Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence Model

Project delays are the major problems tackled by the construction sector owing to the associated complexity and uncertainty in the construction activities. Artificial Intelligence (AI) models have evidenced their capacity to solve dynamic, uncertain and complex tasks. The aim of this current study i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sustainability Ročník 12; číslo 4; s. 1514
Hlavní autori: Yaseen, Zaher Mundher, Ali, Zainab Hasan, Salih, Sinan Q., Al-Ansari, Nadhir
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 2020
Predmet:
ISSN:2071-1050, 2071-1050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Project delays are the major problems tackled by the construction sector owing to the associated complexity and uncertainty in the construction activities. Artificial Intelligence (AI) models have evidenced their capacity to solve dynamic, uncertain and complex tasks. The aim of this current study is to develop a hybrid artificial intelligence model called integrative Random Forest classifier with Genetic Algorithm optimization (RF-GA) for delay problem prediction. At first, related sources and factors of delay problems are identified. A questionnaire is adopted to quantify the impact of delay sources on project performance. The developed hybrid model is trained using the collected data of the previous construction projects. The proposed RF-GA is validated against the classical version of an RF model using statistical performance measure indices. The achieved results of the developed hybrid RF-GA model revealed a good resultant performance in terms of accuracy, kappa and classification error. Based on the measured accuracy, kappa and classification error, RF-GA attained 91.67%, 87% and 8.33%, respectively. Overall, the proposed methodology indicated a robust and reliable technique for project delay prediction that is contributing to the construction project management monitoring and sustainability.
AbstractList Project delays are the major problems tackled by the construction sector owing to the associated complexity and uncertainty in the construction activities. Artificial Intelligence (AI) models have evidenced their capacity to solve dynamic, uncertain and complex tasks. The aim of this current study is to develop a hybrid artificial intelligence model called integrative Random Forest classifier with Genetic Algorithm optimization (RF-GA) for delay problem prediction. At first, related sources and factors of delay problems are identified. A questionnaire is adopted to quantify the impact of delay sources on project performance. The developed hybrid model is trained using the collected data of the previous construction projects. The proposed RF-GA is validated against the classical version of an RF model using statistical performance measure indices. The achieved results of the developed hybrid RF-GA model revealed a good resultant performance in terms of accuracy, kappa and classification error. Based on the measured accuracy, kappa and classification error, RF-GA attained 91.67%, 87% and 8.33%, respectively. Overall, the proposed methodology indicated a robust and reliable technique for project delay prediction that is contributing to the construction project management monitoring and sustainability.
Project delays are the major problems tackled by the construction sector owing to the associated complexity and uncertainty in the construction activities. Artificial Intelligence (AI) models have evidenced their capacity to solve dynamic, uncertain and complex tasks. The aim of this current study is to develop a hybrid artificial intelligence model called integrative Random Forest classifier with Genetic Algorithm optimization (RF-GA) for delay problem prediction. At first, related sources and factors of delay problems are identified. A questionnaire is adopted to quantify the impact of delay sources on project performance. The developed hybrid model is trained using the collected data of the previous construction projects. The proposed RF-GA is validated against the classical version of an RF model using statistical performance measure indices. The achieved results of the developed hybrid RF-GA model revealed a good resultant performance in terms of accuracy, kappa and classification error. Based on the measured accuracy, kappa and classification error, RF-GA attained 91.67%, 87% and 8.33%, respectively. Overall, the proposed methodology indicated a robust and reliable technique for project delay prediction that is contributing to the construction project management monitoring and sustainability. 
Author Yaseen, Zaher Mundher
Salih, Sinan Q.
Ali, Zainab Hasan
Al-Ansari, Nadhir
Author_xml – sequence: 1
  givenname: Zaher Mundher
  orcidid: 0000-0003-3647-7137
  surname: Yaseen
  fullname: Yaseen, Zaher Mundher
– sequence: 2
  givenname: Zainab Hasan
  orcidid: 0000-0003-1916-8164
  surname: Ali
  fullname: Ali, Zainab Hasan
– sequence: 3
  givenname: Sinan Q.
  surname: Salih
  fullname: Salih, Sinan Q.
– sequence: 4
  givenname: Nadhir
  orcidid: 0000-0002-6790-2653
  surname: Al-Ansari
  fullname: Al-Ansari, Nadhir
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77758$$DView record from Swedish Publication Index
BookMark eNptkE9LAzEQxYMoWGsvfoKAN3E12WT_HUurtlCxiPVoyGZnS-qa1CSL9Nu7ZUVFnMsMzG_eG94JOjTWAEJnlFwxVpBr39KYcJpQfoAGMcloRElCDn_Nx2jk_YZ0xRgtaDpAL0sHlVZBW4NtjR-1f8VTaOQOa4Mn1vjg2n67dHYDKni88tqsscSzXel0hccu6ForLRs8NwGaRq_BKMD3toLmFB3VsvEw-upDtLq9eZrMosXD3XwyXkSKsThESZFWCU1JzpQEIKmUUBFaxSklBU94UaaclzXPOEtYlRdQ1onKVMrrmEAh45IN0WWv6z9g25Zi6_SbdDthpRZT_TwW1q1FE1qRZVmSd_h5j2-dfW_BB7GxrTPdhyLmnOVFlnZOQ3TRU8pZ7x3U37KUiH3i4ifxDiZ_YKWD3CcXnNTNfyefD_SEnQ
CitedBy_id crossref_primary_10_1108_JFM_09_2021_0095
crossref_primary_10_1108_IJBPA_07_2021_0098
crossref_primary_10_3390_buildings12091342
crossref_primary_10_3390_su151511848
crossref_primary_10_1007_s40030_022_00651_3
crossref_primary_10_1016_j_autcon_2025_106470
crossref_primary_10_3390_su13073975
crossref_primary_10_1108_JEDT_03_2024_0186
crossref_primary_10_1108_CI_05_2021_0103
crossref_primary_10_2478_otmcj_2023_0014
crossref_primary_10_3390_modelling6020035
crossref_primary_10_1016_j_jclepro_2022_135522
crossref_primary_10_1007_s13198_024_02653_9
crossref_primary_10_3390_joitmc8010016
crossref_primary_10_2478_cee_2021_0066
crossref_primary_10_1108_ECAM_10_2020_0873
crossref_primary_10_3390_app13085014
crossref_primary_10_1108_IJMPB_08_2023_0180
crossref_primary_10_3390_app12020844
crossref_primary_10_1016_j_jwpe_2025_107251
crossref_primary_10_1061_JCEMD4_COENG_16481
crossref_primary_10_1061_JLADAH_LADR_1276
crossref_primary_10_3390_app14093847
crossref_primary_10_1108_ECAM_04_2021_0287
crossref_primary_10_3390_buildings15030473
crossref_primary_10_3390_machines12120919
crossref_primary_10_1080_15623599_2021_1942769
crossref_primary_10_1109_ACCESS_2024_3438291
crossref_primary_10_1007_s42107_022_00514_z
crossref_primary_10_3390_su14020656
crossref_primary_10_1080_10803548_2024_2444807
crossref_primary_10_1080_15623599_2025_2528914
crossref_primary_10_1155_2023_7953967
crossref_primary_10_3390_buildings13112696
crossref_primary_10_3390_met13020232
crossref_primary_10_37648_ijrst_v15i02_003
crossref_primary_10_1016_j_scs_2024_105499
crossref_primary_10_1061_JMENEA_MEENG_6639
crossref_primary_10_1155_2022_9598781
crossref_primary_10_3390_buildings12101660
crossref_primary_10_3390_buildings11020036
crossref_primary_10_3390_su152216071
crossref_primary_10_1016_j_eswa_2024_126268
crossref_primary_10_3390_buildings13010013
crossref_primary_10_3390_informatics9020043
crossref_primary_10_1007_s42107_023_00651_z
crossref_primary_10_3390_su142214927
crossref_primary_10_3390_buildings14010220
crossref_primary_10_1080_09537287_2024_2320790
crossref_primary_10_3390_su13105478
crossref_primary_10_1016_j_aei_2025_103511
crossref_primary_10_1109_TEM_2021_3119064
crossref_primary_10_3390_su142416602
crossref_primary_10_3846_btp_2023_18733
crossref_primary_10_1108_USS_11_2024_0069
crossref_primary_10_3390_en17010182
crossref_primary_10_1007_s13132_024_02464_0
crossref_primary_10_1155_2022_4285328
crossref_primary_10_3390_app12115712
crossref_primary_10_1088_1757_899X_928_2_022083
crossref_primary_10_3390_su13052861
crossref_primary_10_1061_JCEMD4_COENG_12367
crossref_primary_10_1108_ECAM_11_2022_1104
crossref_primary_10_1155_2022_8789067
crossref_primary_10_1108_ECAM_09_2024_1209
crossref_primary_10_15446_dyna_v91n231_107967
crossref_primary_10_1016_j_asoc_2025_112890
crossref_primary_10_3390_asi4030052
crossref_primary_10_4018_IJABIM_384773
crossref_primary_10_1155_adce_5517481
crossref_primary_10_3390_buildings13051312
crossref_primary_10_3390_su142214789
crossref_primary_10_3390_su12219143
crossref_primary_10_1007_s42452_025_07078_y
crossref_primary_10_1108_JEDT_04_2021_0189
crossref_primary_10_1080_15623599_2024_2304389
crossref_primary_10_3390_buildings12081198
crossref_primary_10_1061__ASCE_CO_1943_7862_0002253
crossref_primary_10_3390_joitmc6020026
crossref_primary_10_3390_joitmc8010045
crossref_primary_10_1016_j_jclepro_2022_134069
crossref_primary_10_3390_buildings13092346
Cites_doi 10.1080/2287108X.2015.1059920
10.1109/ACCESS.2019.2920916
10.1061/(ASCE)CO.1943-7862.0001225
10.1007/978-3-642-12035-0_30
10.1016/j.eswa.2013.12.035
10.7551/mitpress/1090.001.0001
10.1061/41020(339)75
10.3846/13923730.2014.971129
10.1016/S0164-1212(01)00088-7
10.1016/j.autcon.2009.11.016
10.1016/j.buildenv.2003.08.012
10.1061/(ASCE)0733-9364(2009)135:3(169)
10.1016/j.autcon.2014.08.006
10.1016/S0263-7863(02)00028-5
10.1061/(ASCE)CO.1943-7862.0001736
10.1016/j.aei.2016.07.001
10.1007/978-3-319-11017-2
10.1016/S0263-7863(00)00037-5
10.1061/(ASCE)CO.1943-7862.0001322
10.1145/1143844.1143874
10.1007/s11269-017-1660-3
10.1016/j.aej.2013.03.002
10.1016/S0263-7863(98)00060-X
10.1016/j.autcon.2008.11.005
10.3390/su11071953
10.1080/01431161.2011.552923
10.1080/01446193.2010.528437
10.1061/(ASCE)CP.1943-5487.0000197
10.1023/A:1010933404324
10.1016/S0263-7863(99)00072-1
10.1016/j.autcon.2008.04.002
10.5345/JKIBC.2011.11.5.523
10.1198/jasa.2004.s339
10.1061/(ASCE)ME.1943-5479.0000096
10.1061/(ASCE)0733-9364(2004)130:6(869)
10.1061/(ASCE)0733-9364(2006)132:12(1242)
10.1061/(ASCE)0733-9364(2006)132:5(491)
10.1061/(ASCE)0742-597X(2010)26:2(105)
10.1061/(ASCE)BE.1943-5592.0001103
10.1109/ICARA.2000.4804025
10.5194/nhess-13-2815-2013
10.1061/(ASCE)CO.1943-7862.0001006
10.28991/cej-0309151
10.1016/j.ijproman.2005.11.010
10.1016/j.ijproman.2006.11.007
10.1007/s12205-014-1128-4
10.3390/w11030502
10.5130/ajceb.v10i1/2.1592
10.3390/sym11050677
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.3390/su12041514
DatabaseName CrossRef
University Readers
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID oai_DiVA_org_ltu_77758
10_3390_su12041514
GroupedDBID 29Q
2WC
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
2XV
ADTPV
AOWAS
C1A
D8T
IAO
IEP
IPNFZ
ISR
ITC
RIG
ZZAVC
ID FETCH-LOGICAL-c332t-596d516083caee06aaed01d261094549b644bf474353d89ebf5c7c64f20e9a2b3
IEDL.DBID BENPR
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522460200232&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2071-1050
IngestDate Tue Nov 04 15:49:39 EST 2025
Mon Oct 20 03:00:49 EDT 2025
Sat Nov 29 07:14:10 EST 2025
Tue Nov 18 21:25:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-596d516083caee06aaed01d261094549b644bf474353d89ebf5c7c64f20e9a2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3647-7137
0000-0002-6790-2653
0000-0003-1916-8164
OpenAccessLink https://www.proquest.com/docview/2443897635?pq-origsite=%requestingapplication%
PQID 2443897635
PQPubID 2032327
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_77758
proquest_journals_2443897635
crossref_primary_10_3390_su12041514
crossref_citationtrail_10_3390_su12041514
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shin (ref_24) 2011; 11
Bilal (ref_29) 2016; 30
(ref_9) 2000; 18
ref_10
ref_54
Breiman (ref_37) 2001; 45
ref_52
Yaseen (ref_32) 2019; 7
Rogalska (ref_48) 2008; 18
Helmer (ref_53) 2002; 60
ref_16
Chou (ref_25) 2012; 27
Kokkaew (ref_19) 2014; 18
Hammad (ref_15) 2008; 2
Rezaie (ref_14) 2007; 190
Fugar (ref_7) 2010; 10
Long (ref_47) 2009; 18
Ismail (ref_51) 2013; 1
Gondia (ref_11) 2020; 146
Asadi (ref_30) 2015; 4
Naghibi (ref_40) 2017; 31
Heravi (ref_27) 2015; 141
ref_23
ref_20
Aibinu (ref_5) 2002; 20
Ruppert (ref_38) 2004; 99
Assaf (ref_3) 2006; 24
Senouci (ref_46) 2004; 130
Liaw (ref_42) 2002; 2
Tabassum (ref_57) 2014; 4
Alipour (ref_41) 2017; 22
Mahamid (ref_12) 2011; 28
ref_36
ref_35
Xia (ref_50) 2017; 143
ref_34
Smeeton (ref_55) 1985; 41
Hassan (ref_31) 2018; 4
Aziz (ref_8) 2013; 52
Chan (ref_13) 2004; 39
Ali (ref_17) 2010; 26
Kandil (ref_45) 2006; 132
Chao (ref_22) 2009; 135
Chou (ref_49) 2014; 41
Catani (ref_39) 2013; 13
Dursun (ref_18) 2011; 29
Apanaviciene (ref_26) 2015; 21
Vorakulpipat (ref_1) 2010; 19
ref_44
ref_43
Pontius (ref_56) 2011; 32
Elazouni (ref_21) 2006; 132
Chan (ref_2) 2001; 19
Chou (ref_33) 2014; 48
Sambasivan (ref_4) 2007; 25
Odeh (ref_6) 2002; 20
Gerassis (ref_28) 2016; 143
References_xml – volume: 4
  start-page: 115
  year: 2015
  ident: ref_30
  article-title: A machine learning approach for predicting delays in construction logistics
  publication-title: Int. J. Adv. Logist.
  doi: 10.1080/2287108X.2015.1059920
– volume: 7
  start-page: 74471
  year: 2019
  ident: ref_32
  article-title: Implementation of univariate paradigm for streamflow simulation using hybrid data-driven model: Case study in tropical region: Implementation of univariate paradigm for streamflow simulation using hybrid data-driven model: Case study in tropical region
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920916
– volume: 143
  start-page: 4016093
  year: 2016
  ident: ref_28
  article-title: Bayesian decision tool for the analysis of occupational accidents in the construction of embankments
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001225
– ident: ref_23
  doi: 10.1007/978-3-642-12035-0_30
– volume: 41
  start-page: 3955
  year: 2014
  ident: ref_49
  article-title: Optimizing parameters of support vector machine using fast messy genetic algorithm for dispute classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.035
– ident: ref_43
  doi: 10.7551/mitpress/1090.001.0001
– ident: ref_16
  doi: 10.1061/41020(339)75
– volume: 41
  start-page: 795
  year: 1985
  ident: ref_55
  article-title: Early history of the kappa statistic
  publication-title: Biometrics
– volume: 21
  start-page: 290
  year: 2015
  ident: ref_26
  article-title: modelling the effectiveness of ppp road infrastructure projects by applying random forests
  publication-title: J. Civ. Eng. Manag.
  doi: 10.3846/13923730.2014.971129
– volume: 60
  start-page: 165
  year: 2002
  ident: ref_53
  article-title: Automated discovery of concise predictive rules for intrusion detection
  publication-title: J. Syst. Softw.
  doi: 10.1016/S0164-1212(01)00088-7
– volume: 19
  start-page: 142
  year: 2010
  ident: ref_1
  article-title: Value creating construction virtual teams: A case study in the construction sector
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2009.11.016
– volume: 4
  start-page: 124
  year: 2014
  ident: ref_57
  article-title: A genetic algorithm analysis towards optimization solutions
  publication-title: Int. J. Digit. Inf. Wirel. Commun.
– volume: 39
  start-page: 339
  year: 2004
  ident: ref_13
  article-title: Developing a benchmark model for project construction time performance in Hong Kong
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2003.08.012
– volume: 135
  start-page: 169
  year: 2009
  ident: ref_22
  article-title: Estimating Project S-Curves Using Polynomial Function and Neural Networks
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)0733-9364(2009)135:3(169)
– volume: 48
  start-page: 88
  year: 2014
  ident: ref_33
  article-title: Hybrid computational model for predicting bridge scour depth near piers and abutments
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2014.08.006
– volume: 20
  start-page: 593
  year: 2002
  ident: ref_5
  article-title: The effects of construction delays on project delivery in Nigerian construction industry
  publication-title: Int. J. Proj. Manag.
  doi: 10.1016/S0263-7863(02)00028-5
– volume: 146
  start-page: 04019085
  year: 2020
  ident: ref_11
  article-title: Machine Learning Algorithms for Construction Projects Delay Risk Prediction
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001736
– volume: 30
  start-page: 500
  year: 2016
  ident: ref_29
  article-title: Big Data in the construction industry: A review of present status, opportunities, and future trends
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2016.07.001
– ident: ref_44
  doi: 10.1007/978-3-319-11017-2
– ident: ref_52
– volume: 20
  start-page: 67
  year: 2002
  ident: ref_6
  article-title: Causes of construction delay: traditional contracts
  publication-title: Int. J. Proj. Manag.
  doi: 10.1016/S0263-7863(00)00037-5
– volume: 143
  start-page: 04017030
  year: 2017
  ident: ref_50
  article-title: Assessment of Stakeholder-Related Risks in Construction Projects: Integrated Analyses of Risk Attributes and Stakeholder Influences
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001322
– volume: 2
  start-page: 250
  year: 2008
  ident: ref_15
  article-title: Prediction model for construction cost and duration in Jordan
  publication-title: Jordan J. Civ. Eng.
– ident: ref_54
  doi: 10.1145/1143844.1143874
– volume: 31
  start-page: 2761
  year: 2017
  ident: ref_40
  article-title: Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1660-3
– volume: 52
  start-page: 387
  year: 2013
  ident: ref_8
  article-title: Ranking of delay factors in construction projects after Egyptian revolution
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2013.03.002
– volume: 18
  start-page: 51
  year: 2000
  ident: ref_9
  article-title: Construction delay: a quantitative analysis
  publication-title: Int. J. Proj. Manag.
  doi: 10.1016/S0263-7863(98)00060-X
– volume: 18
  start-page: 499
  year: 2009
  ident: ref_47
  article-title: A genetic algorithm-based method for scheduling repetitive construction projects
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2008.11.005
– ident: ref_34
  doi: 10.3390/su11071953
– volume: 32
  start-page: 4407
  year: 2011
  ident: ref_56
  article-title: Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2011.552923
– volume: 29
  start-page: 97
  year: 2011
  ident: ref_18
  article-title: Time–cost relationship of building projects: statistical adequacy of categorization with respect to project location
  publication-title: Constr. Manag. Econ.
  doi: 10.1080/01446193.2010.528437
– volume: 27
  start-page: 51
  year: 2012
  ident: ref_25
  article-title: Predicting disputes in public-private partnership projects: Classification and ensemble models
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000197
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_37
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 19
  start-page: 223
  year: 2001
  ident: ref_2
  article-title: Time-cost relationship of public sector projects in Malaysia
  publication-title: Int. J. Proj. Manag.
  doi: 10.1016/S0263-7863(99)00072-1
– volume: 18
  start-page: 24
  year: 2008
  ident: ref_48
  article-title: Time/cost optimization using hybrid evolutionary algorithm in construction project scheduling
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2008.04.002
– volume: 11
  start-page: 523
  year: 2011
  ident: ref_24
  article-title: Formwork System Selection Model for Tall Building Construction Using the Adaboost Algorithm
  publication-title: J. Korea Inst. Build. Constr.
  doi: 10.5345/JKIBC.2011.11.5.523
– volume: 99
  start-page: 567
  year: 2004
  ident: ref_38
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2004.s339
– volume: 28
  start-page: 300
  year: 2011
  ident: ref_12
  article-title: Causes of delay in road construction projects
  publication-title: J. Manag. Eng.
  doi: 10.1061/(ASCE)ME.1943-5479.0000096
– volume: 130
  start-page: 869
  year: 2004
  ident: ref_46
  article-title: Use of Genetic Algorithms in Resource Scheduling of Construction Projects
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)0733-9364(2004)130:6(869)
– volume: 132
  start-page: 1242
  year: 2006
  ident: ref_21
  article-title: Classifying Construction Contractors Using Unsupervised-Learning Neural Networks
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)0733-9364(2006)132:12(1242)
– volume: 132
  start-page: 491
  year: 2006
  ident: ref_45
  article-title: Parallel Genetic Algorithms for Optimizing Resource Utilization in Large-Scale Construction Projects
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)0733-9364(2006)132:5(491)
– volume: 1
  start-page: 2289
  year: 2013
  ident: ref_51
  article-title: Expert opinion on risk level for factors affecting time and cost overrun along the project lifecycle in Malaysian construction projects
  publication-title: Int. J. Constr. Technol. Manag.
– volume: 26
  start-page: 105
  year: 2010
  ident: ref_17
  article-title: Statistical Analysis on the Cost and Duration of Public Building Projects
  publication-title: J. Manag. Eng.
  doi: 10.1061/(ASCE)0742-597X(2010)26:2(105)
– volume: 22
  start-page: 04017076
  year: 2017
  ident: ref_41
  article-title: Load-Capacity Rating of Bridge Populations through Machine Learning: Application of Decision Trees and Random Forests
  publication-title: J. Bridg. Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001103
– ident: ref_20
  doi: 10.1109/ICARA.2000.4804025
– volume: 13
  start-page: 2815
  year: 2013
  ident: ref_39
  article-title: Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-13-2815-2013
– volume: 190
  start-page: 1492
  year: 2007
  ident: ref_14
  article-title: Using extended Monte Carlo simulation method for the improvement of risk management: Consideration of relationships between uncertainties
  publication-title: Appl. Math. Comput.
– volume: 141
  start-page: 04015032
  year: 2015
  ident: ref_27
  article-title: Applying Artificial Neural Networks for Measuring and Predicting Construction-Labor Productivity
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001006
– volume: 4
  start-page: 993
  year: 2018
  ident: ref_31
  article-title: Evaluation of Legislation Adequacy in Managing Time and Quality Performance in Iraqi Construction Projects- a Bayesian Decision Tree Approach
  publication-title: Civ. Eng. J.
  doi: 10.28991/cej-0309151
– volume: 24
  start-page: 349
  year: 2006
  ident: ref_3
  article-title: Causes of delay in large construction projects
  publication-title: Int. J. Proj. Manag.
  doi: 10.1016/j.ijproman.2005.11.010
– volume: 25
  start-page: 517
  year: 2007
  ident: ref_4
  article-title: Causes and effects of delays in Malaysian construction industry
  publication-title: Int. J. Proj. Manag.
  doi: 10.1016/j.ijproman.2006.11.007
– volume: 18
  start-page: 1599
  year: 2014
  ident: ref_19
  article-title: Completion delay risk management: A dynamic risk insurance approach
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-014-1128-4
– ident: ref_36
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_42
  article-title: Classification and regression by randomforest
  publication-title: R News
– ident: ref_35
  doi: 10.3390/w11030502
– volume: 10
  start-page: 103
  year: 2010
  ident: ref_7
  article-title: Delays in Building Construction Projects in Ghana
  publication-title: Australas. J. Constr. Econ. Build.
  doi: 10.5130/ajceb.v10i1/2.1592
– ident: ref_10
  doi: 10.3390/sym11050677
SSID ssj0000331916
Score 2.5472949
Snippet Project delays are the major problems tackled by the construction sector owing to the associated complexity and uncertainty in the construction activities....
SourceID swepub
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1514
SubjectTerms Accuracy
Artificial intelligence
Civil engineering
computer aid
construction project
Contractors
Decision trees
delay sources
Genetic algorithms
Geoteknik
Labor productivity
Literature reviews
Neural networks
Questionnaires
random forest‐genetic algorithm
Research methodology
risk management
Soil Mechanics
Title Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence Model
URI https://www.proquest.com/docview/2443897635
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77758
Volume 12
WOSCitedRecordID wos000522460200232&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60FfTiu1hfLKgHD8Eku0mbk6itKGgJoqIXw2YfUiytNlXw4m93Ntm0FcSLx8CyG_h2duab3fkGYF8HimpXRw4Gr9xhkvoODxhzuJKCqRBdTJrrzF41Op3mw0MU24RbZp9VlmdiflDLgTA58iN0Q-hbjXza8eubY7pGmdtV20JjFqpGqYxVoHra7sQ34yyLS3GLeWGhS0qR3yO-nm_K0j320xNNhZfTkqG5mzlf-u8PLsOiDTDJSbEjVmBG9Vdhvqw_zlah1p7UtuFAa9zZGjzFQ3NrY5AiA01uutkLaake_yTdPjGNPUupWRIX6ZuM5A8OCCcXn6bwK1-0UKQgl1NSn8Q0XOutw915-_bswrHtFxxBqT9ygiiUgRdijCa4Um7IET_Xk74RaGdIK1MMpVLNMAQJqGxGKtWBaIiQad9VEfdTWoNKf9BXG0DQtrmnkJxpJJRRLrMVNKkU2pVUeVLU4bCEIhFWm9y0yOglyFEMbMkEtjrsjce-Foocv47aLlFKrFVmyQSiOhwUKI-nMDLbre79STIYPie90XvSaCCV2vx7mi1Y8A3_zlMy21BBHNQOzImPUTcb7trNuAuz119t_Iovr-PHbxY_7f0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB6loRK90BaKGkqLpZYDhxW7tneTPSCEmqBEhGhV0QouuF4_qogogWzaKn-K38h4H0kqIW4ceh_NPvx5XvZ8A_DFhoZZ38YeBq_S45pRT4ace9JoxU2ELibNeWb7zcGgdXkZJzW4r3ph3LXKyibmhlpPlKuRH6IbQt_q6NOOb-88NzXKna5WIzQKWJyZ-V9M2bKjXhvXd5_S087F165XThXwFGN05oVxpMMgwtBDSWP8SOJr-YGmjnecY7aUYoSQWo6eNWS6FZvUhqqpIm6pb2JJU4Z6X8AaR7C36rCW9M6Tq0VVx2cI6SAqeFAZi33EU0BdG3zA__V8K-HsKkVp7tZOX_9vP-QNbJQBNDkpEP8Wama8CetVf3W2CdudZe8eCpbGK9uC62TqTqUcEsnEkm_D7Ia0zUjOyXBM3ODSikqXJEV5KiP5hQoiSXfuGtvyhxaMG6S3QmVK3EC50Tv4_izfvQ318WRs3gNB2yUDg8mnxYQ5zmnEwhbTyvqamUCrBhxUSy9Uyb3uRoCMBOZgDiZiCZMGfF7I3haMI49K7VaoEKXVycQSEg3YL1C1UOFoxNvDHydiMv0lRrPfotnEVHHnaTV7sN69OO-Lfm9w9gFeUVdryMtPu1DHNTEf4aX6Mxtm00_lRiDw87mh9gC-80df
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RUJVeSstDhEK7EuXQg4Xt9SM-VBVqiIiAyKpoRS8s632giCiBOKXKX-uv64wfSZAqbhy4j9aP_XZeO_MNwCcbGm5dmzjovEon0Nx3ZBgEjjRaBSZCE5MVPLOnca_XurhI0iX4W_fCUFllrRMLRa1HinLkB2iG0LYSfdqBrcoi0nbn6-2dQxOk6Ka1HqdRQuTETP9g-JZ_6bZxr_d9v3N0_u3YqSYMOIpzf-KESaRDL0I3RElj3EjiK7qe9omDPMDIKUNvIbMBWtmQ61ZiMhuqWEWB9V2TSD_juO4LWI5JogHLafcs_TXL8Lgc4e1FJScq54mL2PJ8aon3godWcMG1XaQrLUxcZ_U5_5y38KZyrNlheRLewZIZrsFK3Xedr8Hm0bynDwUrpZavw2U6ptsqQigbWfa9n9-wthnIKesPGQ00rSl2WVqmrXJWFFowyY6n1PBWPLRk4mDdBYpTRoPmBhvw40m-exMaw9HQbAFDnSY9g0GpxUA6KejFwhbXyrqaG0-rJnyuYSBUxclOo0EGAmMzgoyYQ6YJezPZ25KJ5L9SOzVCRKWNcjGHRxP2S4TNliB68Xb_56EYja_FYPJbxDGGkNuPL_MRXiG-xGm3d_IeXpcFFZSV2oEGbonZhZfqftLPxx-qM8Hg6qmR9g-JZlAe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Risk+Delay+in+Construction+Projects+Using+a+Hybrid+Artificial+Intelligence+Model&rft.jtitle=Sustainability&rft.au=Yaseen%2C+Zaher+Mundher&rft.au=Ali%2C+Zainab+Hasan&rft.au=Salih%2C+Sinan+Q.&rft.au=Al-Ansari%2C+Nadhir&rft.date=2020&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=12&rft.issue=4&rft.spage=1514&rft_id=info:doi/10.3390%2Fsu12041514&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su12041514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon