9j-AYDL3oOSfoUU9pmptlkfnpbt4sedgqB_MLz_Bdo1vseELqlJKWEFndNCo0PKSNUpISnJJMXaE6lYEkhCzJDc8KFSBij4gothqEhhNCc5nMUV9h62Pt2F53vdTjgCPajd587wEYPUGHf427XRpcMXzp0eKtDdLYFfLz6bXSd-9aTxrUPuDr0unP2ZLxpwEa3hz8Pr9FlrdsBbk7nEr0_Prytn5PN69PLerVJLOcsJpVmeWmsJFTnkJksz6AuecVrKiw3kklmMimspiDrUouiyklmtMkhl0VdyoIvkTz-a4MfhgC1si7-ThCDdq2iRE31VKOmemqqpwhXY72Rsn90G1w39jmP7o8IxqX2DoIarIPeQuXCmEFV3p3jP4PDj5Y |
| CitedBy_id | crossref_primary_10_1007_s00521_023_08369_4 crossref_primary_10_1016_j_asoc_2017_08_051 crossref_primary_10_1109_TASE_2022_3168385 crossref_primary_10_1016_j_ins_2020_08_101 crossref_primary_10_1016_j_future_2024_07_028 crossref_primary_10_1016_j_knosys_2022_108691 crossref_primary_10_1016_j_ins_2019_09_016 crossref_primary_10_1061_JCEMD4_COENG_16034 crossref_primary_10_1007_s10489_022_03421_7 crossref_primary_10_1155_2018_5025672 crossref_primary_10_1109_TCYB_2018_2834466 crossref_primary_10_1016_j_ins_2020_02_034 crossref_primary_10_1155_2018_8250480 crossref_primary_10_1007_s00521_023_08432_0 crossref_primary_10_1016_j_ins_2024_120125 crossref_primary_10_1016_j_ins_2024_121611 crossref_primary_10_1016_j_swevo_2023_101356 crossref_primary_10_1016_j_eswa_2025_128915 crossref_primary_10_1016_j_knosys_2022_108447 crossref_primary_10_1016_j_ins_2023_119256 crossref_primary_10_1109_ACCESS_2019_2916082 crossref_primary_10_1016_j_rineng_2023_101664 crossref_primary_10_1016_j_chaos_2025_117150 crossref_primary_10_1007_s00521_018_3952_9 crossref_primary_10_1007_s10489_021_02665_z crossref_primary_10_1109_TSMC_2021_3120702 crossref_primary_10_1016_j_ins_2021_04_055 crossref_primary_10_1016_j_ins_2019_04_037 crossref_primary_10_1007_s11276_018_1894_x crossref_primary_10_1109_ACCESS_2019_2898218 crossref_primary_10_1016_j_swevo_2024_101468 crossref_primary_10_1007_s10515_023_00411_y crossref_primary_10_1016_j_comcom_2019_06_009 crossref_primary_10_1016_j_eiar_2023_107283 crossref_primary_10_1016_j_ins_2023_119867 crossref_primary_10_1145_3524495 crossref_primary_10_1109_TASE_2021_3084741 crossref_primary_10_1016_j_ejor_2021_01_028 crossref_primary_10_1016_j_eswa_2023_121538 crossref_primary_10_1109_TFUZZ_2018_2826479 crossref_primary_10_1109_TCSS_2023_3293331 crossref_primary_10_1016_j_ins_2020_07_009 crossref_primary_10_1016_j_swevo_2023_101254 crossref_primary_10_1016_j_jclepro_2020_122842 crossref_primary_10_1016_j_swevo_2024_101693 crossref_primary_10_1109_TEVC_2023_3253850 crossref_primary_10_3390_s19091994 crossref_primary_10_1680_jwama_20_00044 crossref_primary_10_1016_j_aei_2021_101433 crossref_primary_10_1016_j_ejor_2021_02_053 crossref_primary_10_1016_j_ins_2022_09_022 crossref_primary_10_1016_j_asoc_2022_108493 crossref_primary_10_1016_j_ejor_2021_08_021 crossref_primary_10_1016_j_asoc_2023_110741 crossref_primary_10_1016_j_isatra_2023_03_038 crossref_primary_10_1016_j_micpro_2020_103050 crossref_primary_10_1088_1742_6596_1267_1_012010 crossref_primary_10_1016_j_swevo_2025_102012 crossref_primary_10_1016_j_ins_2022_05_050 crossref_primary_10_3390_electronics11213454 crossref_primary_10_1016_j_asoc_2018_08_015 crossref_primary_10_1016_j_cie_2021_107229 crossref_primary_10_1007_s10489_018_1258_3 crossref_primary_10_1134_S1054661820040100 crossref_primary_10_1007_s13042_023_01918_2 crossref_primary_10_1016_j_asoc_2024_112022 crossref_primary_10_1016_j_swevo_2021_100987 crossref_primary_10_1016_j_swevo_2023_101317 crossref_primary_10_3389_fenrg_2022_823912 crossref_primary_10_1016_j_swevo_2024_101713 crossref_primary_10_1109_TEVC_2021_3051172 crossref_primary_10_1016_j_ins_2022_06_095 crossref_primary_10_1016_j_ins_2022_08_020 crossref_primary_10_3233_JIFS_223804 crossref_primary_10_12677_aam_2025_144139 crossref_primary_10_1371_journal_pone_0331208 crossref_primary_10_1088_1742_6596_2820_1_012042 crossref_primary_10_1007_s11709_024_1037_7 crossref_primary_10_1109_ACCESS_2019_2932883 crossref_primary_10_1016_j_enconman_2023_117637 crossref_primary_10_1109_TSMC_2023_3298804 crossref_primary_10_1007_s40747_022_00824_4 crossref_primary_10_1016_j_ins_2017_12_058 crossref_primary_10_1016_j_asoc_2024_111317 crossref_primary_10_1109_ACCESS_2022_3167155 crossref_primary_10_1109_ACCESS_2019_2948859 crossref_primary_10_1155_2022_9599417 crossref_primary_10_1016_j_swevo_2018_04_011 crossref_primary_10_1007_s40313_017_0339_6 crossref_primary_10_1007_s11227_024_06480_4 crossref_primary_10_1007_s12293_021_00348_3 crossref_primary_10_1155_2019_8418369 crossref_primary_10_1109_TFUZZ_2023_3259726 crossref_primary_10_1007_s40815_023_01477_2 crossref_primary_10_1016_j_asoc_2018_07_034 crossref_primary_10_1016_j_swevo_2019_03_015 crossref_primary_10_1155_2020_5097589 crossref_primary_10_1016_j_ejor_2020_03_035 crossref_primary_10_1016_j_swevo_2025_102103 crossref_primary_10_1109_TEVC_2024_3424393 crossref_primary_10_1016_j_swevo_2020_100674 crossref_primary_10_1016_j_asoc_2023_111114 crossref_primary_10_1155_2020_7081653 crossref_primary_10_1016_j_physa_2018_09_040 crossref_primary_10_1109_TCYB_2021_3128584 crossref_primary_10_1016_j_ins_2024_120794 crossref_primary_10_1016_j_asoc_2020_106592 |
| Cites_doi | 10.1016/j.swevo.2012.05.001 10.1109/TEVC.2016.2574621 10.1109/4235.985692 10.1007/s12293-009-0026-7 10.1023/A:1016568309421 10.1016/j.ins.2010.11.030 10.1109/TEVC.2005.846356 10.1007/s00500-014-1477-4 10.1109/MAP.2014.6867724 10.1109/TEVC.2008.925798 10.1007/s00500-010-0681-0 10.1016/j.cie.2016.04.002 10.1109/TEVC.2004.831456 10.1007/s00500-010-0674-z 10.1109/4235.996017 10.1109/TEVC.2008.920671 10.1016/j.ejor.2015.06.071 10.1109/TCYB.2013.2245892 10.1109/TEVC.2014.2350987 10.1109/TEVC.2007.892759 10.1109/4235.797969 10.1109/TEVC.2007.894202 10.1109/TEVC.2011.2166159 10.1109/TEVC.2013.2281535 10.1016/j.asoc.2016.04.021 10.1109/TSMCB.2012.2209115 10.1016/j.ejor.2009.05.005 10.1007/s00500-013-1175-7 10.1145/2517649 10.1016/j.cor.2004.08.012 10.1109/TEVC.2004.826071 10.1016/j.swevo.2013.08.004 10.1016/j.ejor.2016.01.043 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ejor.2017.03.048 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1872-6860 |
| EndPage | 1051 |
| ExternalDocumentID | 10_1016_j_ejor_2017_03_048 S0377221717302709 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HVGLF HZ~ R2- SEW VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c332t-da259bc801a5e4b454ef93d3f17c3b8282b487ca1e8f9a76d504bab5e586f9863 |
| ISICitedReferencesCount | 124 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401889300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Tue Nov 18 22:00:29 EST 2025 Sat Nov 29 05:34:30 EST 2025 Fri Feb 23 02:27:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Multi-swarm Particle swarm optimization Dynamic multi-objective optimization Coevolution Multiple objective programming Similarity detective |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c332t-da259bc801a5e4b454ef93d3f17c3b8282b487ca1e8f9a76d504bab5e586f9863 |
| PageCount | 24 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ejor_2017_03_048 crossref_primary_10_1016_j_ejor_2017_03_048 elsevier_sciencedirect_doi_10_1016_j_ejor_2017_03_048 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-16 |
| PublicationDateYYYYMMDD | 2017-09-16 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zheng (bib0073) 2007; 5 Kennedy, Eberhart (bib0035) 1995; 4 De, Mamanduru, Gunasekaran, Subramanian, Tiwari (bib0016) 2016; 96 Jiang, Yang (bib0033) 2017; 21 Liu, Chen, Ma, Jiao (bib0041) 2014; 18 Schaffer (bib0051) 1984 De, Awasthi, Tiwari (bib0015) 2015; 48 Ali, Siarry, Pant (bib0002) 2012; 217 Liu, Jiao, Ma, Ma, Shang (bib0042) 2016; 48 Nguyen, Yang, Branke (bib0046) 2012; 6 Fonseca, Fleming (bib0019) 1993 Coello, Lechuga (bib0010) 2002; 2 Wolfe, Hollander (bib0062) 1999 Zhao, Suganthan, Zhang (bib0072) 2012; 16 Zhou, Jin, Zhang (bib0075) 2013; 44 Ma, Liu, Shang (bib0043) 2011 Biswas, Das, Suganthan, Coello (bib0003) 2014 Jin, Branke (bib0034) 2005; 9 Avdagić, Konjicija, Omanović (bib0001) 2009; 203 Shang, Jiao, Gong, Lu (bib0053) 2005; 3801 Zhang, Liu, Li (bib0069) 2009 Clerc, Kennedy (bib0009) 2002; 6 Wang, Jiao, Yao (bib0060) 2015; 19 Ratnaweera, Halgamuge (bib0050) 2004; 8 Deb, Jain (bib0013) 2014; 18 Tinós, Yang (bib0059) 2007; 51 Helbig, Engelbrecht (bib0024) 2011 Chatterjee, Siarry (bib0007) 2004; 33 Zhang, Zhou, Jin (bib0068) 2008; 12 Wu, Jin, Liu (bib0063) 2015; 19 Lechuga (bib0037) 2009 Deb, RaoN, Karthik (bib0014) 2007 Raquel, Yao (bib0049) 2013 Goh, Tan, Chiam, Liu (bib0021) 2010; 202 Mehnen, J., Wagner, T., & Rudolph, G. (2006). Evolutionary optimization of dynamic multiobjective test functions Lin, Li, Du, Chen, Ming (bib0039) 2015; 247 Zitzler, Laumanns, Thiele (bib0077) 2002 Cámara, Ortega, Toro (bib0005) 2010; 272 Sethanan, Neungmatcha (bib0052) 2016; 252 Goh, Tan (bib0020) 2009; 13 Greeff, Engelbrecht (bib0023) 2010; 261 Zhan, Zhang, Li (bib0065) 2009; 39 Tezuka, Munetomo, Akama (bib0058) 2007; 51 Koo, Gob, Tan (bib0036) 2010; 2 Helbig, Engelbrecht (bib0026) 2013; 17 Zhou, Jin, Zhang (bib0074) 2007; 4403 Carlisle, Dozier (bib0006) 2000 Pelosi, Selleri (bib0048) 2014; 56 Hu, Eberhart (bib0032) 2002 Zhang, Li (bib0067) 2007; 11 Shi, Eberhart (bib0054) 1998 Helbig, Engelbrecht (bib0025) 2012 Farina, Amato, Deb (bib0018) 2004; 8 Michalewicz, Schmidt, Michalewicz, Chiriac (bib0045) 2007; 51 Zitzler, Thiele (bib0076) 1999; 3 Cámara, Ortega, Toro (bib0004) 2009 Deb, Pratap, Agarwal (bib0012) 2002; 6 Cruz, Gonzalez, Pelta (bib0011) 2011; 15 Wei, Zhang (bib0061) 2011 Li, Zhang (bib0038) 2009; 13 Tan, Chew, Lee, Yang (bib0056) 2003; 1 Tantar, Tantar, Bouvry (bib0057) 2011 Shi, Eberhart (bib0055) 1999; 3 Parsopoulos, Vrahatis (bib0047) 2002; 1 Zhang, Xie, Bi (bib0070) 2005; 2 Zhang, Qian (bib0071) 2011; 15 Chu, Gao, Sorooshian (bib0008) 2011; 181 Helbig, Engelbrecht (bib0027) 2013; 433 2017 Greeff, Engelbrecht (bib0022) 2008 Liu, Zhang, Jiao, Liu, Ma (bib0040) 2011 Helbig, Engelbrecht (bib0029) 2014; 46 The Vilfredo Pareto Fund, with manuscripts by Pareto and essays on him, most in Italian, but also in English, especially describing his education as an engineer; especially Alessandro Melazzini's thesis and other essays. Helwig, Wanka (bib0030) 2007 Zhan, Li, Cao, Zhang, Chung, Shi (bib0066) 2013; 43 Eberhart, Shi (bib0017) 2001 Helbig, Engelbrecht (bib0028) 2014; 14 Zeng, Chen, Zheng (bib0064) 2006 Biswas (10.1016/j.ejor.2017.03.048_bib0003) 2014 Cámara (10.1016/j.ejor.2017.03.048_bib0004) 2009 Zhang (10.1016/j.ejor.2017.03.048_bib0068) 2008; 12 Wu (10.1016/j.ejor.2017.03.048_bib0063) 2015; 19 Wang (10.1016/j.ejor.2017.03.048_bib0060) 2015; 19 Goh (10.1016/j.ejor.2017.03.048_bib0020) 2009; 13 Liu (10.1016/j.ejor.2017.03.048_bib0042) 2016; 48 Tan (10.1016/j.ejor.2017.03.048_bib0056) 2003; 1 Helbig (10.1016/j.ejor.2017.03.048_bib0028) 2014; 14 Parsopoulos (10.1016/j.ejor.2017.03.048_bib0047) 2002; 1 Nguyen (10.1016/j.ejor.2017.03.048_bib0046) 2012; 6 Eberhart (10.1016/j.ejor.2017.03.048_bib0017) 2001 Hu (10.1016/j.ejor.2017.03.048_bib0032) 2002 Pelosi (10.1016/j.ejor.2017.03.048_bib0048) 2014; 56 Carlisle (10.1016/j.ejor.2017.03.048_bib0006) 2000 Chu (10.1016/j.ejor.2017.03.048_bib0008) 2011; 181 De (10.1016/j.ejor.2017.03.048_bib0016) 2016; 96 Koo (10.1016/j.ejor.2017.03.048_bib0036) 2010; 2 Tinós (10.1016/j.ejor.2017.03.048_bib0059) 2007; 51 Goh (10.1016/j.ejor.2017.03.048_bib0021) 2010; 202 Lechuga (10.1016/j.ejor.2017.03.048_bib0037) 2009 Li (10.1016/j.ejor.2017.03.048_bib0038) 2009; 13 10.1016/j.ejor.2017.03.048_bib0031 Tezuka (10.1016/j.ejor.2017.03.048_bib0058) 2007; 51 Farina (10.1016/j.ejor.2017.03.048_bib0018) 2004; 8 Zhan (10.1016/j.ejor.2017.03.048_bib0065) 2009; 39 Greeff (10.1016/j.ejor.2017.03.048_bib0023) 2010; 261 Zhang (10.1016/j.ejor.2017.03.048_bib0070) 2005; 2 Helbig (10.1016/j.ejor.2017.03.048_bib0025) 2012 Kennedy (10.1016/j.ejor.2017.03.048_bib0035) 1995; 4 Zitzler (10.1016/j.ejor.2017.03.048_bib0077) 2002 Zeng (10.1016/j.ejor.2017.03.048_bib0064) 2006 Jiang (10.1016/j.ejor.2017.03.048_bib0033) 2017; 21 Zhou (10.1016/j.ejor.2017.03.048_bib0075) 2013; 44 Deb (10.1016/j.ejor.2017.03.048_bib0013) 2014; 18 Zhang (10.1016/j.ejor.2017.03.048_bib0071) 2011; 15 Zhao (10.1016/j.ejor.2017.03.048_bib0072) 2012; 16 Michalewicz (10.1016/j.ejor.2017.03.048_bib0045) 2007; 51 10.1016/j.ejor.2017.03.048_bib0044 Avdagić (10.1016/j.ejor.2017.03.048_bib0001) 2009; 203 Greeff (10.1016/j.ejor.2017.03.048_bib0022) 2008 Fonseca (10.1016/j.ejor.2017.03.048_bib0019) 1993 Zhou (10.1016/j.ejor.2017.03.048_bib0074) 2007; 4403 Wolfe (10.1016/j.ejor.2017.03.048_bib0062) 1999 De (10.1016/j.ejor.2017.03.048_bib0015) 2015; 48 Jin (10.1016/j.ejor.2017.03.048_bib0034) 2005; 9 Zheng (10.1016/j.ejor.2017.03.048_bib0073) 2007; 5 Chatterjee (10.1016/j.ejor.2017.03.048_bib0007) 2004; 33 Clerc (10.1016/j.ejor.2017.03.048_bib0009) 2002; 6 Cruz (10.1016/j.ejor.2017.03.048_bib0011) 2011; 15 Helbig (10.1016/j.ejor.2017.03.048_bib0026) 2013; 17 Ma (10.1016/j.ejor.2017.03.048_bib0043) 2011 Helwig (10.1016/j.ejor.2017.03.048_bib0030) 2007 Ratnaweera (10.1016/j.ejor.2017.03.048_bib0050) 2004; 8 Liu (10.1016/j.ejor.2017.03.048_bib0040) 2011 Tantar (10.1016/j.ejor.2017.03.048_bib0057) 2011 Sethanan (10.1016/j.ejor.2017.03.048_bib0052) 2016; 252 Ali (10.1016/j.ejor.2017.03.048_bib0002) 2012; 217 Zitzler (10.1016/j.ejor.2017.03.048_bib0076) 1999; 3 Helbig (10.1016/j.ejor.2017.03.048_bib0024) 2011 Shang (10.1016/j.ejor.2017.03.048_bib0053) 2005; 3801 Raquel (10.1016/j.ejor.2017.03.048_bib0049) 2013 Deb (10.1016/j.ejor.2017.03.048_bib0014) 2007 Helbig (10.1016/j.ejor.2017.03.048_bib0029) 2014; 46 Helbig (10.1016/j.ejor.2017.03.048_bib0027) 2013; 433 Zhan (10.1016/j.ejor.2017.03.048_bib0066) 2013; 43 Zhang (10.1016/j.ejor.2017.03.048_bib0067) 2007; 11 Cámara (10.1016/j.ejor.2017.03.048_bib0005) 2010; 272 Coello (10.1016/j.ejor.2017.03.048_bib0010) 2002; 2 Schaffer (10.1016/j.ejor.2017.03.048_bib0051) 1984 Zhang (10.1016/j.ejor.2017.03.048_bib0069) 2009 Lin (10.1016/j.ejor.2017.03.048_bib0039) 2015; 247 Liu (10.1016/j.ejor.2017.03.048_bib0041) 2014; 18 Shi (10.1016/j.ejor.2017.03.048_bib0054) 1998 Deb (10.1016/j.ejor.2017.03.048_bib0012) 2002; 6 Shi (10.1016/j.ejor.2017.03.048_bib0055) 1999; 3 Wei (10.1016/j.ejor.2017.03.048_bib0061) 2011 |
| References_xml | – volume: 1 start-page: 390 year: 2003 end-page: 395 ident: bib0056 article-title: A cooperative coevolutionary algorithm for multiobjective optimization publication-title: Proceedings of the international conference on systems, man and cybernetics – volume: 5 start-page: 565 year: 2007 end-page: 570 ident: bib0073 article-title: A new dynamic multi-objective optimization evolutionary algorithm publication-title: Proceedings of third international conference on natural computation – start-page: 429 year: 2000 end-page: 434 ident: bib0006 article-title: Adapting Particle swarm optimization to dynamic environments publication-title: Proceedings of international conference on artificial intelligence, (ICAI 2000) – volume: 3 start-page: 101 year: 1999 end-page: 106 ident: bib0055 article-title: Empirical study of particle swarm optimization publication-title: Proceedings of IEEE international congress evolutionary computation – volume: 48 start-page: 368 year: 2015 end-page: 373 ident: bib0015 article-title: Robust Formulation for optimizing sustainable ship routing and scheduling problem publication-title: IfacPapersonline – volume: 33 start-page: 859 year: 2004 end-page: 871 ident: bib0007 article-title: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization publication-title: Computer Operation Research – volume: 19 start-page: 3221 year: 2015 end-page: 3235 ident: bib0063 article-title: A directed search strategy for evolutionary dynamic multiobjectiveoptimization publication-title: Soft Computing – start-page: 94 year: 2001 end-page: 97 ident: bib0017 article-title: Tracking and optimizing dynamic systems with particle swarms publication-title: Proceedings of IEEE congress on evolutionary computation 2001 – volume: 43 start-page: 445 year: 2013 end-page: 463 ident: bib0066 article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems publication-title: IEEE Transaction on Cybernetics – volume: 13 start-page: 284 year: 2009 end-page: 302 ident: bib0038 article-title: Multi-objective optimization problems with complicated Pareto Sets, MOEA/D and NSGAII publication-title: IEEE Transactions on Evolutionary Computation – start-page: 95 year: 2002 end-page: 100 ident: bib0077 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization publication-title: Proceeding of the evolutionary methods for design, optimization and control – volume: 46 start-page: 37:1-37:39 year: 2014 ident: bib0029 article-title: Benchmarks for dynamic multi-objective optimization algorithms publication-title: ACM Computing Surveys – volume: 8 year: 2004 ident: bib0050 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Transactions on Evolutionary Computation – volume: 44 start-page: 40 year: 2013 end-page: 53 ident: bib0075 article-title: A Population prediction strategy for evolutionary dynamic multi-objective optimization publication-title: IEEE Transactions on Cybernetics – volume: 202 start-page: 42 year: 2010 end-page: 54 ident: bib0021 article-title: A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design publication-title: European Journal of Operational Research – start-page: 573 year: 2006 end-page: 580 ident: bib0064 article-title: A dynamic multi-objective evolutionary algorithm based on an orthogonal design publication-title: Proceedings of congress on evolutionary computation, Vancouver, Canada – volume: 15 start-page: 1333 year: 2011 end-page: 1349 ident: bib0071 article-title: Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems publication-title: Soft Computing – start-page: 2759 year: 2011 end-page: 2766 ident: bib0057 article-title: On dynamic multiobjective optimization, classification and performance measures publication-title: Proceedings of IEEE congress on evolutionary computation – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib0067 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation – volume: 1 start-page: 235 year: 2002 end-page: 306 ident: bib0047 article-title: Recent approaches to global optimization problems through particle swarm optimization publication-title: Natural Computing – volume: 2 start-page: 87 year: 2010 end-page: 110 ident: bib0036 article-title: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment publication-title: Memetic Computing – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: bib0013 article-title: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, Part I: Solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation – volume: 12 start-page: 41 year: 2008 end-page: 63 ident: bib0068 article-title: RM-MEDA: A regularity model based multiobjective estimation of distribution algorithm publication-title: IEEE Transaction on Evolutionary computation – volume: 13 start-page: 103 year: 2009 end-page: 127 ident: bib0020 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 3801 start-page: 846 year: 2005 end-page: 851 ident: bib0053 article-title: Clonal selection algorithm for dynamic multiobjective optimization publication-title: Computational intelligence and security – volume: 16 start-page: 442 year: 2012 end-page: 446 ident: bib0072 article-title: Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighbourhood Sizes publication-title: IEEE Trans on Evolutionary Computation – start-page: 3192 year: 2014 end-page: 3199 ident: bib0003 article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions publication-title: Proceedings of the IEEE congress on evolutionary computation – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: bib0035 article-title: Particle swarm optimization publication-title: Proceedings of IEEE world conference on neural networks – volume: 217 start-page: 404 year: 2012 end-page: 416 ident: bib0002 article-title: An efficient Differential Evolution based algorithm for solving multi-objective optimization problems publication-title: European Journal of Operational Research, 2012 – volume: 17 start-page: 16 year: 2013 end-page: 19 ident: bib0026 article-title: Issues with performance measures for dynamic multi-objective optimisation publication-title: Proceedings of the IEEE symposium on computational intelligence in dynamic and uncertain environments (CIDUE) – year: 1999 ident: bib0062 article-title: Nonparametric Statistical Methods – start-page: 372 year: 2011 end-page: 381 ident: bib0061 article-title: Simplex model based evolutionary algorithm for dynamic multiobjective optimization publication-title: Proceedings of Advances in Artificial Intelligence, LNCS 7106, 2011 – volume: 21 start-page: 65 year: 2017 end-page: 82 ident: bib0033 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation – start-page: 198 year: 2007 end-page: 205 ident: bib0030 article-title: Particle swarm optimization in high-dimensional bounded search spaces publication-title: Swarm Intelligence Symposium – volume: 181 start-page: 4569 year: 2011 end-page: 4581 ident: bib0008 article-title: Handling boundary constraints for particle swarm optimization in high-dimensional search space publication-title: Information Sciences – volume: 252 start-page: 969 year: 2016 end-page: 984 ident: bib0052 article-title: Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operations publication-title: European Journal of Operational Research – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0012 article-title: T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computing – volume: 203 start-page: 267 year: 2009 end-page: 289 ident: bib0001 article-title: Evolutionary approach to solving non-stationary dynamic multi-objective problems publication-title: Foundations of Computational Intelligence Vol. 3 – volume: 8 start-page: 425 year: 2004 end-page: 442 ident: bib0018 article-title: Dynamic multi-objective optimization problems: Test cases, approximations and applications publication-title: IEEE Transactions on Evolutionary Computation – year: 1984 ident: bib0051 article-title: Multiple objective optimization with vector evaluated genetic algorithms, PhD thesis – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: bib0076 article-title: Multi-objective evolutionary algorithms: A comparative case study and the strength pareto approach publication-title: IEEE Transactions on Evolutionary Computing – volume: 51 start-page: 105 year: 2007 end-page: 127 ident: bib0059 article-title: Genetic algorithms with self-organizing behaviour in dynamic environments publication-title: Studies in computational intelligence – volume: 2 start-page: 1051 year: 2002 end-page: 1056 ident: bib0010 article-title: MOPSO: A proposal for multiple objective particle swarm optimization publication-title: Proceedings of congress on evolutionary computation – start-page: 760 year: 2009 end-page: 767 ident: bib0004 article-title: Performance measures for dynamic multiobjective optimization publication-title: Bio-inspired systems: computational and ambient intelligence, LNCS 5517 – volume: 56 start-page: 249 year: 2014 end-page: 254 ident: bib0048 article-title: To Celigny: In the footprints of Vilfredo Pareto's ‘optimum’ [historical corner] publication-title: Antennas and Propagation Magazine, IEEE – volume: 9 start-page: 303 year: 2005 end-page: 317 ident: bib0034 article-title: Evolutionary optimization in uncertain environments: A survey publication-title: IEEE Transactions on Evolutionary Computation – start-page: 203 year: 2009 end-page: 208 ident: bib0069 article-title: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances, publication-title: Proceedings of IEEE conference on evolutionary computation – volume: 4403 start-page: 832 year: 2007 end-page: 846 ident: bib0074 article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization publication-title: Proceedings of conference on evolutionary multi-criterion optimization, lecture notes in computer science – start-page: 2917 year: 2008 end-page: 2924 ident: bib0022 article-title: Solving dynamic multi-objective problems with vector evaluated particle swarm optimization publication-title: Proceedings of world congress on computational intelligence (WCCI) – volume: 96 start-page: 201 year: 2016 end-page: 215 ident: bib0016 article-title: Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization publication-title: Computers & Industrial Engineering – volume: 14 start-page: 31 year: 2014 end-page: 47 ident: bib0028 article-title: Population-based metaheuristics for continuous boundary-constrained dynamic multi-objective optimization problems publication-title: Swarm and Evolutionary Computation – volume: 51 start-page: 179 year: 2007 end-page: 196 ident: bib0045 article-title: Adaptive business intelligence: Three case studies publication-title: Studies in computational intelligence – volume: 39 year: 2009 ident: bib0065 article-title: Adaptive particle swarm optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part B – volume: 15 start-page: 1427 year: 2011 end-page: 1448 ident: bib0011 article-title: Optimization in dynamic environments: A survey on problem methods and measures publication-title: Soft Computing – start-page: 803 year: 2007 end-page: 817 ident: bib0014 article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling publication-title: Proceedings of international conference on evolutionary multi-criterion optimization – start-page: 416 year: 1993 end-page: 423 ident: bib0019 article-title: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization publication-title: Proceedings of the international conference in genetic algorithms – volume: 247 start-page: 732 year: 2015 end-page: 744 ident: bib0039 article-title: A novel multi-objective particle swarm optimization with multiple search strategies publication-title: European Journal of Operational Research – start-page: 423 year: 2011 end-page: 430 ident: bib0040 article-title: A sphere-dominance based preference immune-inspired algorithm for dynamic multiobjective optimization publication-title: Proceedings of GECCO, 2011 – start-page: 69 year: 1998 end-page: 73 ident: bib0054 article-title: A modified particle swarm optimizer publication-title: Proceedings of IEEE word congress on computational intelligence – reference: (2017) – volume: 18 start-page: 913 year: 2014 end-page: 1929 ident: bib0041 article-title: A novel cooperative co-evolutionary dynamic multi-objective optimization algorithm using a new predictive model publication-title: Soft Computing – volume: 6 start-page: 1 year: 2012 end-page: 24 ident: bib0046 article-title: Evolutionary dynamic optimization: A survey of the state of the art publication-title: Swarm and Evolutionary Computing – volume: 19 start-page: 524 year: 2015 end-page: 541 ident: bib0060 article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 48 start-page: 597 year: 2016 end-page: 611 ident: bib0042 article-title: Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch publication-title: Applied Soft Computing – start-page: 85 year: 2013 end-page: 106 ident: bib0049 article-title: Dynamic multi-objective optimization: A survey of the state-of-the-art publication-title: Evolutionary computation for dynamic optimization problems – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib0009 article-title: The particle swarm - explosion, stability, and convergence in a multi-dimension complex space publication-title: IEEE Transactions on Evolutionary Computation – volume: 261 start-page: 105 year: 2010 end-page: 123 ident: bib0023 article-title: Dynamic multi-objective optimization using PSO publication-title: Multi-objective swarm intelligent systems, studies in computational intelligence – start-page: 1666 year: 2002 end-page: 1670 ident: bib0032 article-title: Adaptive particle swarm optimization: Detection and response to dynamic systems publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, 2002 – reference: Mehnen, J., Wagner, T., & Rudolph, G. (2006). Evolutionary optimization of dynamic multiobjective test functions, – start-page: 435 year: 2011 end-page: 444 ident: bib0043 article-title: A hybrid dynamic multiobjective immune optimization algorithm using prediction strategy and improved differential evolution crossover operator publication-title: Proceedings of Neural Information Processing, LNCS 7063 – volume: 2 start-page: 2307 year: 2005 end-page: 2311 ident: bib0070 article-title: Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space publication-title: Proceedings of Congress on Evolutionary Computation, 2004. CEC2004 – volume: 51 start-page: 417 year: 2007 end-page: 434 ident: bib0058 article-title: Genetic algorithm to optimize fitness function with sampling error and its application to financial optimization problem publication-title: Studies in computational intelligence – volume: 272 start-page: 63 year: 2010 end-page: 86 ident: bib0005 article-title: Approaching dynamic multi-objective optimization problems by using parallel evolutionary algorithms publication-title: Advances in multi-objective nature inspired computing – start-page: 2047 year: 2011 end-page: 2054 ident: bib0024 article-title: Archive management for dynamic multi-objective optimization problems using vector evaluated particle swarm optimization publication-title: Proceedings of congress on evolutionary computation – start-page: 28621 year: 2012 end-page: 28628 ident: bib0025 article-title: Analyses of guide update approaches for vector evaluated particle swarm optimization on dynamic multi-objective optimization problems publication-title: Proceedings of world congress on computational intelligence: congress on evolutionary computation – reference: The Vilfredo Pareto Fund, with manuscripts by Pareto and essays on him, most in Italian, but also in English, especially describing his education as an engineer; especially Alessandro Melazzini's thesis and other essays. – year: 2009 ident: bib0037 article-title: Multi-objective optimization using sharing in swarm optimization algorithms (Ph.D. thesis) – volume: 433 start-page: 147 year: 2013 end-page: 188 ident: bib0027 article-title: Dynamic multi-objective optimization using PSO publication-title: Metaheuristics for dynamic optimization – volume: 6 start-page: 1 year: 2012 ident: 10.1016/j.ejor.2017.03.048_bib0046 article-title: Evolutionary dynamic optimization: A survey of the state of the art publication-title: Swarm and Evolutionary Computing doi: 10.1016/j.swevo.2012.05.001 – start-page: 2759 year: 2011 ident: 10.1016/j.ejor.2017.03.048_bib0057 article-title: On dynamic multiobjective optimization, classification and performance measures – volume: 21 start-page: 65 issue: 1 year: 2017 ident: 10.1016/j.ejor.2017.03.048_bib0033 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2016.2574621 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.ejor.2017.03.048_bib0009 article-title: The particle swarm - explosion, stability, and convergence in a multi-dimension complex space publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.985692 – volume: 2 start-page: 87 issue: 2 year: 2010 ident: 10.1016/j.ejor.2017.03.048_bib0036 article-title: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment publication-title: Memetic Computing doi: 10.1007/s12293-009-0026-7 – ident: 10.1016/j.ejor.2017.03.048_bib0031 – year: 1984 ident: 10.1016/j.ejor.2017.03.048_bib0051 – start-page: 416 year: 1993 ident: 10.1016/j.ejor.2017.03.048_bib0019 article-title: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization – volume: 39 issue: 6 year: 2009 ident: 10.1016/j.ejor.2017.03.048_bib0065 article-title: Adaptive particle swarm optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part B – volume: 217 start-page: 404 issue: 2 year: 2012 ident: 10.1016/j.ejor.2017.03.048_bib0002 article-title: An efficient Differential Evolution based algorithm for solving multi-objective optimization problems publication-title: European Journal of Operational Research, 2012 – volume: 1 start-page: 235 year: 2002 ident: 10.1016/j.ejor.2017.03.048_bib0047 article-title: Recent approaches to global optimization problems through particle swarm optimization publication-title: Natural Computing doi: 10.1023/A:1016568309421 – volume: 51 start-page: 105 year: 2007 ident: 10.1016/j.ejor.2017.03.048_bib0059 article-title: Genetic algorithms with self-organizing behaviour in dynamic environments – volume: 2 start-page: 1051 year: 2002 ident: 10.1016/j.ejor.2017.03.048_bib0010 article-title: MOPSO: A proposal for multiple objective particle swarm optimization – year: 1999 ident: 10.1016/j.ejor.2017.03.048_bib0062 – volume: 181 start-page: 4569 issue: 20 year: 2011 ident: 10.1016/j.ejor.2017.03.048_bib0008 article-title: Handling boundary constraints for particle swarm optimization in high-dimensional search space publication-title: Information Sciences doi: 10.1016/j.ins.2010.11.030 – volume: 48 start-page: 368 issue: 3 year: 2015 ident: 10.1016/j.ejor.2017.03.048_bib0015 article-title: Robust Formulation for optimizing sustainable ship routing and scheduling problem publication-title: IfacPapersonline – start-page: 573 year: 2006 ident: 10.1016/j.ejor.2017.03.048_bib0064 article-title: A dynamic multi-objective evolutionary algorithm based on an orthogonal design – volume: 4403 start-page: 832 year: 2007 ident: 10.1016/j.ejor.2017.03.048_bib0074 article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization – start-page: 1666 year: 2002 ident: 10.1016/j.ejor.2017.03.048_bib0032 article-title: Adaptive particle swarm optimization: Detection and response to dynamic systems – volume: 9 start-page: 303 issue: 3 year: 2005 ident: 10.1016/j.ejor.2017.03.048_bib0034 article-title: Evolutionary optimization in uncertain environments: A survey publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.846356 – year: 2009 ident: 10.1016/j.ejor.2017.03.048_bib0037 – start-page: 2917 year: 2008 ident: 10.1016/j.ejor.2017.03.048_bib0022 article-title: Solving dynamic multi-objective problems with vector evaluated particle swarm optimization – volume: 19 start-page: 3221 issue: 11 year: 2015 ident: 10.1016/j.ejor.2017.03.048_bib0063 article-title: A directed search strategy for evolutionary dynamic multiobjectiveoptimization publication-title: Soft Computing doi: 10.1007/s00500-014-1477-4 – volume: 56 start-page: 249 issue: 3 year: 2014 ident: 10.1016/j.ejor.2017.03.048_bib0048 article-title: To Celigny: In the footprints of Vilfredo Pareto's ‘optimum’ [historical corner] publication-title: Antennas and Propagation Magazine, IEEE doi: 10.1109/MAP.2014.6867724 – volume: 13 start-page: 284 issue: 2 year: 2009 ident: 10.1016/j.ejor.2017.03.048_bib0038 article-title: Multi-objective optimization problems with complicated Pareto Sets, MOEA/D and NSGAII publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.925798 – volume: 1 start-page: 390 year: 2003 ident: 10.1016/j.ejor.2017.03.048_bib0056 article-title: A cooperative coevolutionary algorithm for multiobjective optimization – volume: 203 start-page: 267 year: 2009 ident: 10.1016/j.ejor.2017.03.048_bib0001 article-title: Evolutionary approach to solving non-stationary dynamic multi-objective problems – volume: 15 start-page: 1427 issue: 7 year: 2011 ident: 10.1016/j.ejor.2017.03.048_bib0011 article-title: Optimization in dynamic environments: A survey on problem methods and measures publication-title: Soft Computing doi: 10.1007/s00500-010-0681-0 – volume: 272 start-page: 63 year: 2010 ident: 10.1016/j.ejor.2017.03.048_bib0005 article-title: Approaching dynamic multi-objective optimization problems by using parallel evolutionary algorithms – volume: 96 start-page: 201 year: 2016 ident: 10.1016/j.ejor.2017.03.048_bib0016 article-title: Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2016.04.002 – volume: 8 start-page: 425 issue: 5 year: 2004 ident: 10.1016/j.ejor.2017.03.048_bib0018 article-title: Dynamic multi-objective optimization problems: Test cases, approximations and applications publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.831456 – volume: 15 start-page: 1333 issue: 7 year: 2011 ident: 10.1016/j.ejor.2017.03.048_bib0071 article-title: Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems publication-title: Soft Computing doi: 10.1007/s00500-010-0674-z – start-page: 85 year: 2013 ident: 10.1016/j.ejor.2017.03.048_bib0049 article-title: Dynamic multi-objective optimization: A survey of the state-of-the-art – start-page: 94 year: 2001 ident: 10.1016/j.ejor.2017.03.048_bib0017 article-title: Tracking and optimizing dynamic systems with particle swarms – start-page: 3192 year: 2014 ident: 10.1016/j.ejor.2017.03.048_bib0003 article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions – start-page: 95 year: 2002 ident: 10.1016/j.ejor.2017.03.048_bib0077 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.ejor.2017.03.048_bib0012 article-title: T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computing doi: 10.1109/4235.996017 – volume: 51 start-page: 417 year: 2007 ident: 10.1016/j.ejor.2017.03.048_bib0058 article-title: Genetic algorithm to optimize fitness function with sampling error and its application to financial optimization problem – volume: 261 start-page: 105 year: 2010 ident: 10.1016/j.ejor.2017.03.048_bib0023 article-title: Dynamic multi-objective optimization using PSO – volume: 13 start-page: 103 issue: 1 year: 2009 ident: 10.1016/j.ejor.2017.03.048_bib0020 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.920671 – volume: 247 start-page: 732 issue: 3 year: 2015 ident: 10.1016/j.ejor.2017.03.048_bib0039 article-title: A novel multi-objective particle swarm optimization with multiple search strategies publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.06.071 – start-page: 803 year: 2007 ident: 10.1016/j.ejor.2017.03.048_bib0014 article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling – start-page: 69 year: 1998 ident: 10.1016/j.ejor.2017.03.048_bib0054 article-title: A modified particle swarm optimizer – volume: 44 start-page: 40 issue: 1 year: 2013 ident: 10.1016/j.ejor.2017.03.048_bib0075 article-title: A Population prediction strategy for evolutionary dynamic multi-objective optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2245892 – volume: 19 start-page: 524 issue: 4 year: 2015 ident: 10.1016/j.ejor.2017.03.048_bib0060 article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2014.2350987 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.ejor.2017.03.048_bib0067 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.892759 – start-page: 372 year: 2011 ident: 10.1016/j.ejor.2017.03.048_bib0061 article-title: Simplex model based evolutionary algorithm for dynamic multiobjective optimization – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.ejor.2017.03.048_bib0076 article-title: Multi-objective evolutionary algorithms: A comparative case study and the strength pareto approach publication-title: IEEE Transactions on Evolutionary Computing doi: 10.1109/4235.797969 – start-page: 28621 year: 2012 ident: 10.1016/j.ejor.2017.03.048_bib0025 article-title: Analyses of guide update approaches for vector evaluated particle swarm optimization on dynamic multi-objective optimization problems – volume: 17 start-page: 16 year: 2013 ident: 10.1016/j.ejor.2017.03.048_bib0026 article-title: Issues with performance measures for dynamic multi-objective optimisation – start-page: 423 year: 2011 ident: 10.1016/j.ejor.2017.03.048_bib0040 article-title: A sphere-dominance based preference immune-inspired algorithm for dynamic multiobjective optimization – start-page: 760 year: 2009 ident: 10.1016/j.ejor.2017.03.048_bib0004 article-title: Performance measures for dynamic multiobjective optimization – volume: 5 start-page: 565 year: 2007 ident: 10.1016/j.ejor.2017.03.048_bib0073 article-title: A new dynamic multi-objective optimization evolutionary algorithm – volume: 51 start-page: 179 year: 2007 ident: 10.1016/j.ejor.2017.03.048_bib0045 article-title: Adaptive business intelligence: Three case studies – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.ejor.2017.03.048_bib0035 article-title: Particle swarm optimization – volume: 2 start-page: 2307 year: 2005 ident: 10.1016/j.ejor.2017.03.048_bib0070 article-title: Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space – start-page: 2047 year: 2011 ident: 10.1016/j.ejor.2017.03.048_bib0024 article-title: Archive management for dynamic multi-objective optimization problems using vector evaluated particle swarm optimization – start-page: 435 year: 2011 ident: 10.1016/j.ejor.2017.03.048_bib0043 article-title: A hybrid dynamic multiobjective immune optimization algorithm using prediction strategy and improved differential evolution crossover operator – volume: 12 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.ejor.2017.03.048_bib0068 article-title: RM-MEDA: A regularity model based multiobjective estimation of distribution algorithm publication-title: IEEE Transaction on Evolutionary computation doi: 10.1109/TEVC.2007.894202 – volume: 16 start-page: 442 issue: 3 year: 2012 ident: 10.1016/j.ejor.2017.03.048_bib0072 article-title: Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighbourhood Sizes publication-title: IEEE Trans on Evolutionary Computation doi: 10.1109/TEVC.2011.2166159 – volume: 3 start-page: 101 year: 1999 ident: 10.1016/j.ejor.2017.03.048_bib0055 article-title: Empirical study of particle swarm optimization – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.ejor.2017.03.048_bib0013 article-title: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, Part I: Solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281535 – volume: 433 start-page: 147 year: 2013 ident: 10.1016/j.ejor.2017.03.048_bib0027 article-title: Dynamic multi-objective optimization using PSO – volume: 48 start-page: 597 year: 2016 ident: 10.1016/j.ejor.2017.03.048_bib0042 article-title: Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.04.021 – volume: 3801 start-page: 846 year: 2005 ident: 10.1016/j.ejor.2017.03.048_bib0053 article-title: Clonal selection algorithm for dynamic multiobjective optimization – start-page: 198 year: 2007 ident: 10.1016/j.ejor.2017.03.048_bib0030 article-title: Particle swarm optimization in high-dimensional bounded search spaces publication-title: Swarm Intelligence Symposium – start-page: 429 year: 2000 ident: 10.1016/j.ejor.2017.03.048_bib0006 article-title: Adapting Particle swarm optimization to dynamic environments – volume: 43 start-page: 445 issue: 2 year: 2013 ident: 10.1016/j.ejor.2017.03.048_bib0066 article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems publication-title: IEEE Transaction on Cybernetics doi: 10.1109/TSMCB.2012.2209115 – volume: 202 start-page: 42 issue: 1 year: 2010 ident: 10.1016/j.ejor.2017.03.048_bib0021 article-title: A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2009.05.005 – volume: 18 start-page: 913 year: 2014 ident: 10.1016/j.ejor.2017.03.048_bib0041 article-title: A novel cooperative co-evolutionary dynamic multi-objective optimization algorithm using a new predictive model publication-title: Soft Computing doi: 10.1007/s00500-013-1175-7 – volume: 46 start-page: 37:1-37:39 issue: 3 year: 2014 ident: 10.1016/j.ejor.2017.03.048_bib0029 article-title: Benchmarks for dynamic multi-objective optimization algorithms publication-title: ACM Computing Surveys doi: 10.1145/2517649 – start-page: 203 year: 2009 ident: 10.1016/j.ejor.2017.03.048_bib0069 article-title: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances, – volume: 33 start-page: 859 issue: 3 year: 2004 ident: 10.1016/j.ejor.2017.03.048_bib0007 article-title: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization publication-title: Computer Operation Research doi: 10.1016/j.cor.2004.08.012 – volume: 8 issue: 3 year: 2004 ident: 10.1016/j.ejor.2017.03.048_bib0050 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.826071 – ident: 10.1016/j.ejor.2017.03.048_bib0044 – volume: 14 start-page: 31 year: 2014 ident: 10.1016/j.ejor.2017.03.048_bib0028 article-title: Population-based metaheuristics for continuous boundary-constrained dynamic multi-objective optimization problems publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2013.08.004 – volume: 252 start-page: 969 issue: 3 year: 2016 ident: 10.1016/j.ejor.2017.03.048_bib0052 article-title: Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operations publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.01.043 |
| SSID | ssj0001515 |
| Score | 2.564205 |
| Snippet | •A coevolutionary multi-swarm particle swarm optimizer is proposed.•All swarms utilize an information sharing strategy to evolve cooperatively.•A velocity... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1028 |
| SubjectTerms | Coevolution Dynamic multi-objective optimization Multi-swarm Particle swarm optimization Multiple objective programming Similarity detective |
| Title | A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization |
| URI | https://dx.doi.org/10.1016/j.ejor.2017.03.048 |
| Volume | 261 |
| WOSCitedRecordID | wos000401889300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBahHWN72CVbWXdDD3sLLrFkWdJjGB1bKGWwDvJmJFtmCa0d0iTLX9u_25El2U7XlW2wF2MLyXZyPut8OjoXhN5Ju9fEchaplMsoycc8kobEsOZJdF4AxY5VU7XkjJ-fi9lMfh4MfoRYmO0lryqx28nlfxU1tIGwbejsX4i7vSk0wDkIHY4gdjj-keAnNt_H1j_C-sR1aVqtyirs9kDjRhhdf1erq9HS32PkLmuYQ658cGbjg1i4mvV-TK0Xborc6_hb-77nutCwClZHn16oNUOfzTeNnDe2dlfnINR4GUwBvLt5qzlKZ62dBnXbAMW5rcy_1b7RmzBALdoSDGlnV_sltsbFc3EeEeIiO0-Mm54FJ1EqXAWCMH8Tl83dA5X2ZmNLnnqaHahkfKvWcAaMxYlZ1DZFbMybvLeJ6HRk67n4xb6WfauY2x1fGzp6SDiToBMOJ59OZ9OWBlim2Gxh-Z_hI7acc-HNJ93OinpM5-IJeuSXKHjiYPEUDUw1RPdDhMQQPQ6VQLBXDEP0sJfW8hlaT_A-BHELQdxAENcV7kEQBwhid9lHFgYIYg9BfAOCex2fo68fTi_ef4x8dY8op5Sso0LBylvnwJAUM4lOWGJKSQtaxjynWhBBNCymcxUbUUrF04KNE600M0ykpRQpPUIHVV2ZFwjLghTSGFGYWCepgjW_0oaOtWbWx0HSYxSHfzfLfep7W4HlMgs-jovMSiSzEsnGNAOJHKNRO2bpEr_c2ZsFoWWeujpKmgHG7hj38h_HvUIPug_pNTpYrzbmDbqXb9fz69VbD8WfOIDEdQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+coevolutionary+technique+based+on+multi-swarm+particle+swarm+optimization+for+dynamic+multi-objective+optimization&rft.jtitle=European+journal+of+operational+research&rft.au=Liu%2C+Ruochen&rft.au=Li%2C+Jianxia&rft.au=fan%2C+Jing&rft.au=Mu%2C+Caihong&rft.date=2017-09-16&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=261&rft.issue=3&rft.spage=1028&rft.epage=1051&rft_id=info:doi/10.1016%2Fj.ejor.2017.03.048&rft.externalDocID=S0377221717302709 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |