jsmetrics v0.2.0: a Python package for metrics and algorithms used to identify or characterise atmospheric jet streams

The underlying dynamics controlling jet streams are complex, but it is expected that they will have an observable response to changes in the larger climatic system. A growing divergence in regional surface warming trends across the planet, which has been both observed and projected since the start o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoscientific Model Development Jg. 17; H. 3; S. 1229 - 1247
Hauptverfasser: Keel, Tom, Brierley, Chris, Edwards, Tamsin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 14.02.2024
Copernicus Publications
Schlagworte:
ISSN:1991-9603, 1991-962X, 1991-959X, 1991-9603, 1991-962X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The underlying dynamics controlling jet streams are complex, but it is expected that they will have an observable response to changes in the larger climatic system. A growing divergence in regional surface warming trends across the planet, which has been both observed and projected since the start of the 20th century, has likely altered the thermodynamic relationships responsible for jet stream formation and control. Despite this, the exact movements and trends in the changes to the jet streams generally remain unclear and without consensus in the literature. The latest IPCC report highlighted that trends both within and between a variety of observational and modelling studies were inconsistent (Gulev et al., 2021; Lee et al., 2021). Trends in jet streams were associated with low to medium confidence, especially in the Northern Hemisphere. However, what is often overlooked in evaluating these trends is the confused message in the literature around how to first identify, and then characterise, the jet streams themselves. We classify the methods for characterising jet streams in the literature into three broad strategies: statistics that isolate individual values from the wind speed profile (jet statistics), methods for quantifying the sinuosity of the upper air (waviness metrics), and algorithms that identify a mask related to the coordinates of fast-flowing wind throughout the horizontal and/or vertical plane (jet core algorithms). While each approach can capture particular characteristics and changes, they are subject to the spatial and temporal specifications of their definition. There is therefore value in using them in combination to assess parametric and structural uncertainty and to carry out sensitivity analyses. Here, we describe jsmetrics version 0.2.0, a new open-source Python 3 module with standardised versions of 17 metrics that have been used for jet stream characterisation. We demonstrate the application of this library with two case studies derived from ERA5 climate reanalysis data.
AbstractList The underlying dynamics controlling jet streams are complex, but it is expected that they will have an observable response to changes in the larger climatic system. A growing divergence in regional surface warming trends across the planet, which has been both observed and projected since the start of the 20th century, has likely altered the thermodynamic relationships responsible for jet stream formation and control. Despite this, the exact movements and trends in the changes to the jet streams generally remain unclear and without consensus in the literature. The latest IPCC report highlighted that trends both within and between a variety of observational and modelling studies were inconsistent (Gulev et al., 2021; Lee et al., 2021). Trends in jet streams were associated with low to medium confidence, especially in the Northern Hemisphere. However, what is often overlooked in evaluating these trends is the confused message in the literature around how to first identify, and then characterise, the jet streams themselves. We classify the methods for characterising jet streams in the literature into three broad strategies: statistics that isolate individual values from the wind speed profile (jet statistics), methods for quantifying the sinuosity of the upper air (waviness metrics), and algorithms that identify a mask related to the coordinates of fast-flowing wind throughout the horizontal and/or vertical plane (jet core algorithms). While each approach can capture particular characteristics and changes, they are subject to the spatial and temporal specifications of their definition. There is therefore value in using them in combination to assess parametric and structural uncertainty and to carry out sensitivity analyses. Here, we describe jsmetrics version 0.2.0, a new open-source Python 3 module with standardised versions of 17 metrics that have been used for jet stream characterisation. We demonstrate the application of this library with two case studies derived from ERA5 climate reanalysis data.
The underlying dynamics controlling jet streams are complex, but it is expected that they will have an observable response to changes in the larger climatic system. A growing divergence in regional surface warming trends across the planet, which has been both observed and projected since the start of the 20th century, has likely altered the thermodynamic relationships responsible for jet stream formation and control. Despite this, the exact movements and trends in the changes to the jet streams generally remain unclear and without consensus in the literature. The latest IPCC report highlighted that trends both within and between a variety of observational and modelling studies were inconsistent ( Gulev et al. ,  2021 ; Lee et al. ,  2021 ) . Trends in jet streams were associated with low to medium confidence, especially in the Northern Hemisphere. However, what is often overlooked in evaluating these trends is the confused message in the literature around how to first identify, and then characterise, the jet streams themselves. We classify the methods for characterising jet streams in the literature into three broad strategies: statistics that isolate individual values from the wind speed profile (jet statistics), methods for quantifying the sinuosity of the upper air (waviness metrics), and algorithms that identify a mask related to the coordinates of fast-flowing wind throughout the horizontal and/or vertical plane (jet core algorithms). While each approach can capture particular characteristics and changes, they are subject to the spatial and temporal specifications of their definition. There is therefore value in using them in combination to assess parametric and structural uncertainty and to carry out sensitivity analyses. Here, we describe jsmetrics version 0.2.0, a new open-source Python 3 module with standardised versions of 17 metrics that have been used for jet stream characterisation. We demonstrate the application of this library with two case studies derived from ERA5 climate reanalysis data.
The underlying dynamics controlling jet streams are complex, but it is expected that they will have an observable response to changes in the larger climatic system. A growing divergence in regional surface warming trends across the planet, which has been both observed and projected since the start of the 20th century, has likely altered the thermodynamic relationships responsible for jet stream formation and control. Despite this, the exact movements and trends in the changes to the jet streams generally remain unclear and without consensus in the literature. The latest IPCC report highlighted that trends both within and between a variety of observational and modelling studies were inconsistent . Trends in jet streams were associated with low to medium confidence, especially in the Northern Hemisphere.However, what is often overlooked in evaluating these trends is the confused message in the literature around how to first identify, and then characterise, the jet streams themselves. We classify the methods for characterising jet streams in the literature into three broad strategies: statistics that isolate individual values from the wind speed profile (jet statistics), methods for quantifying the sinuosity of the upper air (waviness metrics), and algorithms that identify a mask related to the coordinates of fast-flowing wind throughout the horizontal and/or vertical plane (jet core algorithms). While each approach can capture particular characteristics and changes, they are subject to the spatial and temporal specifications of their definition. There is therefore value in using them in combination to assess parametric and structural uncertainty and to carry out sensitivity analyses. Here, we describe jsmetrics version 0.2.0, a new open-source Python 3 module with standardised versions of 17 metrics that have been used for jet stream characterisation. We demonstrate the application of this library with two case studies derived from ERA5 climate reanalysis data.
Author Edwards, Tamsin
Brierley, Chris
Keel, Tom
Author_xml – sequence: 1
  givenname: Tom
  orcidid: 0000-0001-9193-5271
  surname: Keel
  fullname: Keel, Tom
– sequence: 2
  givenname: Chris
  orcidid: 0000-0002-9195-6731
  surname: Brierley
  fullname: Brierley, Chris
– sequence: 3
  givenname: Tamsin
  orcidid: 0000-0002-4760-4704
  surname: Edwards
  fullname: Edwards, Tamsin
BookMark eNpNkUtLAzEURoMoaNW9y4DrqXlMkok7Kb5A0IWuQ5rctDN2JjVJhf57p1bF1X1w-O6FM0GHQxwAoQtKpoLq-mrR-4qqijKmK0ZYfYBOqNa00pLww3_9MZrk3BEitZLqBH12uYeSWpfxJ5myKbnGFr9syzIOeG3du10ADjHhX8gOHtvVIqa2LPuMNxk8LhG3HobShi0eUbe0yboCqc2AbeljXi_HweEOCs4lge3zGToKdpXh_Keeore729fZQ_X0fP84u3mqHOesVKqhVnqtnOQQlOZKz0nt5p5KDSpwqnigwTlKwHMhpJA1qTU0witWE6U9P0WP-1wfbWfWqe1t2ppoW_O9iGlhbCqtW4Hx2kkhggIOpOYqzOcqAG1U4xshQ4Ax63KftU7xYwO5mC5u0jC-b5hmQnMuazlSZE-5FHNOEP6uUmJ2psxoylBldqbMzhT_AosMiR0
Cites_doi 10.1002/jgrd.50305
10.1029/2020GL090441
10.1175/JCLI-D-16-0340.1
10.1016/B978-0-12-821575-3.00015-3
10.1029/2020JD032735
10.1175/JCLI-D-17-0323.1
10.1175/JCLI-D-13-00243.1
10.1175/JCLI-D-16-0565.1
10.1126/science.abi9167
10.1007/s00382-022-06185-5
10.1007/s00382-019-05084-6
10.1029/2022GL100523
10.1175/JCLI-D-17-0299.1
10.1016/j.wace.2022.100476
10.1002/qj.171
10.5194/esd-8-75-2017
10.1126/sciadv.abn3112
10.1017/9781009157896.006
10.1002/qj.3803
10.1029/2021JD035057
10.1175/JCLI-D-23-0080.1
10.1175/JCLI-D-16-0692.1
10.1109/TVCG.2017.2743989
10.1080/16000870.2021.1886419
10.1002/2015JD023854
10.1029/2020JD033668
10.1007/s13351-011-0002-2
10.1175/JAS-D-15-0194.1
10.1002/2013GL058466
10.1017/9781009157896.004
10.1175/1520-0469(1975)032<1494:MTBQGE>2.0.CO;2
10.5194/acp-11-6115-2011
10.1175/JCLI-D-12-00536.1
10.1175/JCLI-D-14-00589.1
10.1175/JCLI-D-18-0168.1
10.1175/JCLI-D-19-0715.1
10.1002/essoar.10505547.1
10.1007/s40641-018-0108-z
10.1007/s00382-005-0006-7
10.1175/JAS-D-13-0125.1
10.1002/joc.5693
10.1175/JCLI-D-17-0303.1
10.1038/nclimate2271
10.1002/wea.2981
10.1126/sciadv.aay2880
10.1002/grl.50411
10.1175/JCLI-D-17-0320.1
10.1002/2015GL066959
10.5194/gmd-9-1937-2016
10.1002/qj.3155
10.1175/MWR-D-16-0467.1
10.1002/grl.50174
10.1029/2021JD034876
10.1002/2017GL076096
10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2
10.1007/s00704-013-0994-x
10.1175/JCLI-D-16-0762.1
10.1175/JCLI-D-11-00145.1
10.1029/2005JD006497
10.1175/2008JCLI2625.1
10.1002/grl.50880
10.1029/2008GL033614
10.1002/joc.1255
10.1175/MWR3343.1
10.1175/JCLI-D-13-00531.1
10.1002/2016GL070309
10.1029/2004GL022039
10.1017/CBO9781107775541.007
10.1088/1748-9326/10/1/014005
10.1038/s41586-019-1465-z
10.5194/gmd-15-1079-2022
10.1175/BAMS-D-17-0006.1
10.1007/s00382-016-3102-y
10.5194/gmd-5-457-2012
10.1002/qj.625
10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2
10.1175/BAMS-D-11-00094.1
10.1007/s00382-015-2560-y
10.1029/2019GL083345
10.1002/joc.1750
10.5194/acp-17-11541-2017
10.1017/9781107588431
10.1038/s41558-019-0551-4
10.1038/s41558-019-0662-y
ContentType Journal Article
Copyright 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.5194/gmd-17-1229-2024
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Continental Europe Database
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Statistics
EISSN 1991-9603
1991-962X
EndPage 1247
ExternalDocumentID oai_doaj_org_article_d9c655f7e3e0437fbb7fe1878d856ffe
10_5194_gmd_17_1229_2024
GroupedDBID 5VS
8R4
8R5
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AENEX
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
ESX
GROUPED_DOAJ
H13
IAO
IEA
IEP
ISR
ITC
KQ8
OK1
P2P
Q2X
RKB
RNS
TR2
TUS
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFFHD
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
LK5
M7R
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
ID FETCH-LOGICAL-c332t-781a6d97c63ef79379b04cbd169e7f3173f1fcc10ed3556564049e85d724079d3
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001190491600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1991-9603
1991-962X
1991-959X
IngestDate Fri Oct 03 12:21:11 EDT 2025
Mon Nov 17 23:20:43 EST 2025
Sat Nov 29 05:38:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-781a6d97c63ef79379b04cbd169e7f3173f1fcc10ed3556564049e85d724079d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9195-6731
0000-0002-4760-4704
0000-0001-9193-5271
OpenAccessLink https://www.proquest.com/docview/2925933646?pq-origsite=%requestingapplication%
PQID 2925933646
PQPubID 105726
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_d9c655f7e3e0437fbb7fe1878d856ffe
proquest_journals_2925933646
crossref_primary_10_5194_gmd_17_1229_2024
PublicationCentury 2000
PublicationDate 2024-02-14
PublicationDateYYYYMMDD 2024-02-14
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-14
  day: 14
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Geoscientific Model Development
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref92
ref51
ref50
ref91
ref90
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref37
– ident: ref1
– ident: ref71
  doi: 10.1002/jgrd.50305
– ident: ref18
  doi: 10.1029/2020GL090441
– ident: ref70
  doi: 10.1175/JCLI-D-16-0340.1
– ident: ref83
  doi: 10.1016/B978-0-12-821575-3.00015-3
– ident: ref45
  doi: 10.1029/2020JD032735
– ident: ref17
  doi: 10.1175/JCLI-D-17-0323.1
– ident: ref43
– ident: ref61
  doi: 10.1175/JCLI-D-13-00243.1
– ident: ref21
  doi: 10.1175/JCLI-D-16-0565.1
– ident: ref23
  doi: 10.1126/science.abi9167
– ident: ref30
  doi: 10.1007/s00382-022-06185-5
– ident: ref57
  doi: 10.1007/s00382-019-05084-6
– ident: ref78
  doi: 10.1029/2022GL100523
– ident: ref8
  doi: 10.1175/JCLI-D-17-0299.1
– ident: ref39
  doi: 10.1016/j.wace.2022.100476
– ident: ref86
  doi: 10.1002/qj.171
– ident: ref69
  doi: 10.5194/esd-8-75-2017
– ident: ref11
  doi: 10.1126/sciadv.abn3112
– ident: ref49
  doi: 10.1017/9781009157896.006
– ident: ref36
  doi: 10.1002/qj.3803
– ident: ref72
  doi: 10.1029/2021JD035057
– ident: ref82
  doi: 10.1175/JCLI-D-23-0080.1
– ident: ref65
  doi: 10.1175/JCLI-D-16-0692.1
– ident: ref44
  doi: 10.1109/TVCG.2017.2743989
– ident: ref58
  doi: 10.1080/16000870.2021.1886419
– ident: ref68
  doi: 10.1002/2015JD023854
– ident: ref64
  doi: 10.1029/2020JD033668
– ident: ref73
  doi: 10.1007/s13351-011-0002-2
– ident: ref40
  doi: 10.1175/JAS-D-15-0194.1
– ident: ref28
  doi: 10.1002/2013GL058466
– ident: ref29
  doi: 10.1017/9781009157896.004
– ident: ref34
  doi: 10.1175/1520-0469(1975)032<1494:MTBQGE>2.0.CO;2
– ident: ref2
– ident: ref60
  doi: 10.5194/acp-11-6115-2011
– ident: ref6
  doi: 10.1175/JCLI-D-12-00536.1
– ident: ref7
  doi: 10.1175/JCLI-D-14-00589.1
– ident: ref79
  doi: 10.1175/JCLI-D-18-0168.1
– ident: ref80
  doi: 10.1175/JCLI-D-19-0715.1
– ident: ref63
  doi: 10.1002/essoar.10505547.1
– ident: ref91
  doi: 10.1007/s40641-018-0108-z
– ident: ref27
  doi: 10.1007/s00382-005-0006-7
– ident: ref48
  doi: 10.1175/JAS-D-13-0125.1
– ident: ref66
  doi: 10.1002/joc.5693
– ident: ref59
  doi: 10.1175/JCLI-D-17-0303.1
– ident: ref77
  doi: 10.1038/nclimate2271
– ident: ref31
  doi: 10.1002/wea.2981
– ident: ref12
  doi: 10.1126/sciadv.aay2880
– ident: ref5
  doi: 10.1002/grl.50411
– ident: ref15
  doi: 10.1175/JCLI-D-17-0320.1
– ident: ref19
  doi: 10.1002/2015GL066959
– ident: ref24
  doi: 10.5194/gmd-9-1937-2016
– ident: ref56
  doi: 10.1002/qj.3155
– ident: ref81
  doi: 10.1175/MWR-D-16-0467.1
– ident: ref76
  doi: 10.1002/grl.50174
– ident: ref54
  doi: 10.1029/2021JD034876
– ident: ref92
  doi: 10.1002/2017GL076096
– ident: ref35
  doi: 10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2
– ident: ref47
  doi: 10.1007/s00704-013-0994-x
– ident: ref89
  doi: 10.1175/JCLI-D-16-0762.1
– ident: ref41
– ident: ref52
  doi: 10.1175/JCLI-D-11-00145.1
– ident: ref85
  doi: 10.1029/2005JD006497
– ident: ref75
  doi: 10.1175/2008JCLI2625.1
– ident: ref4
  doi: 10.1002/grl.50880
– ident: ref3
  doi: 10.1029/2008GL033614
– ident: ref46
  doi: 10.1002/joc.1255
– ident: ref10
  doi: 10.1175/MWR3343.1
– ident: ref32
  doi: 10.1175/JCLI-D-13-00531.1
– ident: ref55
– ident: ref16
  doi: 10.1002/2016GL070309
– ident: ref84
  doi: 10.1029/2004GL022039
– ident: ref33
  doi: 10.1017/CBO9781107775541.007
– ident: ref38
– ident: ref26
  doi: 10.1088/1748-9326/10/1/014005
– ident: ref51
  doi: 10.1038/s41586-019-1465-z
– ident: ref14
  doi: 10.5194/gmd-15-1079-2022
– ident: ref25
  doi: 10.1175/BAMS-D-17-0006.1
– ident: ref20
  doi: 10.1007/s00382-016-3102-y
– ident: ref53
  doi: 10.5194/gmd-5-457-2012
– ident: ref90
  doi: 10.1002/qj.625
– ident: ref42
– ident: ref50
  doi: 10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2
– ident: ref87
  doi: 10.1175/BAMS-D-11-00094.1
– ident: ref74
  doi: 10.1007/s00382-015-2560-y
– ident: ref67
  doi: 10.1029/2019GL083345
– ident: ref9
  doi: 10.1002/joc.1750
– ident: ref62
  doi: 10.5194/acp-17-11541-2017
– ident: ref88
  doi: 10.1017/9781107588431
– ident: ref13
  doi: 10.1038/s41558-019-0551-4
– ident: ref22
  doi: 10.1038/s41558-019-0662-y
SSID ssj0069767
ssj0069768
Score 2.357115
Snippet The underlying dynamics controlling jet streams are complex, but it is expected that they will have an observable response to changes in the larger climatic...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1229
SubjectTerms Algorithms
Atmospheric boundary layer
Climate change
Climate system
Intergovernmental Panel on Climate Change
Jet stream
Jet streams (meteorology)
Northern Hemisphere
Rivers
Sensitivity analysis
Sinuosity
Statistical methods
Statistics
Surface temperature
Trends
Waviness
Wind shear
Wind speed
SummonAdditionalLinks – databaseName: Copernicus Publications - Open Access
  dbid: RKB
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JbxMxFLZQBRKXUjY1tCAfuHCYdryMl94KInBAVQ60ys3yeGnTMgnKTCPl3_PeTEKLOHAo19GzbPmz36Lx-z5C3icRbc4iFDpKXcgoUA2Qm8JwHyTPdR363qqLb_rszEyndnJP6gvfhA30wMPGHUcbVFVlnURCGh4YrXNiRptoKpVzwr51uNVYp6OG2-CDFQTZXlYF3_XYyk6HH5SQrcjjyyYW4JkZ5xaOCJd_BKSet_8vt9zHmvGzB6xyj-xuEkx6Ogx5Th6l-Qvy5Esv4Lt-SVbXbYMiWqGlq_KIH5Un1NPJGhkEKJTPN-BeKOSxdGvk55H6H5eL5ay7alp626ZIuwWd9f29eU3BNNxxPifqu2bRIlXBLNDr1FHsRfFN-4qcjz9___S12GgvFEEI3hXaMK-i1UGJlJFDz9alDHVkyiadIekQmeUQWJkAXkwKJZQayVRRY4loo3hNduaLedonlAXjs-BVVhnZ2ZDgLUdroqjLGMrKj8iHLQDu50Cx4aA0QbAcgOWYdgiWQ7BG5CPu_W87JMfuPwAYbgOG-xcYI3K4xddtbmzruIVCUAgl1Zv_MccBeYrrxffdTB6SnW55m96Sx2HVzdrlu_6w_gLFae1E
  priority: 102
  providerName: Copernicus Gesellschaft
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQKlIvFS2tukArH7hwCMSP-MENqlIOCHGg1d4sxw-6lOyiTVhp_z0zyW5b1AOXXqOJYn1jz3yjeL4h5CCJaHMWodBR6kJGgdMAuSkM90HyXNeh7636camvrsx4bK__GvWFd8IGeeABuONog6qqrJNIKMMDb-ucmNEmmkrlnDD6AutZF1NDDFaQZPuxKnivx1Z2PPygBLYij2-bWEBkZpxb2CJcPktIvW7_P2G5zzXn2-TNiiTS02Fxb8lGmr4jW9_6IbzLHbK4axschBVauiiP-FF5Qj29XqIKAIUS-BeECApclK6N_DRSf387m0-6n01LH9sUaTejk75HNy8pmIY_us2J-q6ZtSg3MAn0LnUU-0l8074n38-_3ny5KFbzE4ogBO8KbZhX0eqgRMqog2frUoY6MmWTzkAcRGY5BFYmcBESOwnlQjJV1Fjm2Sg-kM3pbJo-EsqC8VnwKquMCmso0pajNVHUZQxl5UfkcA2iexhkMhyUFwi4A8Ad0w4Bdwj4iJwhyr_tUOC6fwBudyu3u5fcPiL7ax-51alrHbdQzAmhpNr9H9_YI69xvXhHm8l9stnNH9Mn8iosukk7_9xvuCcy1tqE
  priority: 102
  providerName: Directory of Open Access Journals
Title jsmetrics v0.2.0: a Python package for metrics and algorithms used to identify or characterise atmospheric jet streams
URI https://www.proquest.com/docview/2925933646
https://doaj.org/article/d9c655f7e3e0437fbb7fe1878d856ffe
Volume 17
WOSCitedRecordID wos001190491600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications - Open Access
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: RKB
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BFMQW
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PCBAR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgC1IvPAoVC2XlAxcOaRPb8YMLYlELCFhF5aHlZDl-LC1kUzbpSvvv8WQTCkLiwtHOSLH0jccz9sw3CD3x1KkQqE2EYyJhjkI3QCITSYxlJJSl7WqrPr8Ts5mcz1XRX7g1fVrlYBM7Q-1qC3fkR0RFR51Szvjzix8JdI2C19W-hcZ1tANMZWyEdqbHs-J0sMU8Hrbi90FXGQfJPoqT-fbVMrow7GhRuSSa64wQFfWGsD9OqY7M_y9b3R1AJ7f_d-l30K3e9cQvtrpyF13zyz1081XX2nezh3bB79zSNt9D6_Omgl5btsHr9JAcps-wwcUGiAZwjLK_RSuEo7uLByGzdNh8X8S_tl-rBl823uG2xmddGXDY4Chqr6ihPTZtVTfAaHBm8blvMZSsmKq5jz6dHH98-TrpWzQkllLSJkJmhjslLKc-ANWeKlNmS5dx5UWIvgkNWbA2S33UAvAdWYxIvMydgEhSObqPRst66R8gnFlpAiV54AFI3IAHLjglHS1TZ9PcjNHTARJ9sWXi0DGCAfh0hE9nQgN8GuAboylg9ksOOLS7iXq10P2W1E5ZnudBeOqB4CnqpQg-k0I6mfMQ_BgdDHDqfmM3-grLh__-_AjtwkogwTtjB2jUri79Y3TDriOSq0mvp5PuCmACCacf4lzx5n3xJY5O305_AjPy9Jk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLYheeBQQCwV8ACQOaRM78QOJAwWWVt2uilRgbybxY2lhH2zSRfun-I14sgkFIXHrgWMSK7HszzOf45lvAB47ZpX3zETCpiJKLcNqgFRGkuYmpb4oTJ1b9aEvBgM5HKqjNfjR5sJgWGVrE2tDbacG_5HvUBWIOmM85U0E5YFbfg_7s_LF_uswmU8o7b05frUXNSUEIsMYrSIhk5xbJQxnzqMUnCri1BQ24coJH3wn84k3Jold6CVymzQwZiczK3CnoywL7306-xZhlSo8zW1KdlyCdclDbzqwvts7fPextf08OHfx-0WdiYfBRYrT4eqUNFCmdGc0tlFwDwmlKuCUpn94xbp4wF--oXZ4vev_21DdgGsNtSYvV2vhJqy5ySZceVuXLl5uwgby6pUs9S1YnJZjrCVmSrKIt-l2_Jzk5GiJQgpklpsvwcqSQOdJ2yifWJJ_HYWvVp_HJTkrnSXVlJzUac5-SUJTcy597UhejaclKjacGHLqKoIpOfm4vA3vL2RQ7kBnMp24u0ASI3PPaOa5R5E61LnzVknLitiaOMu78KyFgJ6tlEZ02KEhXHSAi06ERrhohEsXdhEjv9qhRnh9Yzof6cbkaKsMzzIvHHMoYBXWnfAukUJamXHvXRe2WvjoxnCV-hw79_79-BFc3Ts-7Ov-_uDgPmxgrzCYPUm3oFPNz9wDuGwWYVbnD5s1QuDTRcPvJy4kStQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLaBeeBQQCwV8gAOHdBM78QMJoT5YqFqtVgjQ3kzix9LCPtiki_av8evwZBMKQuLWA8ckVhTbn2c-xzPfADx1zCrvmYmETUWUWobVAKmMJM1NSn1RmDq36uOJGAzkaKSGG_CjzYXBsMrWJtaG2s4M_iPvURWIOmM85T3fhEUMD_uv5t8irCCFJ61tOY01RI7d6nvYvpUvjw7DXD-jtP_6_cHbqKkwEBnGaBUJmeTcKmE4cx6V4lQRp6awCVdO-OBamU-8MUnsQieQ-qSBUDuZWYEbIWVZeO8V2JRcxLQDm8OD_b13rR_gwdGL3y_qrDwMNFKcjtYnpoE-pb3xxEbBVSSUqoBZmv7hIetCAn_5idr59W_-z8N2C240lJvsrdfIbdhw02249qYuabzahi3k22u56juwPCsnWGPMlGQZ79Ld-AXJyXCFAgtknpsvwfqSQPNJ2yifWpJ_HYdeVp8nJTkvnSXVjJzW6c9-RUJTcyGJ7UheTWYlKjmcGnLmKoKpOvmkvAsfLmUE7kFnOpu6-0ASI3PPaOa5R_E61L_zVknLitiaOMu78LyFg56vFUh02LkhdHSAjk6ERuhohE4X9hEvv9qhdnh9Y7YY68YUaasMzzIvHHMobBXWo_AukUJamXHvXRd2WijpxqCV-gJHD_79-AlcDwDTJ0eD44ewhR-FMe5JugOdanHuHsFVswyTunjcLBcCny4baj8BKlBTYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=jsmetrics+v0.2.0%3A+a+Python+package+for+metrics+and+algorithms+used+to+identify+or+characterise+atmospheric+jet+streams&rft.jtitle=Geoscientific+model+development&rft.au=Keel%2C+Tom&rft.au=Brierley%2C+Chris&rft.au=Edwards%2C+Tamsin&rft.date=2024-02-14&rft.issn=1991-9603&rft.eissn=1991-9603&rft.volume=17&rft.issue=3&rft.spage=1229&rft.epage=1247&rft_id=info:doi/10.5194%2Fgmd-17-1229-2024&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_gmd_17_1229_2024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon