Mixed boundary value problem for p-harmonic functions in an infinite cylinder

We study a mixed boundary value problem for the p-Laplace equation Δpu=0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on a part of the boundary and zero Neumann boundary data on the rest. Existence of weak solutions to the mixed problem is proved both for Sobole...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nonlinear analysis Ročník 202; s. 112134
Hlavní autori: Björn, Jana, Mwasa, Abubakar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.01.2021
Predmet:
ISSN:0362-546X, 1873-5215, 1873-5215
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study a mixed boundary value problem for the p-Laplace equation Δpu=0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on a part of the boundary and zero Neumann boundary data on the rest. Existence of weak solutions to the mixed problem is proved both for Sobolev and for continuous data on the Dirichlet part of the boundary. We also obtain a boundary regularity result for the point at infinity in terms of a variational capacity adapted to the cylinder.
AbstractList We study a mixed boundary value problem for the p-Laplace equation Δpu=0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on a part of the boundary and zero Neumann boundary data on the rest. Existence of weak solutions to the mixed problem is proved both for Sobolev and for continuous data on the Dirichlet part of the boundary. We also obtain a boundary regularity result for the point at infinity in terms of a variational capacity adapted to the cylinder.
We study a mixed boundary value problem for the p-Laplace equation Delta(p)u = 0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on a part of the boundary and zero Neumann boundary data on the rest. Existence of weak solutions to the mixed problem is proved both for Sobolev and for continuous data on the Dirichlet part of the boundary. We also obtain a boundary regularity result for the point at infinity in terms of a variational capacity adapted to the cylinder. (C) 2020 TheAuthor(s). Published by Elsevier Ltd.
ArticleNumber 112134
Author Björn, Jana
Mwasa, Abubakar
Author_xml – sequence: 1
  givenname: Jana
  surname: Björn
  fullname: Björn, Jana
  email: jana.bjorn@liu.se
  organization: Department of Mathematics, Linköping University, SE 581 83, Linköping, Sweden
– sequence: 2
  givenname: Abubakar
  surname: Mwasa
  fullname: Mwasa, Abubakar
  email: abubakar.mwasa@liu.se
  organization: Department of Mathematics, Linköping University, SE 581 83, Linköping, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171171$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNp9kE1LAzEQhoNUsK3ePeYPbE2y395K_YSKFxVvIclOdMo2WbK71f57t6xeBIVhhoH3mY93RibOOyDknLMFZzy72CycWggmhpYLHidHZMqLPI5SwdMJmbI4E1GaZK8nZNa2G8YYz-NsSh4e8BMqqn3vKhX2dKfqHmgTvK5hS60PtIneVdh6h4ba3pkOvWspOqrckC067ICafY2ugnBKjq2qWzj7rnPyfHP9tLqL1o-396vlOjJxLLooTcEwnbNCFyCMKAuT5qBzUWZZAoaXmTa6TIQ2UNqyqGxeacsUr0zOmC5tEs9JNM5tP6DptWwCbofrpVcor_BlKX14kzX2kud8iEGfjXoTfNsGsNJgpw6vdEFhLTmTBxPlRjolDybK0cQBZL_An1X_IJcjAoMBO4QgW4PgDFQYwHSy8vg3_AVApYwc
CitedBy_id crossref_primary_10_1016_j_na_2025_113816
Cites_doi 10.4171/ZAA/288
10.1007/BF02392541
10.1007/BF00280825
10.5802/aif.883
10.1002/sapm19243124
10.5802/aif.87
10.1007/BF02392793
10.7146/math.scand.a-12868
10.1007/BF02393130
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright_xml – notice: 2020 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.1016/j.na.2020.112134
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1873-5215
ExternalDocumentID oai_DiVA_org_liu_171171
10_1016_j_na_2020_112134
S0362546X20302996
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
YQT
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ID FETCH-LOGICAL-c332t-55ec0b708b8e2c298c57eb729664ec196bcb942bce9f98df7dbf0a1dc700b9f43
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581179100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0362-546X
1873-5215
IngestDate Tue Nov 04 16:38:02 EST 2025
Sat Nov 29 02:58:19 EST 2025
Tue Nov 18 21:44:12 EST 2025
Fri Feb 23 02:46:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords secondary
Existence of weak solutions
Mixed boundary value problem
Capacity
p-Laplace equation
Wiener criterion
Boundary regularity
Unbounded cylinder
primary
Dirichlet and Neumann data
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c332t-55ec0b708b8e2c298c57eb729664ec196bcb942bce9f98df7dbf0a1dc700b9f43
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171171
ParticipantIDs swepub_primary_oai_DiVA_org_liu_171171
crossref_citationtrail_10_1016_j_na_2020_112134
crossref_primary_10_1016_j_na_2020_112134
elsevier_sciencedirect_doi_10_1016_j_na_2020_112134
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Nonlinear analysis
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Littman, Stampacchia, Weinberger (b14) 1963; 17
Mikkonen (b17) 1996; 104
Björn (b1) 1997; 81
Fabes, Jerison, Kenig (b3) 1982; 32:3
Kilpeläinen (b9) 1994; 19
Gariepy, Ziemer (b4) 1977; 67
Kerimov, Maz’ya, Novruzov (b8) 1987; 7
Zaremba (b19) 1910
Ziemer (b21) 1989
Hörmander (b7) 1990
Kinnunen, Martio (b11) 2000
Maz’ya (b15) 1970; 25
Lindqvist, Martio (b13) 1985; 155
Heinonen (b5) 2005
Kilpeläinen, Malý (b10) 1994; 172
Wiener (b18) 1924; 3
Choquet (b2) 1959; 9
Maz’ya (b16) 2011
Heinonen, Kilpeläinen, Martio (b6) 2006
Zaremba (b20) 1911; 34
Lebesgue (b12) 1913; vol. 41
Zaremba (10.1016/j.na.2020.112134_b19) 1910
Fabes (10.1016/j.na.2020.112134_b3) 1982; 32:3
Heinonen (10.1016/j.na.2020.112134_b5) 2005
Maz’ya (10.1016/j.na.2020.112134_b16) 2011
Gariepy (10.1016/j.na.2020.112134_b4) 1977; 67
Heinonen (10.1016/j.na.2020.112134_b6) 2006
Wiener (10.1016/j.na.2020.112134_b18) 1924; 3
Kilpeläinen (10.1016/j.na.2020.112134_b10) 1994; 172
Kilpeläinen (10.1016/j.na.2020.112134_b9) 1994; 19
Littman (10.1016/j.na.2020.112134_b14) 1963; 17
Zaremba (10.1016/j.na.2020.112134_b20) 1911; 34
Lindqvist (10.1016/j.na.2020.112134_b13) 1985; 155
Kerimov (10.1016/j.na.2020.112134_b8) 1987; 7
Mikkonen (10.1016/j.na.2020.112134_b17) 1996; 104
Maz’ya (10.1016/j.na.2020.112134_b15) 1970; 25
Kinnunen (10.1016/j.na.2020.112134_b11) 2000
Choquet (10.1016/j.na.2020.112134_b2) 1959; 9
Lebesgue (10.1016/j.na.2020.112134_b12) 1913; vol. 41
Ziemer (10.1016/j.na.2020.112134_b21) 1989
Hörmander (10.1016/j.na.2020.112134_b7) 1990
Björn (10.1016/j.na.2020.112134_b1) 1997; 81
References_xml – year: 2006
  ident: b6
  article-title: Nonlinear Potential Theory of Degenerate Elliptic Equations
– volume: 7
  start-page: 113
  year: 1987
  end-page: 125
  ident: b8
  article-title: Criterion of regularity of the infinitely distant point for the Zaremba problem in a half-cylinder
  publication-title: Z. Anal. Anwend.
– year: 2011
  ident: b16
  article-title: Sobolev Spaces
– volume: 25
  start-page: 42
  year: 1970
  end-page: 55
  ident: b15
  article-title: On the continuity at a boundary point of solutions of quasi-linear elliptic equations
  publication-title: Vestn. Leningr. Univ. Mat. Mekh. Astron.
– start-page: 313
  year: 1910
  end-page: 344
  ident: b19
  article-title: Sur un problème mixte relatif à l’èquation de Laplace
  publication-title: Bull. Int. Acad. Polon. Sci. Crac. Lett. Cl. Sci. Math. Nat. Sér. A Sci. Math.
– volume: 3
  start-page: 24
  year: 1924
  end-page: 51
  ident: b18
  article-title: Certain notions in potential theory
  publication-title: J. Math. Phys.
– volume: 9
  start-page: 83
  year: 1959
  end-page: 89
  ident: b2
  article-title: Forme abstraite du théorème de capacitabilité
  publication-title: Ann. Inst. Fourier (Grenoble)
– volume: 172
  start-page: 137
  year: 1994
  end-page: 161
  ident: b10
  article-title: The Wiener test and potential estimates for quasilinear elliptic equations
  publication-title: Acta Math.
– year: 1989
  ident: b21
  article-title: Weakly Differentiable Functions
– year: 1990
  ident: b7
  article-title: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis
– volume: 81
  start-page: 101
  year: 1997
  end-page: 126
  ident: b1
  article-title: Regularity at infinity for a mixed problem for degenerate elliptic operators in a half-cylinder
  publication-title: Math. Scand.
– volume: 67
  start-page: 25
  year: 1977
  end-page: 39
  ident: b4
  article-title: A regularity condition at the boundary for solutions of quasilinear elliptic equations
  publication-title: Arch. Ration. Mech. Anal.
– volume: 19
  start-page: 95
  year: 1994
  end-page: 113
  ident: b9
  article-title: Weighted Sobolev spaces and capacity
  publication-title: Ann. Acad. Sci. Fenn. AI
– volume: 32:3
  start-page: 151
  year: 1982
  end-page: 182
  ident: b3
  article-title: The Wiener test for degenerate elliptic equations
  publication-title: Ann. Inst. Fourier (Grenoble)
– volume: 104
  year: 1996
  ident: b17
  article-title: On the Wolff potential and quasilinear elliptic equations involving measures
  publication-title: Ann. Acad. Sci. Fenn. Math. Diss.
– start-page: 285
  year: 2000
  end-page: 290
  ident: b11
  article-title: Choquet property for the Sobolev capacity in metric spaces
  publication-title: Proceedings on Analysis and Geometry (Novosibirsk, Akademgorodok, 1999)
– volume: 34
  start-page: 293
  year: 1911
  end-page: 316
  ident: b20
  article-title: Sur le principe de Dirichlet
  publication-title: Acta Math.
– volume: vol. 41
  start-page: 17
  year: 1913
  ident: b12
  article-title: Sur des cas d’impossibilité du problème de Dirichlet ordinaire
  publication-title: Vie de la Société (in the Part C. R. Séances Soc. Math. France (1912))
– volume: 155
  start-page: 153
  year: 1985
  end-page: 171
  ident: b13
  article-title: Two theorems of N. Wiener for solutions of quasilinear elliptic equations
  publication-title: Acta Math.
– year: 2005
  ident: b5
  article-title: Lectures on Lipschitz Analysis
– volume: 17
  start-page: 43
  year: 1963
  end-page: 77
  ident: b14
  article-title: Regular points for elliptic equations with discontinuous coefficients
  publication-title: Ann. Sc. Norm. Super Pisa Cl. Sci.
– volume: 7
  start-page: 113
  year: 1987
  ident: 10.1016/j.na.2020.112134_b8
  article-title: Criterion of regularity of the infinitely distant point for the Zaremba problem in a half-cylinder
  publication-title: Z. Anal. Anwend.
  doi: 10.4171/ZAA/288
– volume: 155
  start-page: 153
  year: 1985
  ident: 10.1016/j.na.2020.112134_b13
  article-title: Two theorems of N. Wiener for solutions of quasilinear elliptic equations
  publication-title: Acta Math.
  doi: 10.1007/BF02392541
– volume: 67
  start-page: 25
  year: 1977
  ident: 10.1016/j.na.2020.112134_b4
  article-title: A regularity condition at the boundary for solutions of quasilinear elliptic equations
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00280825
– year: 2005
  ident: 10.1016/j.na.2020.112134_b5
– volume: 32:3
  start-page: 151
  year: 1982
  ident: 10.1016/j.na.2020.112134_b3
  article-title: The Wiener test for degenerate elliptic equations
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.883
– year: 1990
  ident: 10.1016/j.na.2020.112134_b7
– volume: 3
  start-page: 24
  year: 1924
  ident: 10.1016/j.na.2020.112134_b18
  article-title: Certain notions in potential theory
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm19243124
– volume: 19
  start-page: 95
  year: 1994
  ident: 10.1016/j.na.2020.112134_b9
  article-title: Weighted Sobolev spaces and capacity
  publication-title: Ann. Acad. Sci. Fenn. AI
– volume: 9
  start-page: 83
  year: 1959
  ident: 10.1016/j.na.2020.112134_b2
  article-title: Forme abstraite du théorème de capacitabilité
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.87
– volume: 172
  start-page: 137
  year: 1994
  ident: 10.1016/j.na.2020.112134_b10
  article-title: The Wiener test and potential estimates for quasilinear elliptic equations
  publication-title: Acta Math.
  doi: 10.1007/BF02392793
– volume: 81
  start-page: 101
  year: 1997
  ident: 10.1016/j.na.2020.112134_b1
  article-title: Regularity at infinity for a mixed problem for degenerate elliptic operators in a half-cylinder
  publication-title: Math. Scand.
  doi: 10.7146/math.scand.a-12868
– volume: 17
  start-page: 43
  year: 1963
  ident: 10.1016/j.na.2020.112134_b14
  article-title: Regular points for elliptic equations with discontinuous coefficients
  publication-title: Ann. Sc. Norm. Super Pisa Cl. Sci.
– start-page: 285
  year: 2000
  ident: 10.1016/j.na.2020.112134_b11
  article-title: Choquet property for the Sobolev capacity in metric spaces
– volume: vol. 41
  start-page: 17
  year: 1913
  ident: 10.1016/j.na.2020.112134_b12
  article-title: Sur des cas d’impossibilité du problème de Dirichlet ordinaire
– start-page: 313
  year: 1910
  ident: 10.1016/j.na.2020.112134_b19
  article-title: Sur un problème mixte relatif à l’èquation de Laplace
  publication-title: Bull. Int. Acad. Polon. Sci. Crac. Lett. Cl. Sci. Math. Nat. Sér. A Sci. Math.
– volume: 34
  start-page: 293
  year: 1911
  ident: 10.1016/j.na.2020.112134_b20
  article-title: Sur le principe de Dirichlet
  publication-title: Acta Math.
  doi: 10.1007/BF02393130
– year: 2011
  ident: 10.1016/j.na.2020.112134_b16
– volume: 104
  year: 1996
  ident: 10.1016/j.na.2020.112134_b17
  article-title: On the Wolff potential and quasilinear elliptic equations involving measures
  publication-title: Ann. Acad. Sci. Fenn. Math. Diss.
– year: 1989
  ident: 10.1016/j.na.2020.112134_b21
– year: 2006
  ident: 10.1016/j.na.2020.112134_b6
– volume: 25
  start-page: 42
  issue: 13
  year: 1970
  ident: 10.1016/j.na.2020.112134_b15
  article-title: On the continuity at a boundary point of solutions of quasi-linear elliptic equations
  publication-title: Vestn. Leningr. Univ. Mat. Mekh. Astron.
SSID ssj0001736
Score 2.3180609
Snippet We study a mixed boundary value problem for the p-Laplace equation Δpu=0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on...
We study a mixed boundary value problem for the p-Laplace equation Delta(p)u = 0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 112134
SubjectTerms [formula omitted]-Laplace equation
Boundary regularity
Capacity
Dirichlet and Neumann data
Existence of weak solutions
Mixed boundary value problem
Unbounded cylinder
Wiener criterion
Title Mixed boundary value problem for p-harmonic functions in an infinite cylinder
URI https://dx.doi.org/10.1016/j.na.2020.112134
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171171
Volume 202
WOSCitedRecordID wos000581179100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5215
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001736
  issn: 1873-5215
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbQlgMcSikgyks-ICRUBZI4iePjQougYlccSrU3y3YclO3KXSW7sP33jB8Ji6pW5cAlSqLEifxNJjPjmW8Qek1EzmIBnqrWTEVZUgn45mQVEZLZdV4imVvBP_tKp9NyNmPfQs_MzrUToMaUmw1b_leo4RyAbUtn_wHuYVA4AfsAOmwBdtjeCvhJs7FWpWuX1F4eWjZvWwzl-sa4pMJlZOmqXecb-1cbksmFTXqsG2uEHqrLheVRbLdt16ln1RA269IzmQy-_Nyut38ofGLwiTCDrp_8Ep2P3Mq1FOei3Y4y-KLloBJLSsBd9UWXvc5MXZn0Vf3rQwHzd8ZSOqWuQCkJwcqrrNZHzdmYX7Q_-KJZ84QmieUC2EkpSM8I7Yy_HM9Ohp9qQknRM4HlWTGzfnT_YmH12aft_f3ka62NbVpYZ0qc7qHd4APgscfuIbqjzT56EPwBHLRtt4_ub5FFwtFkYNjtHqGJgxn3MGMHMw4wY4AZ_4EZDzDjxmBhcA8z7mF-jL5_Oj79-DkKrTEiRUi6ivJcq1jSuJSlTlXKSpVTLcFRKopMK9CqUkmWpVJpVrOyqmkl61gklaJxLFmdkSdoZC6MfoqwUjrJy0RTXYG5VquyqGUMY0gKxn3F6gP0vp9CrgJvvG1fsuB9guCcG8HtpHM_6Qfo7XDH0nOm3HAt6VHhwebzthwHkbrhrjcewGH8a-Tp2W0vfI7uWbH3wbUXaLRq1_oluqt-rpqufRWk8TcEHIQC
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+boundary+value+problem+for+p-harmonic+functions+in+an+infinite+cylinder&rft.jtitle=Nonlinear+analysis&rft.au=Bj%C3%B6rn%2C+Jana&rft.au=Mwasa%2C+Abubakar&rft.date=2021&rft.issn=1873-5215&rft.volume=202&rft_id=info:doi/10.1016%2Fj.na.2020.112134&rft.externalDocID=oai_DiVA_org_liu_171171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon