Mixed boundary value problem for p-harmonic functions in an infinite cylinder

We study a mixed boundary value problem for the p-Laplace equation Δpu=0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on a part of the boundary and zero Neumann boundary data on the rest. Existence of weak solutions to the mixed problem is proved both for Sobole...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear analysis Ročník 202; s. 112134
Hlavní autoři: Björn, Jana, Mwasa, Abubakar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2021
Témata:
ISSN:0362-546X, 1873-5215, 1873-5215
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study a mixed boundary value problem for the p-Laplace equation Δpu=0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on a part of the boundary and zero Neumann boundary data on the rest. Existence of weak solutions to the mixed problem is proved both for Sobolev and for continuous data on the Dirichlet part of the boundary. We also obtain a boundary regularity result for the point at infinity in terms of a variational capacity adapted to the cylinder.
ISSN:0362-546X
1873-5215
1873-5215
DOI:10.1016/j.na.2020.112134