jsmetrics v0.2.0: a Python package for metrics and algorithms used to identify or characterise atmospheric jet streams
The underlying dynamics controlling jet streams are complex, but it is expected that they will have an observable response to changes in the larger climatic system. A growing divergence in regional surface warming trends across the planet, which has been both observed and projected since the start o...
Gespeichert in:
| Veröffentlicht in: | Geoscientific Model Development Jg. 17; H. 3; S. 1229 - 1247 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Katlenburg-Lindau
Copernicus GmbH
14.02.2024
Copernicus Publications |
| Schlagworte: | |
| ISSN: | 1991-9603, 1991-962X, 1991-959X, 1991-9603, 1991-962X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The underlying dynamics controlling jet streams are complex, but it is expected that they will have an observable response to changes in the larger climatic system. A growing divergence in regional surface warming trends across the planet, which has been both observed and projected since the start of the 20th century, has likely altered the thermodynamic relationships responsible for jet stream formation and control. Despite this, the exact movements and trends in the changes to the jet streams generally remain unclear and without consensus in the literature. The latest IPCC report highlighted that trends both within and between a variety of observational and modelling studies were inconsistent (Gulev et al., 2021; Lee et al., 2021). Trends in jet streams were associated with low to medium confidence, especially in the Northern Hemisphere. However, what is often overlooked in evaluating these trends is the confused message in the literature around how to first identify, and then characterise, the jet streams themselves. We classify the methods for characterising jet streams in the literature into three broad strategies: statistics that isolate individual values from the wind speed profile (jet statistics), methods for quantifying the sinuosity of the upper air (waviness metrics), and algorithms that identify a mask related to the coordinates of fast-flowing wind throughout the horizontal and/or vertical plane (jet core algorithms). While each approach can capture particular characteristics and changes, they are subject to the spatial and temporal specifications of their definition. There is therefore value in using them in combination to assess parametric and structural uncertainty and to carry out sensitivity analyses. Here, we describe jsmetrics version 0.2.0, a new open-source Python 3 module with standardised versions of 17 metrics that have been used for jet stream characterisation. We demonstrate the application of this library with two case studies derived from ERA5 climate reanalysis data. |
|---|---|
| AbstractList | The underlying dynamics controlling jet streams are complex, but it is expected that they will have an observable response to changes in the larger climatic system. A growing divergence in regional surface warming trends across the planet, which has been both observed and projected since the start of the 20th century, has likely altered the thermodynamic relationships responsible for jet stream formation and control. Despite this, the exact movements and trends in the changes to the jet streams generally remain unclear and without consensus in the literature. The latest IPCC report highlighted that trends both within and between a variety of observational and modelling studies were inconsistent (Gulev et al., 2021; Lee et al., 2021). Trends in jet streams were associated with low to medium confidence, especially in the Northern Hemisphere. However, what is often overlooked in evaluating these trends is the confused message in the literature around how to first identify, and then characterise, the jet streams themselves. We classify the methods for characterising jet streams in the literature into three broad strategies: statistics that isolate individual values from the wind speed profile (jet statistics), methods for quantifying the sinuosity of the upper air (waviness metrics), and algorithms that identify a mask related to the coordinates of fast-flowing wind throughout the horizontal and/or vertical plane (jet core algorithms). While each approach can capture particular characteristics and changes, they are subject to the spatial and temporal specifications of their definition. There is therefore value in using them in combination to assess parametric and structural uncertainty and to carry out sensitivity analyses. Here, we describe jsmetrics version 0.2.0, a new open-source Python 3 module with standardised versions of 17 metrics that have been used for jet stream characterisation. We demonstrate the application of this library with two case studies derived from ERA5 climate reanalysis data. The underlying dynamics controlling jet streams are complex, but it is expected that they will have an observable response to changes in the larger climatic system. A growing divergence in regional surface warming trends across the planet, which has been both observed and projected since the start of the 20th century, has likely altered the thermodynamic relationships responsible for jet stream formation and control. Despite this, the exact movements and trends in the changes to the jet streams generally remain unclear and without consensus in the literature. The latest IPCC report highlighted that trends both within and between a variety of observational and modelling studies were inconsistent ( Gulev et al. , 2021 ; Lee et al. , 2021 ) . Trends in jet streams were associated with low to medium confidence, especially in the Northern Hemisphere. However, what is often overlooked in evaluating these trends is the confused message in the literature around how to first identify, and then characterise, the jet streams themselves. We classify the methods for characterising jet streams in the literature into three broad strategies: statistics that isolate individual values from the wind speed profile (jet statistics), methods for quantifying the sinuosity of the upper air (waviness metrics), and algorithms that identify a mask related to the coordinates of fast-flowing wind throughout the horizontal and/or vertical plane (jet core algorithms). While each approach can capture particular characteristics and changes, they are subject to the spatial and temporal specifications of their definition. There is therefore value in using them in combination to assess parametric and structural uncertainty and to carry out sensitivity analyses. Here, we describe jsmetrics version 0.2.0, a new open-source Python 3 module with standardised versions of 17 metrics that have been used for jet stream characterisation. We demonstrate the application of this library with two case studies derived from ERA5 climate reanalysis data. The underlying dynamics controlling jet streams are complex, but it is expected that they will have an observable response to changes in the larger climatic system. A growing divergence in regional surface warming trends across the planet, which has been both observed and projected since the start of the 20th century, has likely altered the thermodynamic relationships responsible for jet stream formation and control. Despite this, the exact movements and trends in the changes to the jet streams generally remain unclear and without consensus in the literature. The latest IPCC report highlighted that trends both within and between a variety of observational and modelling studies were inconsistent . Trends in jet streams were associated with low to medium confidence, especially in the Northern Hemisphere.However, what is often overlooked in evaluating these trends is the confused message in the literature around how to first identify, and then characterise, the jet streams themselves. We classify the methods for characterising jet streams in the literature into three broad strategies: statistics that isolate individual values from the wind speed profile (jet statistics), methods for quantifying the sinuosity of the upper air (waviness metrics), and algorithms that identify a mask related to the coordinates of fast-flowing wind throughout the horizontal and/or vertical plane (jet core algorithms). While each approach can capture particular characteristics and changes, they are subject to the spatial and temporal specifications of their definition. There is therefore value in using them in combination to assess parametric and structural uncertainty and to carry out sensitivity analyses. Here, we describe jsmetrics version 0.2.0, a new open-source Python 3 module with standardised versions of 17 metrics that have been used for jet stream characterisation. We demonstrate the application of this library with two case studies derived from ERA5 climate reanalysis data. |
| Author | Edwards, Tamsin Brierley, Chris Keel, Tom |
| Author_xml | – sequence: 1 givenname: Tom orcidid: 0000-0001-9193-5271 surname: Keel fullname: Keel, Tom – sequence: 2 givenname: Chris orcidid: 0000-0002-9195-6731 surname: Brierley fullname: Brierley, Chris – sequence: 3 givenname: Tamsin orcidid: 0000-0002-4760-4704 surname: Edwards fullname: Edwards, Tamsin |
| BookMark | eNpNkUtLAzEURoMoaNW9y4DrqXlMkok7Kb5A0IWuQ5rctDN2JjVJhf57p1bF1X1w-O6FM0GHQxwAoQtKpoLq-mrR-4qqijKmK0ZYfYBOqNa00pLww3_9MZrk3BEitZLqBH12uYeSWpfxJ5myKbnGFr9syzIOeG3du10ADjHhX8gOHtvVIqa2LPuMNxk8LhG3HobShi0eUbe0yboCqc2AbeljXi_HweEOCs4lge3zGToKdpXh_Keeore729fZQ_X0fP84u3mqHOesVKqhVnqtnOQQlOZKz0nt5p5KDSpwqnigwTlKwHMhpJA1qTU0witWE6U9P0WP-1wfbWfWqe1t2ppoW_O9iGlhbCqtW4Hx2kkhggIOpOYqzOcqAG1U4xshQ4Ax63KftU7xYwO5mC5u0jC-b5hmQnMuazlSZE-5FHNOEP6uUmJ2psxoylBldqbMzhT_AosMiR0 |
| Cites_doi | 10.1002/jgrd.50305 10.1029/2020GL090441 10.1175/JCLI-D-16-0340.1 10.1016/B978-0-12-821575-3.00015-3 10.1029/2020JD032735 10.1175/JCLI-D-17-0323.1 10.1175/JCLI-D-13-00243.1 10.1175/JCLI-D-16-0565.1 10.1126/science.abi9167 10.1007/s00382-022-06185-5 10.1007/s00382-019-05084-6 10.1029/2022GL100523 10.1175/JCLI-D-17-0299.1 10.1016/j.wace.2022.100476 10.1002/qj.171 10.5194/esd-8-75-2017 10.1126/sciadv.abn3112 10.1017/9781009157896.006 10.1002/qj.3803 10.1029/2021JD035057 10.1175/JCLI-D-23-0080.1 10.1175/JCLI-D-16-0692.1 10.1109/TVCG.2017.2743989 10.1080/16000870.2021.1886419 10.1002/2015JD023854 10.1029/2020JD033668 10.1007/s13351-011-0002-2 10.1175/JAS-D-15-0194.1 10.1002/2013GL058466 10.1017/9781009157896.004 10.1175/1520-0469(1975)032<1494:MTBQGE>2.0.CO;2 10.5194/acp-11-6115-2011 10.1175/JCLI-D-12-00536.1 10.1175/JCLI-D-14-00589.1 10.1175/JCLI-D-18-0168.1 10.1175/JCLI-D-19-0715.1 10.1002/essoar.10505547.1 10.1007/s40641-018-0108-z 10.1007/s00382-005-0006-7 10.1175/JAS-D-13-0125.1 10.1002/joc.5693 10.1175/JCLI-D-17-0303.1 10.1038/nclimate2271 10.1002/wea.2981 10.1126/sciadv.aay2880 10.1002/grl.50411 10.1175/JCLI-D-17-0320.1 10.1002/2015GL066959 10.5194/gmd-9-1937-2016 10.1002/qj.3155 10.1175/MWR-D-16-0467.1 10.1002/grl.50174 10.1029/2021JD034876 10.1002/2017GL076096 10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2 10.1007/s00704-013-0994-x 10.1175/JCLI-D-16-0762.1 10.1175/JCLI-D-11-00145.1 10.1029/2005JD006497 10.1175/2008JCLI2625.1 10.1002/grl.50880 10.1029/2008GL033614 10.1002/joc.1255 10.1175/MWR3343.1 10.1175/JCLI-D-13-00531.1 10.1002/2016GL070309 10.1029/2004GL022039 10.1017/CBO9781107775541.007 10.1088/1748-9326/10/1/014005 10.1038/s41586-019-1465-z 10.5194/gmd-15-1079-2022 10.1175/BAMS-D-17-0006.1 10.1007/s00382-016-3102-y 10.5194/gmd-5-457-2012 10.1002/qj.625 10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2 10.1175/BAMS-D-11-00094.1 10.1007/s00382-015-2560-y 10.1029/2019GL083345 10.1002/joc.1750 10.5194/acp-17-11541-2017 10.1017/9781107588431 10.1038/s41558-019-0551-4 10.1038/s41558-019-0662-y |
| ContentType | Journal Article |
| Copyright | 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.5194/gmd-17-1229-2024 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central - New (Subscription) Continental Europe Database ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Statistics |
| EISSN | 1991-9603 1991-962X |
| EndPage | 1247 |
| ExternalDocumentID | oai_doaj_org_article_d9c655f7e3e0437fbb7fe1878d856ffe 10_5194_gmd_17_1229_2024 |
| GroupedDBID | 5VS 8R4 8R5 AAFWJ AAYXX ABDBF ACUHS ADBBV AENEX AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION ESX GROUPED_DOAJ H13 IAO IEA IEP ISR ITC KQ8 OK1 P2P Q2X RKB RNS TR2 TUS 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFFHD AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M LK5 M7R M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS |
| ID | FETCH-LOGICAL-c332t-781a6d97c63ef79379b04cbd169e7f3173f1fcc10ed3556564049e85d724079d3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001190491600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1991-9603 1991-962X 1991-959X |
| IngestDate | Fri Oct 03 12:21:11 EDT 2025 Mon Nov 17 23:20:43 EST 2025 Sat Nov 29 05:38:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c332t-781a6d97c63ef79379b04cbd169e7f3173f1fcc10ed3556564049e85d724079d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9195-6731 0000-0002-4760-4704 0000-0001-9193-5271 |
| OpenAccessLink | https://www.proquest.com/docview/2925933646?pq-origsite=%requestingapplication% |
| PQID | 2925933646 |
| PQPubID | 105726 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d9c655f7e3e0437fbb7fe1878d856ffe proquest_journals_2925933646 crossref_primary_10_5194_gmd_17_1229_2024 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-14 |
| PublicationDateYYYYMMDD | 2024-02-14 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Geoscientific Model Development |
| PublicationYear | 2024 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref92 ref51 ref50 ref91 ref90 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref37 – ident: ref1 – ident: ref71 doi: 10.1002/jgrd.50305 – ident: ref18 doi: 10.1029/2020GL090441 – ident: ref70 doi: 10.1175/JCLI-D-16-0340.1 – ident: ref83 doi: 10.1016/B978-0-12-821575-3.00015-3 – ident: ref45 doi: 10.1029/2020JD032735 – ident: ref17 doi: 10.1175/JCLI-D-17-0323.1 – ident: ref43 – ident: ref61 doi: 10.1175/JCLI-D-13-00243.1 – ident: ref21 doi: 10.1175/JCLI-D-16-0565.1 – ident: ref23 doi: 10.1126/science.abi9167 – ident: ref30 doi: 10.1007/s00382-022-06185-5 – ident: ref57 doi: 10.1007/s00382-019-05084-6 – ident: ref78 doi: 10.1029/2022GL100523 – ident: ref8 doi: 10.1175/JCLI-D-17-0299.1 – ident: ref39 doi: 10.1016/j.wace.2022.100476 – ident: ref86 doi: 10.1002/qj.171 – ident: ref69 doi: 10.5194/esd-8-75-2017 – ident: ref11 doi: 10.1126/sciadv.abn3112 – ident: ref49 doi: 10.1017/9781009157896.006 – ident: ref36 doi: 10.1002/qj.3803 – ident: ref72 doi: 10.1029/2021JD035057 – ident: ref82 doi: 10.1175/JCLI-D-23-0080.1 – ident: ref65 doi: 10.1175/JCLI-D-16-0692.1 – ident: ref44 doi: 10.1109/TVCG.2017.2743989 – ident: ref58 doi: 10.1080/16000870.2021.1886419 – ident: ref68 doi: 10.1002/2015JD023854 – ident: ref64 doi: 10.1029/2020JD033668 – ident: ref73 doi: 10.1007/s13351-011-0002-2 – ident: ref40 doi: 10.1175/JAS-D-15-0194.1 – ident: ref28 doi: 10.1002/2013GL058466 – ident: ref29 doi: 10.1017/9781009157896.004 – ident: ref34 doi: 10.1175/1520-0469(1975)032<1494:MTBQGE>2.0.CO;2 – ident: ref2 – ident: ref60 doi: 10.5194/acp-11-6115-2011 – ident: ref6 doi: 10.1175/JCLI-D-12-00536.1 – ident: ref7 doi: 10.1175/JCLI-D-14-00589.1 – ident: ref79 doi: 10.1175/JCLI-D-18-0168.1 – ident: ref80 doi: 10.1175/JCLI-D-19-0715.1 – ident: ref63 doi: 10.1002/essoar.10505547.1 – ident: ref91 doi: 10.1007/s40641-018-0108-z – ident: ref27 doi: 10.1007/s00382-005-0006-7 – ident: ref48 doi: 10.1175/JAS-D-13-0125.1 – ident: ref66 doi: 10.1002/joc.5693 – ident: ref59 doi: 10.1175/JCLI-D-17-0303.1 – ident: ref77 doi: 10.1038/nclimate2271 – ident: ref31 doi: 10.1002/wea.2981 – ident: ref12 doi: 10.1126/sciadv.aay2880 – ident: ref5 doi: 10.1002/grl.50411 – ident: ref15 doi: 10.1175/JCLI-D-17-0320.1 – ident: ref19 doi: 10.1002/2015GL066959 – ident: ref24 doi: 10.5194/gmd-9-1937-2016 – ident: ref56 doi: 10.1002/qj.3155 – ident: ref81 doi: 10.1175/MWR-D-16-0467.1 – ident: ref76 doi: 10.1002/grl.50174 – ident: ref54 doi: 10.1029/2021JD034876 – ident: ref92 doi: 10.1002/2017GL076096 – ident: ref35 doi: 10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2 – ident: ref47 doi: 10.1007/s00704-013-0994-x – ident: ref89 doi: 10.1175/JCLI-D-16-0762.1 – ident: ref41 – ident: ref52 doi: 10.1175/JCLI-D-11-00145.1 – ident: ref85 doi: 10.1029/2005JD006497 – ident: ref75 doi: 10.1175/2008JCLI2625.1 – ident: ref4 doi: 10.1002/grl.50880 – ident: ref3 doi: 10.1029/2008GL033614 – ident: ref46 doi: 10.1002/joc.1255 – ident: ref10 doi: 10.1175/MWR3343.1 – ident: ref32 doi: 10.1175/JCLI-D-13-00531.1 – ident: ref55 – ident: ref16 doi: 10.1002/2016GL070309 – ident: ref84 doi: 10.1029/2004GL022039 – ident: ref33 doi: 10.1017/CBO9781107775541.007 – ident: ref38 – ident: ref26 doi: 10.1088/1748-9326/10/1/014005 – ident: ref51 doi: 10.1038/s41586-019-1465-z – ident: ref14 doi: 10.5194/gmd-15-1079-2022 – ident: ref25 doi: 10.1175/BAMS-D-17-0006.1 – ident: ref20 doi: 10.1007/s00382-016-3102-y – ident: ref53 doi: 10.5194/gmd-5-457-2012 – ident: ref90 doi: 10.1002/qj.625 – ident: ref42 – ident: ref50 doi: 10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2 – ident: ref87 doi: 10.1175/BAMS-D-11-00094.1 – ident: ref74 doi: 10.1007/s00382-015-2560-y – ident: ref67 doi: 10.1029/2019GL083345 – ident: ref9 doi: 10.1002/joc.1750 – ident: ref62 doi: 10.5194/acp-17-11541-2017 – ident: ref88 doi: 10.1017/9781107588431 – ident: ref13 doi: 10.1038/s41558-019-0551-4 – ident: ref22 doi: 10.1038/s41558-019-0662-y |
| SSID | ssj0069767 ssj0069768 |
| Score | 2.357115 |
| Snippet | The underlying dynamics controlling jet streams are complex, but it is expected that they will have an observable response to changes in the larger climatic... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 1229 |
| SubjectTerms | Algorithms Atmospheric boundary layer Climate change Climate system Intergovernmental Panel on Climate Change Jet stream Jet streams (meteorology) Northern Hemisphere Rivers Sensitivity analysis Sinuosity Statistical methods Statistics Surface temperature Trends Waviness Wind shear Wind speed |
| SummonAdditionalLinks | – databaseName: Copernicus Publications - Open Access dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JbxMxFLZQBRKXUjY1tCAfuHCYdryMl94KInBAVQ60ys3yeGnTMgnKTCPl3_PeTEKLOHAo19GzbPmz36Lx-z5C3icRbc4iFDpKXcgoUA2Qm8JwHyTPdR363qqLb_rszEyndnJP6gvfhA30wMPGHUcbVFVlnURCGh4YrXNiRptoKpVzwr51uNVYp6OG2-CDFQTZXlYF3_XYyk6HH5SQrcjjyyYW4JkZ5xaOCJd_BKSet_8vt9zHmvGzB6xyj-xuEkx6Ogx5Th6l-Qvy5Esv4Lt-SVbXbYMiWqGlq_KIH5Un1NPJGhkEKJTPN-BeKOSxdGvk55H6H5eL5ay7alp626ZIuwWd9f29eU3BNNxxPifqu2bRIlXBLNDr1FHsRfFN-4qcjz9___S12GgvFEEI3hXaMK-i1UGJlJFDz9alDHVkyiadIekQmeUQWJkAXkwKJZQayVRRY4loo3hNduaLedonlAXjs-BVVhnZ2ZDgLUdroqjLGMrKj8iHLQDu50Cx4aA0QbAcgOWYdgiWQ7BG5CPu_W87JMfuPwAYbgOG-xcYI3K4xddtbmzruIVCUAgl1Zv_MccBeYrrxffdTB6SnW55m96Sx2HVzdrlu_6w_gLFae1E priority: 102 providerName: Copernicus Gesellschaft – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQKlIvFS2tukArH7hwCMSP-MENqlIOCHGg1d4sxw-6lOyiTVhp_z0zyW5b1AOXXqOJYn1jz3yjeL4h5CCJaHMWodBR6kJGgdMAuSkM90HyXNeh7636camvrsx4bK__GvWFd8IGeeABuONog6qqrJNIKMMDb-ucmNEmmkrlnDD6AutZF1NDDFaQZPuxKnivx1Z2PPygBLYij2-bWEBkZpxb2CJcPktIvW7_P2G5zzXn2-TNiiTS02Fxb8lGmr4jW9_6IbzLHbK4axschBVauiiP-FF5Qj29XqIKAIUS-BeECApclK6N_DRSf387m0-6n01LH9sUaTejk75HNy8pmIY_us2J-q6ZtSg3MAn0LnUU-0l8074n38-_3ny5KFbzE4ogBO8KbZhX0eqgRMqog2frUoY6MmWTzkAcRGY5BFYmcBESOwnlQjJV1Fjm2Sg-kM3pbJo-EsqC8VnwKquMCmso0pajNVHUZQxl5UfkcA2iexhkMhyUFwi4A8Ad0w4Bdwj4iJwhyr_tUOC6fwBudyu3u5fcPiL7ax-51alrHbdQzAmhpNr9H9_YI69xvXhHm8l9stnNH9Mn8iosukk7_9xvuCcy1tqE priority: 102 providerName: Directory of Open Access Journals |
| Title | jsmetrics v0.2.0: a Python package for metrics and algorithms used to identify or characterise atmospheric jet streams |
| URI | https://www.proquest.com/docview/2925933646 https://doaj.org/article/d9c655f7e3e0437fbb7fe1878d856ffe |
| Volume | 17 |
| WOSCitedRecordID | wos001190491600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications - Open Access customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: RKB dateStart: 20080101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BFMQW dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: PCBAR dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgC1IvPAoVC2XlAxcOaRPb8YMLYlELCFhF5aHlZDl-LC1kUzbpSvvv8WQTCkLiwtHOSLH0jccz9sw3CD3x1KkQqE2EYyJhjkI3QCITSYxlJJSl7WqrPr8Ts5mcz1XRX7g1fVrlYBM7Q-1qC3fkR0RFR51Szvjzix8JdI2C19W-hcZ1tANMZWyEdqbHs-J0sMU8Hrbi90FXGQfJPoqT-fbVMrow7GhRuSSa64wQFfWGsD9OqY7M_y9b3R1AJ7f_d-l30K3e9cQvtrpyF13zyz1081XX2nezh3bB79zSNt9D6_Omgl5btsHr9JAcps-wwcUGiAZwjLK_RSuEo7uLByGzdNh8X8S_tl-rBl823uG2xmddGXDY4Chqr6ihPTZtVTfAaHBm8blvMZSsmKq5jz6dHH98-TrpWzQkllLSJkJmhjslLKc-ANWeKlNmS5dx5UWIvgkNWbA2S33UAvAdWYxIvMydgEhSObqPRst66R8gnFlpAiV54AFI3IAHLjglHS1TZ9PcjNHTARJ9sWXi0DGCAfh0hE9nQgN8GuAboylg9ksOOLS7iXq10P2W1E5ZnudBeOqB4CnqpQg-k0I6mfMQ_BgdDHDqfmM3-grLh__-_AjtwkogwTtjB2jUri79Y3TDriOSq0mvp5PuCmACCacf4lzx5n3xJY5O305_AjPy9Jk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLYheeBQQCwV8ACQOaRM78QOJAwWWVt2uilRgbybxY2lhH2zSRfun-I14sgkFIXHrgWMSK7HszzOf45lvAB47ZpX3zETCpiJKLcNqgFRGkuYmpb4oTJ1b9aEvBgM5HKqjNfjR5sJgWGVrE2tDbacG_5HvUBWIOmM85U0E5YFbfg_7s_LF_uswmU8o7b05frUXNSUEIsMYrSIhk5xbJQxnzqMUnCri1BQ24coJH3wn84k3Jold6CVymzQwZiczK3CnoywL7306-xZhlSo8zW1KdlyCdclDbzqwvts7fPextf08OHfx-0WdiYfBRYrT4eqUNFCmdGc0tlFwDwmlKuCUpn94xbp4wF--oXZ4vev_21DdgGsNtSYvV2vhJqy5ySZceVuXLl5uwgby6pUs9S1YnJZjrCVmSrKIt-l2_Jzk5GiJQgpklpsvwcqSQOdJ2yifWJJ_HYWvVp_HJTkrnSXVlJzUac5-SUJTcy597UhejaclKjacGHLqKoIpOfm4vA3vL2RQ7kBnMp24u0ASI3PPaOa5R5E61LnzVknLitiaOMu78KyFgJ6tlEZ02KEhXHSAi06ERrhohEsXdhEjv9qhRnh9Yzof6cbkaKsMzzIvHHMoYBXWnfAukUJamXHvXRe2WvjoxnCV-hw79_79-BFc3Ts-7Ov-_uDgPmxgrzCYPUm3oFPNz9wDuGwWYVbnD5s1QuDTRcPvJy4kStQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLaBeeBQQCwV8gAOHdBM78QMJoT5YqFqtVgjQ3kzix9LCPtiki_av8evwZBMKQuLWA8ckVhTbn2c-xzPfADx1zCrvmYmETUWUWobVAKmMJM1NSn1RmDq36uOJGAzkaKSGG_CjzYXBsMrWJtaG2s4M_iPvURWIOmM85T3fhEUMD_uv5t8irCCFJ61tOY01RI7d6nvYvpUvjw7DXD-jtP_6_cHbqKkwEBnGaBUJmeTcKmE4cx6V4lQRp6awCVdO-OBamU-8MUnsQieQ-qSBUDuZWYEbIWVZeO8V2JRcxLQDm8OD_b13rR_gwdGL3y_qrDwMNFKcjtYnpoE-pb3xxEbBVSSUqoBZmv7hIetCAn_5idr59W_-z8N2C240lJvsrdfIbdhw02249qYuabzahi3k22u56juwPCsnWGPMlGQZ79Ld-AXJyXCFAgtknpsvwfqSQPNJ2yifWpJ_HYdeVp8nJTkvnSXVjJzW6c9-RUJTcyGJ7UheTWYlKjmcGnLmKoKpOvmkvAsfLmUE7kFnOpu6-0ASI3PPaOa5R_E61L_zVknLitiaOMu78LyFg56vFUh02LkhdHSAjk6ERuhohE4X9hEvv9qhdnh9Y7YY68YUaasMzzIvHHMobBXWo_AukUJamXHvXRd2WijpxqCV-gJHD_79-AlcDwDTJ0eD44ewhR-FMe5JugOdanHuHsFVswyTunjcLBcCny4baj8BKlBTYg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=jsmetrics+v0.2.0%3A+a+Python+package+for+metrics+and+algorithms+used+to+identify+or+characterise+atmospheric+jet+streams&rft.jtitle=Geoscientific+model+development&rft.au=Keel%2C+Tom&rft.au=Brierley%2C+Chris&rft.au=Edwards%2C+Tamsin&rft.date=2024-02-14&rft.issn=1991-9603&rft.eissn=1991-9603&rft.volume=17&rft.issue=3&rft.spage=1229&rft.epage=1247&rft_id=info:doi/10.5194%2Fgmd-17-1229-2024&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_gmd_17_1229_2024 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon |