PRF: A Program Reuse Framework for Automated Programming by Learning from Existing Robot Programs
This paper explores the problem of automated robot program generation from limited historical data when neither accurate geometric environmental models nor online vision feedback are available. The Program Reuse Framework (PRF) is developed, which uses expert-defined motion classes, a novel data str...
Uložené v:
| Vydané v: | Robotics (Basel) Ročník 13; číslo 8; s. 118 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.08.2024
|
| Predmet: | |
| ISSN: | 2218-6581, 2218-6581 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper explores the problem of automated robot program generation from limited historical data when neither accurate geometric environmental models nor online vision feedback are available. The Program Reuse Framework (PRF) is developed, which uses expert-defined motion classes, a novel data structure introduced in this work, to learn affordances, workspaces, and skills from historical data. Historical data comprise raw robot joint trajectories and descriptions of the robot task being completed. Given new tasks, motion classes are then used again to formulate an optimization problem capable of generating new open-loop, skill-based programs to complete the tasks. To cope with a lack of geometric models, a technique to learn safe workspaces from demonstrations is developed, allowing the risk of new programs to be estimated before execution. A new learnable motion primitive for redundant manipulators is introduced, called a redundancy dynamical movement primitive, which enables new end-effector goals to be reached while mimicking the whole-arm behavior of a demonstration. A mobile manipulator part transportation task is used throughout to illustrate each step of the framework. |
|---|---|
| AbstractList | This paper explores the problem of automated robot program generation from limited historical data when neither accurate geometric environmental models nor online vision feedback are available. The Program Reuse Framework (PRF) is developed, which uses expert-defined motion classes, a novel data structure introduced in this work, to learn affordances, workspaces, and skills from historical data. Historical data comprise raw robot joint trajectories and descriptions of the robot task being completed. Given new tasks, motion classes are then used again to formulate an optimization problem capable of generating new open-loop, skill-based programs to complete the tasks. To cope with a lack of geometric models, a technique to learn safe workspaces from demonstrations is developed, allowing the risk of new programs to be estimated before execution. A new learnable motion primitive for redundant manipulators is introduced, called a redundancy dynamical movement primitive, which enables new end-effector goals to be reached while mimicking the whole-arm behavior of a demonstration. A mobile manipulator part transportation task is used throughout to illustrate each step of the framework. |
| Author | Tilbury, Dawn M. Toner, Tyler Barton, Kira |
| Author_xml | – sequence: 1 givenname: Tyler surname: Toner fullname: Toner, Tyler – sequence: 2 givenname: Dawn M. surname: Tilbury fullname: Tilbury, Dawn M. – sequence: 3 givenname: Kira orcidid: 0000-0003-1047-8078 surname: Barton fullname: Barton, Kira |
| BookMark | eNpdUcFKAzEQDaJgrb17DHheTTabbOKtlFYLBUvRc5hssmVrd1OTLdq_d9daEecyb4bHm8e8K3Te-MYhdEPJHWOK3AdvfFsVkTIiCaXyDA3SlMpEcEnP_-BLNIpxQ7pSlElBBwiWq9kDHuNl8OsANV65fXR41kH34cMbLn3A433ra2idPbHqqlljc8ALB6HpcRl8jaefVWz7adW7OXHjNbooYRvd6KcP0ets-jJ5ShbPj_PJeJEUjKVtogwvM2JtkRdccJUaZjJhlXIGTCotBQsECAcBJXXCiMywAmTJiTCWCwlsiOZHXetho3ehqiEctIdKfy98WGsI3ZO2TjOV5Rw4F5nKM0pLCc6mnYQ1Ns0IZZ3W7VFrF_z73sVWb_w-NJ19zYiSNM-VUB2LHFlF8DEGV_5epUT3uej_ubAvSeKD-g |
| Cites_doi | 10.1109/ICRA.2017.7989466 10.1016/S0004-3702(96)00047-1 10.1109/TRO.2010.2065430 10.1109/ETFA.2015.7301471 10.1016/j.procs.2024.01.059 10.1017/CBO9781139583923 10.1109/LRA.2019.2928782 10.1109/ICRA.2014.6907291 10.1016/j.procs.2022.12.205 10.1016/j.jmsy.2024.04.016 10.1109/TRO.2012.2210294 10.1007/978-94-007-7194-9 10.1109/IROS.2012.6386006 10.1007/s11370-017-0235-8 10.1109/LRA.2021.3094498 10.23919/ACC53348.2022.9867877 10.1109/IROS55552.2023.10342397 10.1109/ICRA46639.2022.9811735 10.1162/NECO_a_00393 10.1109/MFI.2008.4648032 10.1007/s11370-015-0187-9 10.1109/IROS45743.2020.9340985 10.1109/IROS55552.2023.10342216 10.1109/70.508440 10.1145/2909824.3020227 10.1016/j.rcim.2015.04.002 10.1177/0278364910396389 10.1007/s11633-022-1346-z 10.1016/j.mfglet.2022.07.111 10.1177/02783649231201196 10.1109/LRA.2022.3158376 10.1109/ICRA48891.2023.10161095 10.1146/annurev-control-053018-023825 10.1109/IROS.2014.6942760 10.1109/ICRA46639.2022.9812312 10.1007/978-3-319-32552-1 10.1016/j.robot.2011.05.009 10.1007/978-3-030-44051-0_14 10.1016/j.autcon.2021.103940 10.15607/RSS.2023.XIX.025 10.1016/j.mfglet.2023.08.055 10.1007/978-3-030-66723-8_2 10.1016/j.robot.2022.104318 |
| ContentType | Journal Article |
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8AL 8BQ 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/robotics13080118 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2218-6581 |
| ExternalDocumentID | oai_doaj_org_article_39475a556497411f8aed28a3dbd24013 10_3390_robotics13080118 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ABJCF ABUWG ADBBV ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c332t-9b5f40ddc7c56592b3b46d99ebab28d1ada0a05a6af1e6b64b3ca8f506bd568a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001304652800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2218-6581 |
| IngestDate | Fri Oct 03 12:40:40 EDT 2025 Fri Jul 25 12:04:09 EDT 2025 Sat Nov 29 07:15:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c332t-9b5f40ddc7c56592b3b46d99ebab28d1ada0a05a6af1e6b64b3ca8f506bd568a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1047-8078 |
| OpenAccessLink | https://doaj.org/article/39475a556497411f8aed28a3dbd24013 |
| PQID | 3098177969 |
| PQPubID | 2032334 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_39475a556497411f8aed28a3dbd24013 proquest_journals_3098177969 crossref_primary_10_3390_robotics13080118 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Robotics (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Terziyan (ref_9) 2023; 217 Schwenkel (ref_7) 2020; 100 Blum (ref_46) 1997; 90 ref_13 ref_12 ref_11 ref_55 ref_54 ref_53 ref_52 Eiband (ref_25) 2024; 232 ref_51 Yin (ref_26) 2024; 74 ref_19 Chou (ref_40) 2020; Volume 14 Geib (ref_6) 2011; 59 Pane (ref_22) 2021; 6 Toner (ref_30) 2023; 35 Saveriano (ref_34) 2023; 42 Kong (ref_36) 2023; 20 Paszke (ref_28) 2019; 32 Steinmetz (ref_3) 2019; 4 Calinon (ref_17) 2016; 9 ref_23 ref_21 ref_20 Bruyninckx (ref_18) 1996; 12 Wang (ref_14) 2022; 7 ref_29 Karigiannis (ref_15) 2022; 33 Berenson (ref_43) 2011; 30 Stulp (ref_38) 2012; 28 Knuth (ref_42) 2021; Volume 17 Kroemer (ref_27) 2021; 22 ref_35 Pedersen (ref_5) 2016; 37 ref_33 ref_32 ref_39 Ijspeert (ref_16) 2013; 25 ref_47 ref_45 ref_44 ref_41 ref_1 Albore (ref_24) 2023; 160 ref_2 ref_49 ref_8 Recht (ref_31) 2019; 2 Pervez (ref_37) 2018; 11 ref_4 Paneru (ref_10) 2021; 132 Ude (ref_48) 2010; 26 |
| References_xml | – ident: ref_41 doi: 10.1109/ICRA.2017.7989466 – volume: 90 start-page: 281 year: 1997 ident: ref_46 article-title: Fast planning through planning graph analysis publication-title: Artif. Intell. doi: 10.1016/S0004-3702(96)00047-1 – volume: 26 start-page: 800 year: 2010 ident: ref_48 article-title: Task-specific generalization of discrete and periodic dynamic movement primitives publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2010.2065430 – ident: ref_49 – ident: ref_45 doi: 10.1109/ETFA.2015.7301471 – ident: ref_55 – volume: 232 start-page: 595 year: 2024 ident: ref_25 article-title: Unifying Skill-Based Programming and Programming by Demonstration through Ontologies publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2024.01.059 – ident: ref_44 doi: 10.1017/CBO9781139583923 – volume: 4 start-page: 3742 year: 2019 ident: ref_3 article-title: Intuitive Task-Level Programming by Demonstration Through Semantic Skill Recognition publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2928782 – volume: 100 start-page: 273 year: 2020 ident: ref_7 article-title: Optimizing Sequences of Probabilistic Manipulation Skills Learned from Demonstration publication-title: Proc. Mach. Learn. Res. – ident: ref_23 – ident: ref_47 doi: 10.1109/ICRA.2014.6907291 – volume: 217 start-page: 91 year: 2023 ident: ref_9 article-title: Encryption and Generation of Images for Privacy-Preserving Machine Learning in Smart Manufacturing publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.12.205 – volume: 74 start-page: 676 year: 2024 ident: ref_26 article-title: Enhancing Human-Guided Robotic Assembly: AR-assisted DT for Skill-Based and Low-Code Programming publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2024.04.016 – volume: 28 start-page: 1360 year: 2012 ident: ref_38 article-title: Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2012.2210294 – ident: ref_32 doi: 10.1007/978-94-007-7194-9 – ident: ref_35 doi: 10.1109/IROS.2012.6386006 – volume: 11 start-page: 61 year: 2018 ident: ref_37 article-title: Learning task-parameterized dynamic movement primitives using mixture of GMMs publication-title: Intell. Serv. Robot. doi: 10.1007/s11370-017-0235-8 – ident: ref_52 – volume: 22 start-page: 1 year: 2021 ident: ref_27 article-title: A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 6481 year: 2021 ident: ref_22 article-title: Autonomous Runtime Composition of Sensor-Based Skills Using Concurrent Task Planning publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3094498 – ident: ref_39 doi: 10.23919/ACC53348.2022.9867877 – ident: ref_51 doi: 10.1109/IROS55552.2023.10342397 – ident: ref_11 doi: 10.1109/ICRA46639.2022.9811735 – ident: ref_53 – volume: 25 start-page: 328 year: 2013 ident: ref_16 article-title: Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors publication-title: Neural Comput. doi: 10.1162/NECO_a_00393 – ident: ref_19 doi: 10.1109/MFI.2008.4648032 – volume: 9 start-page: 1 year: 2016 ident: ref_17 article-title: A tutorial on task-parameterized movement learning and retrieval publication-title: Intell. Serv. Robot. doi: 10.1007/s11370-015-0187-9 – ident: ref_21 doi: 10.1109/IROS45743.2020.9340985 – ident: ref_8 doi: 10.1109/IROS55552.2023.10342216 – volume: 12 start-page: 581 year: 1996 ident: ref_18 article-title: Specification of force-controlled actions in the “task frame formalism”—A synthesis publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.508440 – ident: ref_2 doi: 10.1145/2909824.3020227 – volume: 37 start-page: 282 year: 2016 ident: ref_5 article-title: Robot skills for manufacturing: From concept to industrial deployment publication-title: Robot. -Comput. -Integr. Manuf. doi: 10.1016/j.rcim.2015.04.002 – volume: 30 start-page: 1435 year: 2011 ident: ref_43 article-title: Task Space Regions: A framework for pose-constrained manipulation planning publication-title: Int. J. Robot. Res. doi: 10.1177/0278364910396389 – volume: 20 start-page: 396 year: 2023 ident: ref_36 article-title: Dynamic Movement Primitives Based Robot Skills Learning publication-title: Mach. Intell. Res. doi: 10.1007/s11633-022-1346-z – volume: 33 start-page: 909 year: 2022 ident: ref_15 article-title: Reinforcement Learning Enabled Self-Homing of Industrial Robotic Manipulators in Manufacturing publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2022.07.111 – volume: 42 start-page: 1133 year: 2023 ident: ref_34 article-title: Dynamic movement primitives in robotics: A tutorial survey publication-title: Int. J. Robot. Res. doi: 10.1177/02783649231201196 – ident: ref_50 – ident: ref_29 – ident: ref_33 – ident: ref_54 – volume: 7 start-page: 5544 year: 2022 ident: ref_14 article-title: Offline-Online Learning of Deformation Model for Cable Manipulation With Graph Neural Networks publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3158376 – ident: ref_4 doi: 10.1109/ICRA48891.2023.10161095 – volume: 2 start-page: 253 year: 2019 ident: ref_31 article-title: A Tour of Reinforcement Learning: The View from Continuous Control publication-title: Annu. Rev. Control. Robot. Auton. Syst. doi: 10.1146/annurev-control-053018-023825 – ident: ref_20 doi: 10.1109/IROS.2014.6942760 – ident: ref_12 doi: 10.1109/ICRA46639.2022.9812312 – volume: 32 start-page: 8026 year: 2019 ident: ref_28 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_1 doi: 10.1007/978-3-319-32552-1 – volume: 59 start-page: 740 year: 2011 ident: ref_6 article-title: Object–Action Complexes: Grounded abstractions of sensory–motor processes publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2011.05.009 – volume: Volume 14 start-page: 228 year: 2020 ident: ref_40 article-title: Learning Constraints from Demonstrations publication-title: Proceedings of the Algorithmic Foundations of Robotics XIII doi: 10.1007/978-3-030-44051-0_14 – volume: 132 start-page: 103940 year: 2021 ident: ref_10 article-title: Computer vision applications in construction: Current state, opportunities & challenges publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103940 – ident: ref_13 doi: 10.15607/RSS.2023.XIX.025 – volume: 35 start-page: 1019 year: 2023 ident: ref_30 article-title: Opportunities and challenges in applying reinforcement learning to robotic manipulation: An industrial case study publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2023.08.055 – volume: Volume 17 start-page: 18 year: 2021 ident: ref_42 article-title: Inferring Obstacles and Path Validity from Visibility-Constrained Demonstrations publication-title: Algorithmic Foundations of Robotics XIV doi: 10.1007/978-3-030-66723-8_2 – volume: 160 start-page: 104318 year: 2023 ident: ref_24 article-title: Skill-based design of dependable robotic architectures publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2022.104318 |
| SSID | ssj0000913861 |
| Score | 2.2636778 |
| Snippet | This paper explores the problem of automated robot program generation from limited historical data when neither accurate geometric environmental models nor... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 118 |
| SubjectTerms | automated programming Automation Data structures Datasets Deep learning Design End effectors Environment models Historical structures learning from demonstration (LfD) Libraries Manipulators Python Redundancy redundant manipulators Robot arms Robot dynamics Robots Sensors skill-based programming Skills task and motion planning workspace learning |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgECa-DnrwbVxf4eDFQ2OhlIIXsxo3Jhqz2ajx1kChxoNb3e4a_ffO9OEz8eKxLSSUD4ZvYPiGkH3hPEMeGzBpZSAUzjnAOjB5JrwBfqGqPGS3l8nVlbq70_1mw61swipbm1gZaldkuEd-GIVasSTRUh8_PQeYNQpPV5sUGtNklnHOcJxfJMHHHgtqXirJ6tPJCLz7w1FhC5Q_Bsut8M7lt9WoEu3_ZZOrhaa39N8mLpPFhmLSbj0mVsiUH66ShS_Cg2vE9Ae9I9ql_To6iw78pPS01wZqUWCytDsZF0BnvWtLPUJVat9oI8l6T_FqCj17RSsBTwP86bZsuU5uemfXp-dBk2whyKKIjwNt41yEzmVJFuNRq42skE5rb43lyjHjTGjC2EiTMw-4ChtlRuVxKK2LpTLRBpkZFkO_SSiQKiCOXuWAtkB9e2symXOoroTlOumQg7bT06daUyMFXwQBSn8C1CEniMpHOVTDrl4Uo_u0mVxppEUSmziWArwjxnJlvOPQJGcdR_-xQ3ZawNJmipbpJ1pbf3_eJvMcmEwd9bdDZsajid8lc9nL-KEc7VUj7h0MMeCA priority: 102 providerName: ProQuest |
| Title | PRF: A Program Reuse Framework for Automated Programming by Learning from Existing Robot Programs |
| URI | https://www.proquest.com/docview/3098177969 https://doaj.org/article/39475a556497411f8aed28a3dbd24013 |
| Volume | 13 |
| WOSCitedRecordID | wos001304652800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: K7- dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: M7S dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQMMCAOEU5Kg8sDFHj-IjNVlArEFBF5VBhiezYQQy0qAeCf89zDlRgYGGxlNhWrPfFz9-Tnz8jdMSsI57HBkQYETDp5xxgHeg8Y04Dv5DFPWT3V3GvJwcDlcxd9eVzwkp54NJwLapYzDXnggHzJSSX2tlIamqNjXxs4L0vsJ65YKrwwYpQKUi5L0khrm-NR2bkhY_BZ0t_2vLbOlTI9f_yxsUS011HaxU3xO1yTBtowQ030eqcYuAW0km_e4LbOCnTqnDfzSYOd-sMKwwUFLdn0xHwUGfrVi_QFZsPXGmpPmF_pgR33v30hqe-H3PddrKN7rqd27PzoLolIcgojaaBMjxnobVZnHG_R2qoYcIq5Yw2kbREWx3qkGuhc-IAEGZopmXOQ2EsF2DJHbQ4HA3dLsLAhoDxOZkDTMwL0xudiTyC7pKZSMUNdFzbLH0txTBSCCK8fdOf9m2gU2_Ur3Zexrp4AeCmFbjpX-A20EENSVrNrUlKQyVJHCuh9v7jG_toJQKiUib1HaDF6XjmDtFy9jZ9noybaOm000v6zeL3gvIyDpo-P_QGyoQ_Qn1ycZ08fALppteL |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ58K5YKOADHDhETWzHsZEQWqCrVrusVquCegt27FQc2JTNLtA_1d_YmTzKS-LWA8ckdhTbX8bf2ONvAJ5JHxLisVGinIqkpn8OxzqyZSGDRX6hmzxkHyfZdKqPjsxsA876szAUVtnbxMZQ-6qgNfJdERudZJlR5vXJ14iyRtHuap9Co4XFOJx-R5etfnXwDsf3OeejvcO3-1GXVSAqhOCryLi0lLH3RVaktKfohJPKGxOcdVz7xHob2zi1ypZJwAZIJwqryzRWzqdKW4HvvQJXpdAZafWPs-hiTYc0NrVK2t1QIUy8u6xcRXLLOFNoOuP52-zXJAn4aw5oJrbRrf-tS27DzY5Cs2GL-TuwERZ34cYvwor3wM7mo5dsyGZt9Bmbh3Ud2KgPRGPI1NlwvaqQrgffl_qCVZk7ZZ3k7DGjozds7wdZQbyaUyf3Zev78OFS2rgNm4tqER4AQ9KIxDjoEtEsSb_f2UKVHKtr6bjJBvCiH-T8pNUMydHXIkDkfwJiAG8IBRflSO27uVEtj_POeOTCyCy1aaoken9JUmobPMdP8s5z8o8HsNMDJO9MUJ3_RMfDfz9-Ctf3D99P8snBdPwItjiytjbCcQc2V8t1eAzXim-rz_XySYN2Bp8uG0vnvTZAZg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceKMuFPABDhyiTRzbsZEQWmgjqq1WqxWg3oIdOxWHbspmF-hf49cxk0d5Sdx64BjHjmL788w39ngG4KnwISEeGyXKqUhoWnM415GtShEs8gvd5iH7cJjNZvroyMy34PtwF4bcKgeZ2ApqX5e0Rz5OY6OTLDPKjKveLWK-l786_RxRBik6aR3SaXQQmYazr2i-NS8P9nCun3Ge77978zbqMwxEZZrydWScrETsfZmVks4XXeqE8sYEZx3XPrHexjaWVtkqCdgZ4dLS6krGynmptE3xu5fgMmphSWtsmkXn-zsUb1OrpDsZTVMTj1e1qyn0MmoNTfc9f9OEbcKAv_RBq-Tym__z8NyCGz21ZpNuLdyGrbC8A9d_Cbh4F-x8kb9gEzbvvNLYImyawPLBQY0hg2eTzbpGGh_8UOsEmzJ3xvpQtMeMruSw_W8kHfFpQQM-1G3uwfsL6eN92F7Wy7ADDMkkEuagK0S5oLj-zpaq4thcC8dNNoLnw4QXp10skQJtMAJH8Sc4RvCaEHFej6KAtwX16rjohUqRGpFJK6USaBUmSaVt8Bx_yTvPyW4ewe4AlqIXTU3xEykP_v36CVxFCBWHB7PpQ7jGkcx1jo-7sL1ebcIjuFJ-WX9qVo9b4DP4eNFQ-gFtI0kg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PRF%3A+A+Program+Reuse+Framework+for+Automated+Programming+by+Learning+from+Existing+Robot+Programs&rft.jtitle=Robotics+%28Basel%29&rft.au=Tyler+Toner&rft.au=Dawn+M.+Tilbury&rft.au=Kira+Barton&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=2218-6581&rft.volume=13&rft.issue=8&rft.spage=118&rft_id=info:doi/10.3390%2Frobotics13080118&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_39475a556497411f8aed28a3dbd24013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-6581&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-6581&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-6581&client=summon |