Bilinear Convolutional Neural Networks for Fine-Grained Visual Recognition

We present a simple and effective architecture for fine-grained recognition called Bilinear Convolutional Neural Networks (B-CNNs). These networks represent an image as a pooled outer product of features derived from two CNNs and capture localized feature interactions in a translationally invariant...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 40; číslo 6; s. 1309 - 1322
Hlavní autoři: Tsung-Yu Lin, RoyChowdhury, Aruni, Maji, Subhransu
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present a simple and effective architecture for fine-grained recognition called Bilinear Convolutional Neural Networks (B-CNNs). These networks represent an image as a pooled outer product of features derived from two CNNs and capture localized feature interactions in a translationally invariant manner. B-CNNs are related to orderless texture representations built on deep features but can be trained in an end-to-end manner. Our most accurate model obtains 84.1, 79.4, 84.5 and 91.3 percent per-image accuracy on the Caltech-UCSD birds [1], NABirds [2], FGVC aircraft [3], and Stanford cars [4] dataset respectively and runs at 30 frames-persecond on a NVIDIA Titan X GPU. We then present a systematic analysis of these networks and show that (1) the bilinear features are highly redundant and can be reduced by an order of magnitude in size without significant loss in accuracy, (2) are also effective for other image classification tasks such as texture and scene recognition, and (3) can be trained from scratch on the ImageNet dataset offering consistent improvements over the baseline architecture. Finally, we present visualizations of these models on various datasets using top activations of neural units and gradient-based inversion techniques. The source code for the complete system is available at http://vis-www.cs.umass.edu/bcnn.
AbstractList We present a simple and effective architecture for fine-grained recognition called Bilinear Convolutional Neural Networks (B-CNNs). These networks represent an image as a pooled outer product of features derived from two CNNs and capture localized feature interactions in a translationally invariant manner. B-CNNs are related to orderless texture representations built on deep features but can be trained in an end-to-end manner. Our most accurate model obtains 84.1, 79.4, 84.5 and 91.3 percent per-image accuracy on the Caltech-UCSD birds [1], NABirds [2], FGVC aircraft [3], and Stanford cars [4] dataset respectively and runs at 30 frames-persecond on a NVIDIA Titan X GPU. We then present a systematic analysis of these networks and show that (1) the bilinear features are highly redundant and can be reduced by an order of magnitude in size without significant loss in accuracy, (2) are also effective for other image classification tasks such as texture and scene recognition, and (3) can be trained from scratch on the ImageNet dataset offering consistent improvements over the baseline architecture. Finally, we present visualizations of these models on various datasets using top activations of neural units and gradient-based inversion techniques. The source code for the complete system is available at http://vis-www.cs.umass.edu/bcnn.
We present a simple and effective architecture for fine-grained recognition called Bilinear Convolutional Neural Networks (B-CNNs). These networks represent an image as a pooled outer product of features derived from two CNNs and capture localized feature interactions in a translationally invariant manner. B-CNNs are related to orderless texture representations built on deep features but can be trained in an end-to-end manner. Our most accurate model obtains 84.1%, 79.4%, 84.5% and 91.3% per-image accuracy on the Caltech-UCSD birds [66], NABirds [63], FGVC aircraft [42], and Stanford cars [33] dataset respectively and runs at 30 frames-per-second on a NVIDIA Titan X GPU. We then present a systematic analysis of these networks and show that (1) the bilinear features are highly redundant and can be reduced by an order of magnitude in size without significant loss in accuracy, (2) are also effective for other image classification tasks such as texture and scene recognition, and (3) can be trained from scratch on the ImageNet dataset offering consistent improvements over the baseline architecture. Finally, we present visualizations of these models on various datasets using top activations of neural units and gradient-based inversion techniques. The source code for the complete system is available at http://vis-www.cs.umass.edu/bcnn.
We present a simple and effective architecture for fine-grained recognition called Bilinear Convolutional Neural Networks (B-CNNs). These networks represent an image as a pooled outer product of features derived from two CNNs and capture localized feature interactions in a translationally invariant manner. B-CNNs are related to orderless texture representations built on deep features but can be trained in an end-to-end manner. Our most accurate model obtains 84.1%, 79.4%, 84.5% and 91.3% per-image accuracy on the Caltech-UCSD birds [66], NABirds [63], FGVC aircraft [42], and Stanford cars [33] dataset respectively and runs at 30 frames-per-second on a NVIDIA Titan X GPU. We then present a systematic analysis of these networks and show that (1) the bilinear features are highly redundant and can be reduced by an order of magnitude in size without significant loss in accuracy, (2) are also effective for other image classification tasks such as texture and scene recognition, and (3) can be trained from scratch on the ImageNet dataset offering consistent improvements over the baseline architecture. Finally, we present visualizations of these models on various datasets using top activations of neural units and gradient-based inversion techniques. The source code for the complete system is available at http://vis-www.cs.umass.edu/bcnn.We present a simple and effective architecture for fine-grained recognition called Bilinear Convolutional Neural Networks (B-CNNs). These networks represent an image as a pooled outer product of features derived from two CNNs and capture localized feature interactions in a translationally invariant manner. B-CNNs are related to orderless texture representations built on deep features but can be trained in an end-to-end manner. Our most accurate model obtains 84.1%, 79.4%, 84.5% and 91.3% per-image accuracy on the Caltech-UCSD birds [66], NABirds [63], FGVC aircraft [42], and Stanford cars [33] dataset respectively and runs at 30 frames-per-second on a NVIDIA Titan X GPU. We then present a systematic analysis of these networks and show that (1) the bilinear features are highly redundant and can be reduced by an order of magnitude in size without significant loss in accuracy, (2) are also effective for other image classification tasks such as texture and scene recognition, and (3) can be trained from scratch on the ImageNet dataset offering consistent improvements over the baseline architecture. Finally, we present visualizations of these models on various datasets using top activations of neural units and gradient-based inversion techniques. The source code for the complete system is available at http://vis-www.cs.umass.edu/bcnn.
Author RoyChowdhury, Aruni
Maji, Subhransu
Tsung-Yu Lin
Author_xml – sequence: 1
  surname: Tsung-Yu Lin
  fullname: Tsung-Yu Lin
  email: tsungyulin@cs.umass.edu
  organization: Coll. of Inf. & Comput. Sci., Univ. of Massachusetts Amherst, Amherst, MA, USA
– sequence: 2
  givenname: Aruni
  surname: RoyChowdhury
  fullname: RoyChowdhury, Aruni
  email: arunirc@cs.umass.edu
  organization: Coll. of Inf. & Comput. Sci., Univ. of Massachusetts Amherst, Amherst, MA, USA
– sequence: 3
  givenname: Subhransu
  surname: Maji
  fullname: Maji, Subhransu
  email: smaji@cs.umass.edu
  organization: Coll. of Inf. & Comput. Sci., Univ. of Massachusetts Amherst, Amherst, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28692962$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P4zAQhi3ECgrLHwAJReLCJV2Pncb2ESo-itgPIeBqOc4EGdIY7ATEv8el7R44cHovzzOamXeHbHa-Q0L2gY4BqPp1--_k92zMKIgxE4wXlG6QEYOS5ooptklGFEqWS8nkNtmJ8ZFSKCaUb5FtJsuElGxErk5d6zo0IZv67tW3Q-98Z9rsDw7hM_o3H55i1viQnScwvwgmRZ3duzgk4Aatf-jcwvpJfjSmjbi3yl1yd352O73Mr_9ezKYn17nlnPV5OeGiTPujBcugxspyRChVVWBhOFU1CsuskLLhRWNAMMUrWVcNVgIqCch3yfFy7nPwLwPGXs9dtNi2pkM_RA0KhConUkBCj76gj34I6b6oGYiiUFRKmqjDFTVUc6z1c3BzE971-ksJkEvABh9jwEZb15vFzX36RquB6kUh-rMQvShErwpJKvuirqd_Kx0sJYeI_4V0lOQT4B-kmJWK
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s00521_024_10861_4
crossref_primary_10_1109_ACCESS_2019_2953957
crossref_primary_10_1109_JSTARS_2022_3168691
crossref_primary_10_1109_TCYB_2020_2979262
crossref_primary_10_1109_JTEHM_2023_3241613
crossref_primary_10_1109_TAI_2023_3339593
crossref_primary_10_1109_TIP_2021_3094744
crossref_primary_10_1088_1742_6596_1544_1_012138
crossref_primary_10_1007_s11042_020_08666_3
crossref_primary_10_1007_s10489_022_04257_x
crossref_primary_10_3390_s23083970
crossref_primary_10_1016_j_neucom_2020_02_101
crossref_primary_10_1109_TPAMI_2020_2974833
crossref_primary_10_1016_j_patcog_2021_108219
crossref_primary_10_1007_s10489_021_02925_y
crossref_primary_10_1016_j_ins_2025_121970
crossref_primary_10_1109_TPAMI_2019_2933510
crossref_primary_10_1109_TIP_2019_2908795
crossref_primary_10_1109_TIP_2019_2934576
crossref_primary_10_1109_TIP_2021_3120319
crossref_primary_10_1109_TCSVT_2023_3284405
crossref_primary_10_1109_LGRS_2021_3070145
crossref_primary_10_1109_ACCESS_2019_2925002
crossref_primary_10_1109_TMM_2024_3366404
crossref_primary_10_1109_ACCESS_2018_2844789
crossref_primary_10_1109_TIP_2021_3089942
crossref_primary_10_3390_s21124176
crossref_primary_10_1007_s41095_022_0332_2
crossref_primary_10_1016_j_patcog_2023_109776
crossref_primary_10_1109_JBHI_2023_3299321
crossref_primary_10_1007_s11263_018_1125_z
crossref_primary_10_1109_TGRS_2021_3079918
crossref_primary_10_3390_app15116085
crossref_primary_10_1007_s11063_023_11383_1
crossref_primary_10_1016_j_compbiomed_2023_106765
crossref_primary_10_1109_ACCESS_2021_3131002
crossref_primary_10_1007_s00521_023_09349_4
crossref_primary_10_1088_1742_6596_2050_1_012006
crossref_primary_10_3390_app9020301
crossref_primary_10_3390_app122412715
crossref_primary_10_1016_j_compag_2021_106679
crossref_primary_10_1109_ACCESS_2020_3030249
crossref_primary_10_1016_j_cviu_2022_103436
crossref_primary_10_1016_j_bbe_2023_12_003
crossref_primary_10_4018_JCIT_326131
crossref_primary_10_1016_j_eswa_2022_117674
crossref_primary_10_1016_j_patcog_2019_107167
crossref_primary_10_1007_s00371_020_02052_8
crossref_primary_10_1016_j_bspc_2022_103874
crossref_primary_10_1016_j_procs_2022_09_053
crossref_primary_10_3390_e26010029
crossref_primary_10_1088_1361_6560_ac0f30
crossref_primary_10_1080_10916466_2025_2468299
crossref_primary_10_1007_s00371_022_02686_w
crossref_primary_10_1109_TII_2024_3435430
crossref_primary_10_3390_electronics14142869
crossref_primary_10_1016_j_asoc_2023_109997
crossref_primary_10_1109_TMM_2023_3244340
crossref_primary_10_1109_ACCESS_2019_2926994
crossref_primary_10_3390_e23070816
crossref_primary_10_1109_TII_2020_2985159
crossref_primary_10_23919_JSEE_2022_000155
crossref_primary_10_3390_jimaging8070186
crossref_primary_10_1109_ACCESS_2023_3292340
crossref_primary_10_1002_hbm_25685
crossref_primary_10_1007_s10409_021_09057_z
crossref_primary_10_1016_j_compag_2022_107440
crossref_primary_10_1007_s00330_025_11385_8
crossref_primary_10_1016_j_neucom_2022_03_032
crossref_primary_10_1016_j_patcog_2020_107593
crossref_primary_10_1109_TIE_2019_2962437
crossref_primary_10_1016_j_neucom_2023_126652
crossref_primary_10_1109_TCSVT_2022_3216905
crossref_primary_10_1002_ima_22628
crossref_primary_10_1109_TII_2019_2908211
crossref_primary_10_1016_j_jvcir_2021_103368
crossref_primary_10_1109_TIE_2021_3086714
crossref_primary_10_1016_j_jvcir_2021_103084
crossref_primary_10_3390_jimaging11080283
crossref_primary_10_1109_TIP_2022_3193763
crossref_primary_10_1145_3489142
crossref_primary_10_1186_s13321_024_00844_x
crossref_primary_10_1145_3447866
crossref_primary_10_1109_TPAMI_2018_2885764
crossref_primary_10_1155_2022_5375449
crossref_primary_10_1007_s10489_022_03232_w
crossref_primary_10_1109_TMM_2020_3001510
crossref_primary_10_1016_j_eswa_2022_118223
crossref_primary_10_1007_s11042_022_13811_1
crossref_primary_10_1109_JSTARS_2020_3006241
crossref_primary_10_1007_s11042_022_12481_3
crossref_primary_10_1016_j_neucom_2022_04_037
crossref_primary_10_1016_j_asoc_2023_110477
crossref_primary_10_1109_ACCESS_2019_2898028
crossref_primary_10_1007_s11760_024_03693_1
crossref_primary_10_1109_TNNLS_2020_3044078
crossref_primary_10_1109_TNNLS_2021_3052829
crossref_primary_10_1109_TIP_2020_3019185
crossref_primary_10_1186_s13640_023_00613_0
crossref_primary_10_1109_TGRS_2023_3311093
crossref_primary_10_1109_TIM_2021_3139685
crossref_primary_10_3390_app15168903
crossref_primary_10_1109_TVT_2020_3030018
crossref_primary_10_1016_j_neucom_2020_01_067
crossref_primary_10_3390_app11199204
crossref_primary_10_1007_s11042_020_09679_8
crossref_primary_10_1016_j_imavis_2024_104923
crossref_primary_10_1016_j_patcog_2024_110749
crossref_primary_10_1109_ACCESS_2020_2986771
crossref_primary_10_3390_rs14061445
crossref_primary_10_3390_s22249650
crossref_primary_10_1016_j_compbiomed_2022_106424
crossref_primary_10_1016_j_ijleo_2018_11_145
crossref_primary_10_1109_TCSVT_2020_3020079
crossref_primary_10_1109_ACCESS_2019_2936118
crossref_primary_10_1109_TIP_2023_3283065
crossref_primary_10_1007_s11431_020_1777_4
crossref_primary_10_1007_s11042_021_11769_0
crossref_primary_10_1007_s11554_022_01228_w
crossref_primary_10_1007_s11432_023_3922_2
crossref_primary_10_1016_j_atmosres_2021_105839
crossref_primary_10_1109_TIP_2022_3181492
crossref_primary_10_1016_j_patcog_2023_109979
crossref_primary_10_1109_TMM_2024_3369968
crossref_primary_10_1016_j_artmed_2021_102130
crossref_primary_10_1109_LSP_2023_3262059
crossref_primary_10_1002_jbio_202100370
crossref_primary_10_1007_s11432_020_3181_9
crossref_primary_10_3390_ani12213000
crossref_primary_10_1109_JSEN_2024_3415078
crossref_primary_10_1109_TCSVT_2019_2920783
crossref_primary_10_1109_TPAMI_2021_3107164
crossref_primary_10_1109_TCSVT_2024_3406443
crossref_primary_10_1109_TCYB_2024_3424430
crossref_primary_10_1109_TIM_2024_3522672
crossref_primary_10_1109_TPAMI_2022_3164894
crossref_primary_10_1007_s00521_024_10464_z
crossref_primary_10_1109_TNNLS_2019_2947789
crossref_primary_10_1007_s11633_023_1451_7
crossref_primary_10_1016_j_neucom_2020_07_147
crossref_primary_10_1109_TAI_2023_3329457
crossref_primary_10_1109_TIP_2020_3032029
crossref_primary_10_1007_s12539_021_00479_8
crossref_primary_10_1016_j_bspc_2022_104007
crossref_primary_10_3390_app132111716
crossref_primary_10_1007_s11263_020_01389_w
crossref_primary_10_1016_j_ins_2020_10_014
crossref_primary_10_1109_TITS_2019_2921732
crossref_primary_10_3390_rs15245759
crossref_primary_10_3390_rs14184467
crossref_primary_10_1109_LGRS_2019_2953754
crossref_primary_10_1016_j_patcog_2023_109550
crossref_primary_10_1109_TITS_2023_3274777
crossref_primary_10_1038_s41598_023_48916_6
crossref_primary_10_1109_TMM_2022_3158001
crossref_primary_10_1016_j_eswa_2020_113993
crossref_primary_10_1145_3570166
crossref_primary_10_1016_j_neucom_2019_06_013
crossref_primary_10_1109_TIP_2019_2924811
crossref_primary_10_1145_3300938
crossref_primary_10_1109_ACCESS_2018_2874994
crossref_primary_10_3390_w15050845
crossref_primary_10_1109_TMM_2022_3214431
crossref_primary_10_1109_TPAMI_2021_3126648
crossref_primary_10_1007_s11263_020_01376_1
crossref_primary_10_1007_s11668_023_01695_8
crossref_primary_10_1088_1361_6501_ad8592
crossref_primary_10_1109_TIP_2024_3404854
crossref_primary_10_1016_j_comcom_2021_03_006
crossref_primary_10_1109_TIP_2021_3049334
crossref_primary_10_1109_TPAMI_2019_2932058
crossref_primary_10_1109_JSEN_2024_3470250
crossref_primary_10_1109_TPAMI_2022_3215702
crossref_primary_10_1109_ACCESS_2020_2975913
crossref_primary_10_1016_j_imavis_2025_105548
crossref_primary_10_1109_JSEN_2023_3248868
crossref_primary_10_1016_j_patcog_2023_109439
crossref_primary_10_1109_OJIM_2022_3190024
crossref_primary_10_1109_TGRS_2024_3458408
crossref_primary_10_3389_fnins_2021_728874
crossref_primary_10_3390_app11146533
crossref_primary_10_3390_app15084155
crossref_primary_10_1007_s11042_023_15005_9
crossref_primary_10_1016_j_engappai_2022_105291
Cites_doi 10.1016/j.patrec.2014.06.011
10.1109/CVPR.2010.5540039
10.1109/CVPR.2015.7299035
10.1007/s11263-015-0816-y
10.1109/ICCV.2005.54
10.1109/ICCVW.2013.77
10.1109/CVPR.2016.90
10.1109/ICCV.2011.6126238
10.1007/978-3-642-33786-4_32
10.1007/978-3-319-10584-0_26
10.1007/978-3-319-46487-9_19
10.1109/ICCV.2011.6126413
10.1109/CVPRW.2014.131
10.18653/v1/D16-1044
10.1162/089976600300015349
10.1023/A:1011126920638
10.1109/ICCV.2015.170
10.1109/CVPR.2014.461
10.1109/CVPR.2016.41
10.1109/ICCV.1999.790410
10.1109/CVPR.2015.7298658
10.1145/2733373.2807412
10.1109/CVPR.2016.213
10.1007/978-3-319-10590-1_54
10.1109/CVPR.2016.128
10.1109/CVPR.2014.81
10.1145/1873951.1874249
10.1109/CVPR.2016.129
10.1023/A:1026553619983
10.1145/2487575.2487591
10.1109/CVPR.2016.305
10.1007/978-3-642-15561-1_11
10.1109/ICCV.2015.339
10.1109/CVPR.2016.572
10.1007/s11263-016-0911-8
10.5244/C.30.24
10.1109/CVPR.2015.7299194
10.1109/CVPR.2014.219
10.7551/mitpress/4175.001.0001
10.5244/C.28.6
10.1007/s11263-009-0275-4
10.1109/CVPR.2016.131
10.1109/CVPR.2012.6248364
10.1109/CVPR.2007.383266
10.1007/s11263-015-0872-3
10.1109/ICCV.2015.136
10.1109/CVPR.2016.265
10.1109/CVPR.2009.5206537
10.1109/CVPR.2015.7298594
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2017.2723400
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1322
ExternalDocumentID 28692962
10_1109_TPAMI_2017_2723400
7968351
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Director of National Intelligence (ODNI)
– fundername: Intelligence Advanced Research Projects Activity (IARPA)
  grantid: 2014-14071600010
– fundername: National Science Foundation
  grantid: IIS-1617917
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c332t-65376110ec1c21debc3ee169b4e4a309de7c2c788f34fa17293b8dbfeb71b81e3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 01:13:54 EDT 2025
Sun Jun 29 16:12:05 EDT 2025
Thu Apr 03 07:08:47 EDT 2025
Sat Nov 29 07:53:49 EST 2025
Tue Nov 18 21:32:39 EST 2025
Wed Aug 27 02:47:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-65376110ec1c21debc3ee169b4e4a309de7c2c788f34fa17293b8dbfeb71b81e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1332-646X
PMID 28692962
PQID 2174490880
PQPubID 85458
PageCount 14
ParticipantIDs pubmed_primary_28692962
crossref_primary_10_1109_TPAMI_2017_2723400
ieee_primary_7968351
proquest_miscellaneous_1917965871
proquest_journals_2174490880
crossref_citationtrail_10_1109_TPAMI_2017_2723400
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
(ref69) 2017
ref59
ref15
ref58
ref14
ref53
ref52
ref11
krizhevsky (ref17) 2012
(ref5) 2017
ref54
ref10
ioffe (ref68) 2015
gens (ref47) 2012
ref16
ref19
maji (ref3) 2013
liu (ref41) 2016
ref51
ref48
scholkopf (ref46) 2001
ref42
branson (ref24) 2014
ref44
jaderberg (ref32) 2015
zhang (ref66) 2016
ref8
ref7
ref9
ref4
ref40
simonyan (ref50) 2014
mnih (ref33) 2014
ref35
donahue (ref18) 2013
ref37
ref36
ref31
ref30
ref2
ref39
ref38
ren (ref55) 2015
simonyan (ref29) 2015
liu (ref56) 2016
sharan (ref70) 2009; 9
pirsiavash (ref49) 2009
ref71
wah (ref1) 2011
ustyuzhaninov (ref45) 2016
ref72
ref67
ref23
ref26
ref25
ref64
ref20
ref63
ref22
ref65
ref21
csurka (ref6) 2004
ref28
ref27
gatys (ref43) 2015
ba (ref34) 2015
ref60
ref62
ref61
References_xml – ident: ref27
  doi: 10.1016/j.patrec.2014.06.011
– ident: ref59
  doi: 10.1109/CVPR.2010.5540039
– volume: 9
  year: 2009
  ident: ref70
  article-title: Material perceprion: What can you see in a brief glance?
  publication-title: J Vis
– start-page: 21
  year: 2016
  ident: ref56
  article-title: SSD: Single shot multibox detector
  publication-title: Proc Eur Conf Comput Vis
– ident: ref51
  doi: 10.1109/CVPR.2015.7299035
– start-page: 1482
  year: 2009
  ident: ref49
  article-title: Bilinear classifiers for visual recognition
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref7
  doi: 10.1007/s11263-015-0816-y
– year: 2015
  ident: ref34
  article-title: Multiple object recognition with visual attention
  publication-title: Proc Int Conf Learn Representations
– ident: ref71
  doi: 10.1109/ICCV.2005.54
– ident: ref4
  doi: 10.1109/ICCVW.2013.77
– year: 2016
  ident: ref45
  article-title: Texture synthesis using shallow convolutional networks with random filters
  publication-title: arXiv preprint arXiv 1606 00021
– ident: ref31
  doi: 10.1109/CVPR.2016.90
– ident: ref21
  doi: 10.1109/ICCV.2011.6126238
– start-page: 3
  year: 2014
  ident: ref24
  article-title: Bird species categorization using pose normalized deep convolutional nets
  publication-title: Proc British Mach Vis Conf
– ident: ref11
  doi: 10.1007/978-3-642-33786-4_32
– year: 2013
  ident: ref3
  article-title: Fine-grained visual classification of aircraft
  publication-title: arXiv preprint arXiv 1306 5151
– ident: ref10
  doi: 10.1007/978-3-319-10584-0_26
– ident: ref35
  doi: 10.1007/978-3-319-46487-9_19
– ident: ref20
  doi: 10.1109/ICCV.2011.6126413
– ident: ref19
  doi: 10.1109/CVPRW.2014.131
– start-page: 91
  year: 2015
  ident: ref55
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Advances Neural Inf Process Syst
– year: 2011
  ident: ref1
  article-title: The Caltech-UCSD birds-200-2011 dataset
– year: 2017
  ident: ref69
– ident: ref52
  doi: 10.18653/v1/D16-1044
– ident: ref48
  doi: 10.1162/089976600300015349
– start-page: 1
  year: 2004
  ident: ref6
  article-title: Visual categorization with bags of keypoints
  publication-title: Proc ECCV Workshop Statist Learn Comput Vis
– start-page: 1097
  year: 2012
  ident: ref17
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Advances Neural Inf Process Syst
– start-page: 448
  year: 2015
  ident: ref68
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– start-page: 2017
  year: 2015
  ident: ref32
  article-title: Spatial transformer networks
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref37
  doi: 10.1023/A:1011126920638
– ident: ref13
  doi: 10.1109/ICCV.2015.170
– ident: ref57
  doi: 10.1109/CVPR.2014.461
– ident: ref15
  doi: 10.1109/CVPR.2016.41
– ident: ref8
  doi: 10.1109/ICCV.1999.790410
– ident: ref2
  doi: 10.1109/CVPR.2015.7298658
– ident: ref12
  doi: 10.1145/2733373.2807412
– ident: ref53
  doi: 10.1109/CVPR.2016.213
– ident: ref23
  doi: 10.1007/978-3-319-10590-1_54
– ident: ref64
  doi: 10.1109/CVPR.2016.128
– ident: ref25
  doi: 10.1109/CVPR.2014.81
– start-page: 3248
  year: 2012
  ident: ref47
  article-title: Discriminative learning of sum-product networks
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref62
  doi: 10.1145/1873951.1874249
– ident: ref65
  doi: 10.1109/CVPR.2016.129
– ident: ref38
  doi: 10.1023/A:1026553619983
– ident: ref54
  doi: 10.1145/2487575.2487591
– ident: ref14
  doi: 10.1109/CVPR.2016.305
– ident: ref58
  doi: 10.1007/978-3-642-15561-1_11
– start-page: 2204
  year: 2014
  ident: ref33
  article-title: Recurrent models of visual attention
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref61
  doi: 10.1109/ICCV.2015.339
– ident: ref42
  doi: 10.1109/CVPR.2016.572
– ident: ref16
  doi: 10.1007/s11263-016-0911-8
– ident: ref36
  doi: 10.5244/C.30.24
– ident: ref26
  doi: 10.1109/CVPR.2015.7299194
– start-page: 568
  year: 2014
  ident: ref50
  article-title: Two-stream convolutional networks for action recognition in videos
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref60
  doi: 10.1109/CVPR.2014.219
– year: 2001
  ident: ref46
  publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond
  doi: 10.7551/mitpress/4175.001.0001
– ident: ref28
  doi: 10.5244/C.28.6
– year: 2016
  ident: ref66
  article-title: Fine-grained pose prediction, normalization, and recognition
  publication-title: Proc Workshop Int Conf Learn Represent
– ident: ref40
  doi: 10.1007/s11263-009-0275-4
– ident: ref67
  doi: 10.1109/CVPR.2016.131
– ident: ref22
  doi: 10.1109/CVPR.2012.6248364
– ident: ref39
  doi: 10.1109/CVPR.2007.383266
– start-page: 262
  year: 2015
  ident: ref43
  article-title: Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref9
  doi: 10.1007/s11263-015-0872-3
– ident: ref63
  doi: 10.1109/ICCV.2015.136
– year: 2013
  ident: ref18
  article-title: Decaf: A deep convolutional activation feature for generic visual recognition
  publication-title: Proc Int Conf Mach Learn
– year: 2017
  ident: ref5
– year: 2016
  ident: ref41
  article-title: Cross-convolutional-layer pooling for image recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref44
  doi: 10.1109/CVPR.2016.265
– ident: ref72
  doi: 10.1109/CVPR.2009.5206537
– ident: ref30
  doi: 10.1109/CVPR.2015.7298594
– year: 2015
  ident: ref29
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Representations
SSID ssj0014503
Score 2.6647253
Snippet We present a simple and effective architecture for fine-grained recognition called Bilinear Convolutional Neural Networks (B-CNNs). These networks represent an...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1309
SubjectTerms Artificial neural networks
bilinear models
Birds
Computer architecture
Convolutional codes
convolutional networks
Feature extraction
Fine-grained recognition
Image classification
Image recognition
Neural networks
Object recognition
second order pooling
Source code
Texture recognition
texture representations
Visualization
Title Bilinear Convolutional Neural Networks for Fine-Grained Visual Recognition
URI https://ieeexplore.ieee.org/document/7968351
https://www.ncbi.nlm.nih.gov/pubmed/28692962
https://www.proquest.com/docview/2174490880
https://www.proquest.com/docview/1917965871
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5W8aAH17frY6ngTaubpm3ao4rrAxURlb2VJp3AgrSy3fX3O0kfKKjgqYVO0pCZdL5pJt8AHJKLDXSQpa7QYej6zKfvYBAoV0fkOzIepAPLxPR6Jx4eotEofuzAcXsWBhFt8hmemFu7l58VamZ-lZ2KOCTAQLHOnBCiOqvV7hj4ga2CTAiGVjiFEc0BmUF8-vx4dn9jsrjEiSc8TlZrKICjkJBB6H3zR7bAyu9Y0_qcYfd_o12B5RpbOmeVMaxCB_M16DZ1G5x6Ga_B0hcSwnW4PR8bqJlOnIsi_6gtkboxtB32YvPES4fQrTMkQffKVJXAzHkdlzMSeGpSkIp8A16Gl88X125dYcFVnHtTNzRkLjRHqJjyWIZScUQWxtJHP-WDOEOhPEVRsua-TgnrxFxGmdQoBZMRQ74J83mR4zY4GGOqtUTy-cyXTKcyEzJAgldCGAaYHrBmnhNV04-bKhhviQ1DBnFi1ZQYNSW1mnpw1LZ5r8g3_pReN0poJev578Feo86kXp9lYgIxm-JFrQ7ax7SyzHZJmmMxKxMTyRpqHEFdbFVm0PbdWM_Oz-_chUUaWVSllO3B_HQyw31YUB_TcTnpk_mOor4130-xWOhr
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NBWnjgcE-oFAgSHsbaevYiZPHMVE26Kpp6qa9WbFzliqhBDXt_n7OzodAGkg8JVLOjuU7534Xn38HcEIuNrZxkYfSJkkomKDvYByb0KbkOwoe51PPxHQ3l4tFen-fXe_Ap_4sDCL65DMcu1u_l19UZut-lU1klhBgoFjnSSxExJrTWv2egYh9HWTCMLTGKZDojshMs8ny-uzq0uVxyXEkI05260iA04SwQRL94ZF8iZW_o03vdWb7_zfeF_C8RZfBWWMOL2EHywPY7yo3BO1CPoBnv9EQHsK3zysHNvN1cF6VD60tUjeOuMNffKZ4HRC-DWYkGH51dSWwCO5W9ZYEbrokpKo8gtvZl-X5RdjWWAgN59EmTBydC80RGmYiVqA2HJElmRYocj7NCpQmMhQnWy5sTmgn4zottEUtmU4Z8mMYlFWJryHADHNrNZLXZ0Izm-tC6hgJYEnpOGCGwLp5VqYlIHd1MH4oH4hMM-XVpJyaVKumIZz2bX429Bv_lD50Sugl2_kfwqhTp2pXaK1cKOaTvKjVx_4xrS23YZKXWG1r5WJZR44jqYtXjRn0fXfW8-bxd36A3Yvl1VzNLxff38IejTJtEsxGMNist_gOnpqHzapev_dG_Aty_-rK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bilinear+Convolutional+Neural+Networks+for+Fine-grained+Visual+Recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Lin%2C+Tsung-Yu&rft.au=RoyChowdhury%2C+Aruni&rft.au=Maji%2C+Subhransu&rft.date=2018-06-01&rft.eissn=1939-3539&rft.volume=40&rft.issue=6&rft.spage=1309&rft_id=info:doi/10.1109%2FTPAMI.2017.2723400&rft_id=info%3Apmid%2F28692962&rft.externalDocID=28692962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon