Mixed boundary value problem for p-harmonic functions in an infinite cylinder
We study a mixed boundary value problem for the p-Laplace equation Δpu=0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on a part of the boundary and zero Neumann boundary data on the rest. Existence of weak solutions to the mixed problem is proved both for Sobole...
Uloženo v:
| Vydáno v: | Nonlinear analysis Ročník 202; s. 112134 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.01.2021
|
| Témata: | |
| ISSN: | 0362-546X, 1873-5215, 1873-5215 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study a mixed boundary value problem for the p-Laplace equation Δpu=0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on a part of the boundary and zero Neumann boundary data on the rest. Existence of weak solutions to the mixed problem is proved both for Sobolev and for continuous data on the Dirichlet part of the boundary. We also obtain a boundary regularity result for the point at infinity in terms of a variational capacity adapted to the cylinder. |
|---|---|
| ISSN: | 0362-546X 1873-5215 1873-5215 |
| DOI: | 10.1016/j.na.2020.112134 |