A satisfiability algorithm and average-case hardness for formulas over the full binary basis
We present a moderately exponential time algorithm for the satisfiability of Boolean formulas over the full binary basis. For formulas of size at most cn , our algorithm runs in time for some constant μ c > 0. As a byproduct of the running time analysis of our algorithm, we obtain strong average...
Uloženo v:
| Vydáno v: | Computational complexity Ročník 22; číslo 2; s. 245 - 274 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
SP Birkhäuser Verlag Basel
01.06.2013
|
| Témata: | |
| ISSN: | 1016-3328, 1420-8954 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a moderately exponential time algorithm for the satisfiability of Boolean formulas over the full binary basis. For formulas of size at most
cn
, our algorithm runs in time
for some constant μ
c
> 0. As a byproduct of the running time analysis of our algorithm, we obtain strong average-case hardness of affine extractors for linear-sized formulas over the full binary basis. |
|---|---|
| ISSN: | 1016-3328 1420-8954 |
| DOI: | 10.1007/s00037-013-0067-7 |