PRF: A Program Reuse Framework for Automated Programming by Learning from Existing Robot Programs

This paper explores the problem of automated robot program generation from limited historical data when neither accurate geometric environmental models nor online vision feedback are available. The Program Reuse Framework (PRF) is developed, which uses expert-defined motion classes, a novel data str...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Robotics (Basel) Ročník 13; číslo 8; s. 118
Hlavní autori: Toner, Tyler, Tilbury, Dawn M., Barton, Kira
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.08.2024
Predmet:
ISSN:2218-6581, 2218-6581
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper explores the problem of automated robot program generation from limited historical data when neither accurate geometric environmental models nor online vision feedback are available. The Program Reuse Framework (PRF) is developed, which uses expert-defined motion classes, a novel data structure introduced in this work, to learn affordances, workspaces, and skills from historical data. Historical data comprise raw robot joint trajectories and descriptions of the robot task being completed. Given new tasks, motion classes are then used again to formulate an optimization problem capable of generating new open-loop, skill-based programs to complete the tasks. To cope with a lack of geometric models, a technique to learn safe workspaces from demonstrations is developed, allowing the risk of new programs to be estimated before execution. A new learnable motion primitive for redundant manipulators is introduced, called a redundancy dynamical movement primitive, which enables new end-effector goals to be reached while mimicking the whole-arm behavior of a demonstration. A mobile manipulator part transportation task is used throughout to illustrate each step of the framework.
AbstractList This paper explores the problem of automated robot program generation from limited historical data when neither accurate geometric environmental models nor online vision feedback are available. The Program Reuse Framework (PRF) is developed, which uses expert-defined motion classes, a novel data structure introduced in this work, to learn affordances, workspaces, and skills from historical data. Historical data comprise raw robot joint trajectories and descriptions of the robot task being completed. Given new tasks, motion classes are then used again to formulate an optimization problem capable of generating new open-loop, skill-based programs to complete the tasks. To cope with a lack of geometric models, a technique to learn safe workspaces from demonstrations is developed, allowing the risk of new programs to be estimated before execution. A new learnable motion primitive for redundant manipulators is introduced, called a redundancy dynamical movement primitive, which enables new end-effector goals to be reached while mimicking the whole-arm behavior of a demonstration. A mobile manipulator part transportation task is used throughout to illustrate each step of the framework.
Author Tilbury, Dawn M.
Toner, Tyler
Barton, Kira
Author_xml – sequence: 1
  givenname: Tyler
  surname: Toner
  fullname: Toner, Tyler
– sequence: 2
  givenname: Dawn M.
  surname: Tilbury
  fullname: Tilbury, Dawn M.
– sequence: 3
  givenname: Kira
  orcidid: 0000-0003-1047-8078
  surname: Barton
  fullname: Barton, Kira
BookMark eNpdUcFKAzEQDaJgrb17DHheTTabbOKtlFYLBUvRc5hssmVrd1OTLdq_d9daEecyb4bHm8e8K3Te-MYhdEPJHWOK3AdvfFsVkTIiCaXyDA3SlMpEcEnP_-BLNIpxQ7pSlElBBwiWq9kDHuNl8OsANV65fXR41kH34cMbLn3A433ra2idPbHqqlljc8ALB6HpcRl8jaefVWz7adW7OXHjNbooYRvd6KcP0ets-jJ5ShbPj_PJeJEUjKVtogwvM2JtkRdccJUaZjJhlXIGTCotBQsECAcBJXXCiMywAmTJiTCWCwlsiOZHXetho3ehqiEctIdKfy98WGsI3ZO2TjOV5Rw4F5nKM0pLCc6mnYQ1Ns0IZZ3W7VFrF_z73sVWb_w-NJ19zYiSNM-VUB2LHFlF8DEGV_5epUT3uej_ubAvSeKD-g
Cites_doi 10.1109/ICRA.2017.7989466
10.1016/S0004-3702(96)00047-1
10.1109/TRO.2010.2065430
10.1109/ETFA.2015.7301471
10.1016/j.procs.2024.01.059
10.1017/CBO9781139583923
10.1109/LRA.2019.2928782
10.1109/ICRA.2014.6907291
10.1016/j.procs.2022.12.205
10.1016/j.jmsy.2024.04.016
10.1109/TRO.2012.2210294
10.1007/978-94-007-7194-9
10.1109/IROS.2012.6386006
10.1007/s11370-017-0235-8
10.1109/LRA.2021.3094498
10.23919/ACC53348.2022.9867877
10.1109/IROS55552.2023.10342397
10.1109/ICRA46639.2022.9811735
10.1162/NECO_a_00393
10.1109/MFI.2008.4648032
10.1007/s11370-015-0187-9
10.1109/IROS45743.2020.9340985
10.1109/IROS55552.2023.10342216
10.1109/70.508440
10.1145/2909824.3020227
10.1016/j.rcim.2015.04.002
10.1177/0278364910396389
10.1007/s11633-022-1346-z
10.1016/j.mfglet.2022.07.111
10.1177/02783649231201196
10.1109/LRA.2022.3158376
10.1109/ICRA48891.2023.10161095
10.1146/annurev-control-053018-023825
10.1109/IROS.2014.6942760
10.1109/ICRA46639.2022.9812312
10.1007/978-3-319-32552-1
10.1016/j.robot.2011.05.009
10.1007/978-3-030-44051-0_14
10.1016/j.autcon.2021.103940
10.15607/RSS.2023.XIX.025
10.1016/j.mfglet.2023.08.055
10.1007/978-3-030-66723-8_2
10.1016/j.robot.2022.104318
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8AL
8BQ
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/robotics13080118
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2218-6581
ExternalDocumentID oai_doaj_org_article_39475a556497411f8aed28a3dbd24013
10_3390_robotics13080118
GroupedDBID 5VS
8FE
8FG
AAYXX
ABJCF
ABUWG
ADBBV
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c332t-9b5f40ddc7c56592b3b46d99ebab28d1ada0a05a6af1e6b64b3ca8f506bd568a3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001304652800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2218-6581
IngestDate Fri Oct 03 12:40:40 EDT 2025
Fri Jul 25 12:04:09 EDT 2025
Sat Nov 29 07:15:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-9b5f40ddc7c56592b3b46d99ebab28d1ada0a05a6af1e6b64b3ca8f506bd568a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1047-8078
OpenAccessLink https://doaj.org/article/39475a556497411f8aed28a3dbd24013
PQID 3098177969
PQPubID 2032334
ParticipantIDs doaj_primary_oai_doaj_org_article_39475a556497411f8aed28a3dbd24013
proquest_journals_3098177969
crossref_primary_10_3390_robotics13080118
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Robotics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Terziyan (ref_9) 2023; 217
Schwenkel (ref_7) 2020; 100
Blum (ref_46) 1997; 90
ref_13
ref_12
ref_11
ref_55
ref_54
ref_53
ref_52
Eiband (ref_25) 2024; 232
ref_51
Yin (ref_26) 2024; 74
ref_19
Chou (ref_40) 2020; Volume 14
Geib (ref_6) 2011; 59
Pane (ref_22) 2021; 6
Toner (ref_30) 2023; 35
Saveriano (ref_34) 2023; 42
Kong (ref_36) 2023; 20
Paszke (ref_28) 2019; 32
Steinmetz (ref_3) 2019; 4
Calinon (ref_17) 2016; 9
ref_23
ref_21
ref_20
Bruyninckx (ref_18) 1996; 12
Wang (ref_14) 2022; 7
ref_29
Karigiannis (ref_15) 2022; 33
Berenson (ref_43) 2011; 30
Stulp (ref_38) 2012; 28
Knuth (ref_42) 2021; Volume 17
Kroemer (ref_27) 2021; 22
ref_35
Pedersen (ref_5) 2016; 37
ref_33
ref_32
ref_39
Ijspeert (ref_16) 2013; 25
ref_47
ref_45
ref_44
ref_41
ref_1
Albore (ref_24) 2023; 160
ref_2
ref_49
ref_8
Recht (ref_31) 2019; 2
Pervez (ref_37) 2018; 11
ref_4
Paneru (ref_10) 2021; 132
Ude (ref_48) 2010; 26
References_xml – ident: ref_41
  doi: 10.1109/ICRA.2017.7989466
– volume: 90
  start-page: 281
  year: 1997
  ident: ref_46
  article-title: Fast planning through planning graph analysis
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(96)00047-1
– volume: 26
  start-page: 800
  year: 2010
  ident: ref_48
  article-title: Task-specific generalization of discrete and periodic dynamic movement primitives
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2010.2065430
– ident: ref_49
– ident: ref_45
  doi: 10.1109/ETFA.2015.7301471
– ident: ref_55
– volume: 232
  start-page: 595
  year: 2024
  ident: ref_25
  article-title: Unifying Skill-Based Programming and Programming by Demonstration through Ontologies
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2024.01.059
– ident: ref_44
  doi: 10.1017/CBO9781139583923
– volume: 4
  start-page: 3742
  year: 2019
  ident: ref_3
  article-title: Intuitive Task-Level Programming by Demonstration Through Semantic Skill Recognition
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2928782
– volume: 100
  start-page: 273
  year: 2020
  ident: ref_7
  article-title: Optimizing Sequences of Probabilistic Manipulation Skills Learned from Demonstration
  publication-title: Proc. Mach. Learn. Res.
– ident: ref_23
– ident: ref_47
  doi: 10.1109/ICRA.2014.6907291
– volume: 217
  start-page: 91
  year: 2023
  ident: ref_9
  article-title: Encryption and Generation of Images for Privacy-Preserving Machine Learning in Smart Manufacturing
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.12.205
– volume: 74
  start-page: 676
  year: 2024
  ident: ref_26
  article-title: Enhancing Human-Guided Robotic Assembly: AR-assisted DT for Skill-Based and Low-Code Programming
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2024.04.016
– volume: 28
  start-page: 1360
  year: 2012
  ident: ref_38
  article-title: Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2012.2210294
– ident: ref_32
  doi: 10.1007/978-94-007-7194-9
– ident: ref_35
  doi: 10.1109/IROS.2012.6386006
– volume: 11
  start-page: 61
  year: 2018
  ident: ref_37
  article-title: Learning task-parameterized dynamic movement primitives using mixture of GMMs
  publication-title: Intell. Serv. Robot.
  doi: 10.1007/s11370-017-0235-8
– ident: ref_52
– volume: 22
  start-page: 1
  year: 2021
  ident: ref_27
  article-title: A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 6481
  year: 2021
  ident: ref_22
  article-title: Autonomous Runtime Composition of Sensor-Based Skills Using Concurrent Task Planning
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3094498
– ident: ref_39
  doi: 10.23919/ACC53348.2022.9867877
– ident: ref_51
  doi: 10.1109/IROS55552.2023.10342397
– ident: ref_11
  doi: 10.1109/ICRA46639.2022.9811735
– ident: ref_53
– volume: 25
  start-page: 328
  year: 2013
  ident: ref_16
  article-title: Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00393
– ident: ref_19
  doi: 10.1109/MFI.2008.4648032
– volume: 9
  start-page: 1
  year: 2016
  ident: ref_17
  article-title: A tutorial on task-parameterized movement learning and retrieval
  publication-title: Intell. Serv. Robot.
  doi: 10.1007/s11370-015-0187-9
– ident: ref_21
  doi: 10.1109/IROS45743.2020.9340985
– ident: ref_8
  doi: 10.1109/IROS55552.2023.10342216
– volume: 12
  start-page: 581
  year: 1996
  ident: ref_18
  article-title: Specification of force-controlled actions in the “task frame formalism”—A synthesis
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.508440
– ident: ref_2
  doi: 10.1145/2909824.3020227
– volume: 37
  start-page: 282
  year: 2016
  ident: ref_5
  article-title: Robot skills for manufacturing: From concept to industrial deployment
  publication-title: Robot. -Comput. -Integr. Manuf.
  doi: 10.1016/j.rcim.2015.04.002
– volume: 30
  start-page: 1435
  year: 2011
  ident: ref_43
  article-title: Task Space Regions: A framework for pose-constrained manipulation planning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364910396389
– volume: 20
  start-page: 396
  year: 2023
  ident: ref_36
  article-title: Dynamic Movement Primitives Based Robot Skills Learning
  publication-title: Mach. Intell. Res.
  doi: 10.1007/s11633-022-1346-z
– volume: 33
  start-page: 909
  year: 2022
  ident: ref_15
  article-title: Reinforcement Learning Enabled Self-Homing of Industrial Robotic Manipulators in Manufacturing
  publication-title: Manuf. Lett.
  doi: 10.1016/j.mfglet.2022.07.111
– volume: 42
  start-page: 1133
  year: 2023
  ident: ref_34
  article-title: Dynamic movement primitives in robotics: A tutorial survey
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/02783649231201196
– ident: ref_50
– ident: ref_29
– ident: ref_33
– ident: ref_54
– volume: 7
  start-page: 5544
  year: 2022
  ident: ref_14
  article-title: Offline-Online Learning of Deformation Model for Cable Manipulation With Graph Neural Networks
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3158376
– ident: ref_4
  doi: 10.1109/ICRA48891.2023.10161095
– volume: 2
  start-page: 253
  year: 2019
  ident: ref_31
  article-title: A Tour of Reinforcement Learning: The View from Continuous Control
  publication-title: Annu. Rev. Control. Robot. Auton. Syst.
  doi: 10.1146/annurev-control-053018-023825
– ident: ref_20
  doi: 10.1109/IROS.2014.6942760
– ident: ref_12
  doi: 10.1109/ICRA46639.2022.9812312
– volume: 32
  start-page: 8026
  year: 2019
  ident: ref_28
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_1
  doi: 10.1007/978-3-319-32552-1
– volume: 59
  start-page: 740
  year: 2011
  ident: ref_6
  article-title: Object–Action Complexes: Grounded abstractions of sensory–motor processes
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2011.05.009
– volume: Volume 14
  start-page: 228
  year: 2020
  ident: ref_40
  article-title: Learning Constraints from Demonstrations
  publication-title: Proceedings of the Algorithmic Foundations of Robotics XIII
  doi: 10.1007/978-3-030-44051-0_14
– volume: 132
  start-page: 103940
  year: 2021
  ident: ref_10
  article-title: Computer vision applications in construction: Current state, opportunities & challenges
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103940
– ident: ref_13
  doi: 10.15607/RSS.2023.XIX.025
– volume: 35
  start-page: 1019
  year: 2023
  ident: ref_30
  article-title: Opportunities and challenges in applying reinforcement learning to robotic manipulation: An industrial case study
  publication-title: Manuf. Lett.
  doi: 10.1016/j.mfglet.2023.08.055
– volume: Volume 17
  start-page: 18
  year: 2021
  ident: ref_42
  article-title: Inferring Obstacles and Path Validity from Visibility-Constrained Demonstrations
  publication-title: Algorithmic Foundations of Robotics XIV
  doi: 10.1007/978-3-030-66723-8_2
– volume: 160
  start-page: 104318
  year: 2023
  ident: ref_24
  article-title: Skill-based design of dependable robotic architectures
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2022.104318
SSID ssj0000913861
Score 2.2636778
Snippet This paper explores the problem of automated robot program generation from limited historical data when neither accurate geometric environmental models nor...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 118
SubjectTerms automated programming
Automation
Data structures
Datasets
Deep learning
Design
End effectors
Environment models
Historical structures
learning from demonstration (LfD)
Libraries
Manipulators
Python
Redundancy
redundant manipulators
Robot arms
Robot dynamics
Robots
Sensors
skill-based programming
Skills
task and motion planning
workspace learning
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgECa-DnrwbVxf4eDFQ2OhlIIXsxo3Jhqz2ajx1kChxoNb3e4a_ffO9OEz8eKxLSSUD4ZvYPiGkH3hPEMeGzBpZSAUzjnAOjB5JrwBfqGqPGS3l8nVlbq70_1mw61swipbm1gZaldkuEd-GIVasSTRUh8_PQeYNQpPV5sUGtNklnHOcJxfJMHHHgtqXirJ6tPJCLz7w1FhC5Q_Bsut8M7lt9WoEu3_ZZOrhaa39N8mLpPFhmLSbj0mVsiUH66ShS_Cg2vE9Ae9I9ql_To6iw78pPS01wZqUWCytDsZF0BnvWtLPUJVat9oI8l6T_FqCj17RSsBTwP86bZsuU5uemfXp-dBk2whyKKIjwNt41yEzmVJFuNRq42skE5rb43lyjHjTGjC2EiTMw-4ChtlRuVxKK2LpTLRBpkZFkO_SSiQKiCOXuWAtkB9e2symXOoroTlOumQg7bT06daUyMFXwQBSn8C1CEniMpHOVTDrl4Uo_u0mVxppEUSmziWArwjxnJlvOPQJGcdR_-xQ3ZawNJmipbpJ1pbf3_eJvMcmEwd9bdDZsajid8lc9nL-KEc7VUj7h0MMeCA
  priority: 102
  providerName: ProQuest
Title PRF: A Program Reuse Framework for Automated Programming by Learning from Existing Robot Programs
URI https://www.proquest.com/docview/3098177969
https://doaj.org/article/39475a556497411f8aed28a3dbd24013
Volume 13
WOSCitedRecordID wos001304652800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2218-6581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913861
  issn: 2218-6581
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2218-6581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913861
  issn: 2218-6581
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2218-6581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913861
  issn: 2218-6581
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2218-6581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913861
  issn: 2218-6581
  databaseCode: K7-
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2218-6581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913861
  issn: 2218-6581
  databaseCode: M7S
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2218-6581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913861
  issn: 2218-6581
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2218-6581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913861
  issn: 2218-6581
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQMMCAOEU5Kg8sDFHj-IjNVlArEFBF5VBhiezYQQy0qAeCf89zDlRgYGGxlNhWrPfFz9-Tnz8jdMSsI57HBkQYETDp5xxgHeg8Y04Dv5DFPWT3V3GvJwcDlcxd9eVzwkp54NJwLapYzDXnggHzJSSX2tlIamqNjXxs4L0vsJ65YKrwwYpQKUi5L0khrm-NR2bkhY_BZ0t_2vLbOlTI9f_yxsUS011HaxU3xO1yTBtowQ030eqcYuAW0km_e4LbOCnTqnDfzSYOd-sMKwwUFLdn0xHwUGfrVi_QFZsPXGmpPmF_pgR33v30hqe-H3PddrKN7rqd27PzoLolIcgojaaBMjxnobVZnHG_R2qoYcIq5Yw2kbREWx3qkGuhc-IAEGZopmXOQ2EsF2DJHbQ4HA3dLsLAhoDxOZkDTMwL0xudiTyC7pKZSMUNdFzbLH0txTBSCCK8fdOf9m2gU2_Ur3Zexrp4AeCmFbjpX-A20EENSVrNrUlKQyVJHCuh9v7jG_toJQKiUib1HaDF6XjmDtFy9jZ9noybaOm000v6zeL3gvIyDpo-P_QGyoQ_Qn1ycZ08fALppteL
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ58K5YKOADHDhETWzHsZEQWqCrVrusVquCegt27FQc2JTNLtA_1d_YmTzKS-LWA8ckdhTbX8bf2ONvAJ5JHxLisVGinIqkpn8OxzqyZSGDRX6hmzxkHyfZdKqPjsxsA876szAUVtnbxMZQ-6qgNfJdERudZJlR5vXJ14iyRtHuap9Co4XFOJx-R5etfnXwDsf3OeejvcO3-1GXVSAqhOCryLi0lLH3RVaktKfohJPKGxOcdVz7xHob2zi1ypZJwAZIJwqryzRWzqdKW4HvvQJXpdAZafWPs-hiTYc0NrVK2t1QIUy8u6xcRXLLOFNoOuP52-zXJAn4aw5oJrbRrf-tS27DzY5Cs2GL-TuwERZ34cYvwor3wM7mo5dsyGZt9Bmbh3Ud2KgPRGPI1NlwvaqQrgffl_qCVZk7ZZ3k7DGjozds7wdZQbyaUyf3Zev78OFS2rgNm4tqER4AQ9KIxDjoEtEsSb_f2UKVHKtr6bjJBvCiH-T8pNUMydHXIkDkfwJiAG8IBRflSO27uVEtj_POeOTCyCy1aaoken9JUmobPMdP8s5z8o8HsNMDJO9MUJ3_RMfDfz9-Ctf3D99P8snBdPwItjiytjbCcQc2V8t1eAzXim-rz_XySYN2Bp8uG0vnvTZAZg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceKMuFPABDhyiTRzbsZEQWmgjqq1WqxWg3oIdOxWHbspmF-hf49cxk0d5Sdx64BjHjmL788w39ngG4KnwISEeGyXKqUhoWnM415GtShEs8gvd5iH7cJjNZvroyMy34PtwF4bcKgeZ2ApqX5e0Rz5OY6OTLDPKjKveLWK-l786_RxRBik6aR3SaXQQmYazr2i-NS8P9nCun3Ge77978zbqMwxEZZrydWScrETsfZmVks4XXeqE8sYEZx3XPrHexjaWVtkqCdgZ4dLS6krGynmptE3xu5fgMmphSWtsmkXn-zsUb1OrpDsZTVMTj1e1qyn0MmoNTfc9f9OEbcKAv_RBq-Tym__z8NyCGz21ZpNuLdyGrbC8A9d_Cbh4F-x8kb9gEzbvvNLYImyawPLBQY0hg2eTzbpGGh_8UOsEmzJ3xvpQtMeMruSw_W8kHfFpQQM-1G3uwfsL6eN92F7Wy7ADDMkkEuagK0S5oLj-zpaq4thcC8dNNoLnw4QXp10skQJtMAJH8Sc4RvCaEHFej6KAtwX16rjohUqRGpFJK6USaBUmSaVt8Bx_yTvPyW4ewe4AlqIXTU3xEykP_v36CVxFCBWHB7PpQ7jGkcx1jo-7sL1ebcIjuFJ-WX9qVo9b4DP4eNFQ-gFtI0kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PRF%3A+A+Program+Reuse+Framework+for+Automated+Programming+by+Learning+from+Existing+Robot+Programs&rft.jtitle=Robotics+%28Basel%29&rft.au=Tyler+Toner&rft.au=Dawn+M.+Tilbury&rft.au=Kira+Barton&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=2218-6581&rft.volume=13&rft.issue=8&rft.spage=118&rft_id=info:doi/10.3390%2Frobotics13080118&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_39475a556497411f8aed28a3dbd24013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-6581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-6581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-6581&client=summon