DeepMerge – II. Building robust deep learning algorithms for merging galaxy identification across domains

In astronomy, neural networks are often trained on simulation data with the prospect of being used on telescope observations. Unfortunately, training a model on simulation data and then applying it to instrument data leads to a substantial and potentially even detrimental decrease in model accuracy...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Monthly notices of the Royal Astronomical Society Ročník 506; číslo 1; s. 677 - 691
Hlavní autoři: Ćiprijanović, A, Kafkes, D, Downey, K, Jenkins, S, Perdue, G N, Madireddy, S, Johnston, T, Snyder, G F, Nord, B
Médium: Journal Article
Jazyk:angličtina
Vydáno: United Kingdom Oxford University Press 01.09.2021
Témata:
ISSN:0035-8711, 1365-2966
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In astronomy, neural networks are often trained on simulation data with the prospect of being used on telescope observations. Unfortunately, training a model on simulation data and then applying it to instrument data leads to a substantial and potentially even detrimental decrease in model accuracy on the new target data set. Simulated and instrument data represent different data domains, and for an algorithm to work in both, domain-invariant learning is necessary. Here, we employ domain adaptation techniques – Maximum Mean Discrepancy as an additional transfer loss and Domain Adversarial Neural Networks – and demonstrate their viability to extract domain-invariant features within the astronomical context of classifying merging and non-merging galaxies. Additionally, we explore the use of Fisher loss and entropy minimization to enforce better in-domain class discriminability. We show that the addition of each domain adaptation technique improves the performance of a classifier when compared to conventional deep learning algorithms. We demonstrate this on two examples: between two Illustris-1 simulated data sets of distant merging galaxies, and between Illustris-1 simulated data of nearby merging galaxies and observed data from the Sloan Digital Sky Survey. The use of domain adaptation techniques in our experiments leads to an increase of target domain classification accuracy of up to ${\sim }20{{\ \rm per\ cent}}$. With further development, these techniques will allow astronomers to successfully implement neural network models trained on simulation data to efficiently detect and study astrophysical objects in current and future large-scale astronomical surveys.
AbstractList In astronomy, neural networks are often trained on simulation data with the prospect of being used on telescope observations. Unfortunately, training a model on simulation data and then applying it to instrument data leads to a substantial and potentially even detrimental decrease in model accuracy on the new target data set. Simulated and instrument data represent different data domains, and for an algorithm to work in both, domain-invariant learning is necessary. Here, we employ domain adaptation techniques – Maximum Mean Discrepancy as an additional transfer loss and Domain Adversarial Neural Networks – and demonstrate their viability to extract domain-invariant features within the astronomical context of classifying merging and non-merging galaxies. Additionally, we explore the use of Fisher loss and entropy minimization to enforce better in-domain class discriminability. We show that the addition of each domain adaptation technique improves the performance of a classifier when compared to conventional deep learning algorithms. We demonstrate this on two examples: between two Illustris-1 simulated data sets of distant merging galaxies, and between Illustris-1 simulated data of nearby merging galaxies and observed data from the Sloan Digital Sky Survey. The use of domain adaptation techniques in our experiments leads to an increase of target domain classification accuracy of up to ${\sim }20{{\ \rm per\ cent}}$. With further development, these techniques will allow astronomers to successfully implement neural network models trained on simulation data to efficiently detect and study astrophysical objects in current and future large-scale astronomical surveys.
ABSTRACT In astronomy, neural networks are often trained on simulation data with the prospect of being used on telescope observations. Unfortunately, training a model on simulation data and then applying it to instrument data leads to a substantial and potentially even detrimental decrease in model accuracy on the new target data set. Simulated and instrument data represent different data domains, and for an algorithm to work in both, domain-invariant learning is necessary. Here, we employ domain adaptation techniques – Maximum Mean Discrepancy as an additional transfer loss and Domain Adversarial Neural Networks – and demonstrate their viability to extract domain-invariant features within the astronomical context of classifying merging and non-merging galaxies. Additionally, we explore the use of Fisher loss and entropy minimization to enforce better in-domain class discriminability. We show that the addition of each domain adaptation technique improves the performance of a classifier when compared to conventional deep learning algorithms. We demonstrate this on two examples: between two Illustris-1 simulated data sets of distant merging galaxies, and between Illustris-1 simulated data of nearby merging galaxies and observed data from the Sloan Digital Sky Survey. The use of domain adaptation techniques in our experiments leads to an increase of target domain classification accuracy of up to ${\sim }20{{\ \rm per\ cent}}$. With further development, these techniques will allow astronomers to successfully implement neural network models trained on simulation data to efficiently detect and study astrophysical objects in current and future large-scale astronomical surveys.
Author Downey, K
Kafkes, D
Madireddy, S
Perdue, G N
Johnston, T
Snyder, G F
Ćiprijanović, A
Jenkins, S
Nord, B
Author_xml – sequence: 1
  givenname: A
  orcidid: 0000-0003-1281-7192
  surname: Ćiprijanović
  fullname: Ćiprijanović, A
– sequence: 2
  givenname: D
  surname: Kafkes
  fullname: Kafkes, D
– sequence: 3
  givenname: K
  surname: Downey
  fullname: Downey, K
– sequence: 4
  givenname: S
  surname: Jenkins
  fullname: Jenkins, S
– sequence: 5
  givenname: G N
  surname: Perdue
  fullname: Perdue, G N
– sequence: 6
  givenname: S
  surname: Madireddy
  fullname: Madireddy, S
– sequence: 7
  givenname: T
  surname: Johnston
  fullname: Johnston, T
– sequence: 8
  givenname: G F
  orcidid: 0000-0002-4226-304X
  surname: Snyder
  fullname: Snyder, G F
– sequence: 9
  givenname: B
  orcidid: 0000-0001-6706-8972
  surname: Nord
  fullname: Nord, B
BackLink https://www.osti.gov/biblio/1807592$$D View this record in Osti.gov
BookMark eNp1kL1OwzAUhS1UJEphZbbY0_oncZIRyl-lIhaYoxvbSQ2JXdmuRDfegTfkSUhbWJCYrnR0vqNzzykaWWc1QheUTCkp-ay3HsIsRKipyPMjNKZcZAkrhRihMSE8S4qc0hN0GsIrISTlTIzR243W60ftW42_Pj7xYjHF1xvTKWNb7F29CRGrwYE7Dd7uROha501c9QE3zuN-QHdyCx28b7FR2kbTGAnROItBehcCVq4HY8MZOm6gC_r8507Qy93t8_whWT7dL-ZXy0RyzmLCicoVU7zUGRGCqLSAPCso15LpomS0YXVDQAoCqpR1nvJUFpRlQFUOTGTAJ-jykOtCNFWQJmq5ks5aLWNFC5JnJRtM04NpX9Hrplp704PfVpRUuz2r_Z7V754DkP4BhuD9m9GD6f7DvgGhpYGG
CitedBy_id crossref_primary_10_1051_0004_6361_202348188
crossref_primary_10_3847_1538_4365_ad66ca
crossref_primary_10_1093_mnras_stac1609
crossref_primary_10_1051_0004_6361_202346743
crossref_primary_10_1017_pasa_2022_55
crossref_primary_10_1093_mnras_stad414
crossref_primary_10_3847_1538_4365_add0b8
crossref_primary_10_1093_mnras_stad1895
crossref_primary_10_1093_mnras_stac1241
crossref_primary_10_3847_1538_4365_acab02
crossref_primary_10_1088_2632_2153_acca5f
crossref_primary_10_1093_mnras_stad3181
crossref_primary_10_3847_1538_4357_ac8c27
crossref_primary_10_3847_1538_4357_adee16
crossref_primary_10_3847_1538_4357_acdfc7
crossref_primary_10_1051_0004_6361_202452799
crossref_primary_10_1088_2632_2153_ac98f4
crossref_primary_10_3847_2041_8213_ad8dd4
crossref_primary_10_1051_0004_6361_202452659
crossref_primary_10_1155_2022_6758684
crossref_primary_10_3847_1538_3881_ad1661
crossref_primary_10_1088_2632_2153_ac7f1a
crossref_primary_10_3847_1538_4357_ac66ea
crossref_primary_10_1051_epjconf_202226500009
crossref_primary_10_1093_mnras_stab3717
crossref_primary_10_1093_mnras_stac3295
Cites_doi 10.1214/aoms/1177729694
10.1093/mnras/stz1059
10.1007/978-3-319-58347-1_1
10.1093/mnras/stx2656
10.1109/CVPR.2019.00503
10.1093/mnras/stv2078
10.3847/1538-4357/aabfed
10.1086/377318
10.1093/mnras/sty1398
10.1111/j.1365-2966.2010.17432.x
10.1146/annurev-astro-081811-125615
10.1137/1.9781611976236.53
10.1111/j.1468-4004.2009.50512.x
10.23915/distill.00002
10.1093/mnras/stx3040
10.1145/3400066
10.1109/TNN.2010.2091281
10.1111/j.1365-2966.2008.13689.x
10.1007/978-3-319-49409-8_35
10.1086/427183
10.1109/CVPR.2009.5206848
10.1093/mnras/stx3304
10.1016/j.neucom.2018.05.083
10.1093/mnras/stu2058
10.1093/mnras/stu1536
10.1145/3295500.3356202
10.1111/j.1365-2966.2009.15686.x
10.1016/j.ascom.2020.100390
10.1086/421849
10.1093/mnras/staa2777
10.1111/j.1365-2966.2006.11287.x
10.1109/CVPR.2016.90
10.1093/mnras/stz2934
10.1093/mnras/staa3778
10.1111/j.1365-2966.2007.11458.x
10.1051/0004-6361/202038084
10.3847/1538-4357/ab8f9b
10.1051/0004-6361/202037963
10.1109/HiPC.2018.00014
10.1002/j.1538-7305.1948.tb01338.x
10.1051/0004-6361/201935355
10.1007/s11263-019-01228-7
10.1109/TPAMI.2016.2599532
10.1186/s40668-019-0028-x
ContentType Journal Article
CorporateAuthor Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)Argonne National Laboratory (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF)
CorporateAuthor_xml – name: Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)Argonne National Laboratory (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF)
DBID AAYXX
CITATION
OTOTI
DOI 10.1093/mnras/stab1677
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 691
ExternalDocumentID 1807592
10_1093_mnras_stab1677
GroupedDBID -DZ
-~X
.2P
.I3
0R~
123
1OC
29M
4.4
48X
51W
51X
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8UM
AAHTB
AAIJN
AAJKP
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAVAP
AAYXX
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABGNP
ABIXL
ABNKS
ABPEJ
ABPTD
ABQLI
ABVLG
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUXJ
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFEBI
AFFZL
AFIYH
AFOFC
AGINJ
AGSYK
AHGBF
AHXPO
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
AVWKF
AXUDD
AZVOD
BAYMD
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CDBKE
CITATION
CO8
DAKXR
DILTD
DR2
DU5
D~K
E.L
E3Z
EBS
EE~
F5P
F9B
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
M43
MK4
NGC
NMDNZ
NOMLY
O9-
OCL
ODMLO
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PEELM
PQQKQ
Q1.
Q11
Q5Y
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
V8K
W8V
WH7
X5Q
X5S
YAYTL
YKOAZ
YXANX
69O
AABJS
AABMN
AAESY
AAIYJ
AAPBV
ABPTK
ADEIU
ADIPN
ADORX
ADQLU
ADRIX
AFUVZ
AFXEN
AIKOY
ARQIP
AUCZF
AZQFJ
BCRHZ
BY8
BYORX
CASEJ
DPORF
DPPUQ
ESX
OTOTI
OWPYF
PQEST
RHF
UMP
WRC
ID FETCH-LOGICAL-c332t-30d7d2d39e50660d48a75813ec2e8921f2bf0ac60ad9cb7434c8125a1d7a265a3
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703918800044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-8711
IngestDate Fri May 19 00:43:38 EDT 2023
Tue Nov 18 20:48:37 EST 2025
Sat Nov 29 02:38:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c332t-30d7d2d39e50660d48a75813ec2e8921f2bf0ac60ad9cb7434c8125a1d7a265a3
Notes AC02-06CH11357; AC02-07CH11359
USDOE Office of Science (SC), High Energy Physics (HEP)
FERMILAB-PUB-21-072-SCD; arXiv:2103.01373
ORCID 0000-0003-1281-7192
0000-0001-6706-8972
0000-0002-4226-304X
0000000312817192
000000024226304X
0000000167068972
PageCount 15
ParticipantIDs osti_scitechconnect_1807592
crossref_primary_10_1093_mnras_stab1677
crossref_citationtrail_10_1093_mnras_stab1677
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Ganin (2022061100144889200_bib15) 2016; 17
Kullback (2022061100144889200_bib27) 1951; 22
Balaprakash (2022061100144889200_bib2) 2018
Sun (2022061100144889200_bib51) 2016
Shannon (2022061100144889200_bib43) 1948; 27
Venkateswara (2022061100144889200_bib53) 2017
van der Maaten (2022061100144889200_bib52) 2008; 9
Gretton (2022061100144889200_bib19) 2012
Shen (2022061100144889200_bib44) 2018
Kitzbichler (2022061100144889200_bib25) 2007; 376
Ćiprijanović (2022061100144889200_bib61) 2020; 32
Huertas-Company (2022061100144889200_bib22) 2018; 858
Pearson (2022061100144889200_bib37) 2019; 626
Driver (2022061100144889200_bib13) 2009; 50
Wattenberg (2022061100144889200_bib57) 2016
Zhang (2022061100144889200_bib59) 2020
Gretton (2022061100144889200_bib20) 2012; 13
He (2022061100144889200_bib21) 2016
Balaprakash (2022061100144889200_bib3) 2019
Darg (2022061100144889200_bib9) 2010; 401
Madau (2022061100144889200_bib33) 2014; 52
Lin (2022061100144889200_bib28) 2004; 617
Nelson (2022061100144889200_bib34) 2018; 475
Ackermann (2022061100144889200_bib1) 2018; 479
Ginzburg (2022061100144889200_bib17) 2021; 501
Snyder (2022061100144889200_bib47) 2015; 454
Wang (2022061100144889200_bib56) 2020; 644
Grandvalet (2022061100144889200_bib18) 2005
Wilson (2022061100144889200_bib58) 2020; 11
Chollet (2022061100144889200_bib6) 2016
Saenko (2022061100144889200_bib39) 2010
Ghifary (2022061100144889200_bib16) 2017; 39
Pillepich (2022061100144889200_bib38) 2018; 473
Liu (2022061100144889200_bib31) 2016
Simonyan (2022061100144889200_bib45) 2015
Pan (2022061100144889200_bib36) 2011; 22
Vogelsberger (2022061100144889200_bib54) 2014; 444
Cavanagh (2022061100144889200_bib5) 2020; 641
Lintott (2022061100144889200_bib30) 2010; 410
Huertas-Company (2022061100144889200_bib23) 2020; 499
Bottrell (2022061100144889200_bib4) 2019; 490
Deng (2022061100144889200_bib12) 2009
Schaye (2022061100144889200_bib40) 2015; 446
Koppula (2022061100144889200_bib26) 2021
Smola (2022061100144889200_bib46) 2007
De Lucia (2022061100144889200_bib11) 2007; 375
Sérsic (2022061100144889200_bib42) 1963; 6
Conselice (2022061100144889200_bib7) 2003; 126
Sun (2022061100144889200_bib50) 2016
Csurka (2022061100144889200_bib8) 2017
Lotz (2022061100144889200_bib32) 2004; 128
Springel (2022061100144889200_bib49) 2018; 475
Zhang (2022061100144889200_bib60) 2020
de Jong (2022061100144889200_bib10) 2013; 154
Lintott (2022061100144889200_bib29) 2008; 389
Nelson (2022061100144889200_bib35) 2019; 6
Snyder (2022061100144889200_bib48) 2019; 486
Wang (2022061100144889200_bib55) 2018; 312
Kang (2022061100144889200_bib24) 2019
Ferreira (2022061100144889200_bib14) 2020; 895
Selvaraju (2022061100144889200_bib41) 2020; 128
References_xml – volume: 22
  start-page: 79
  year: 1951
  ident: 2022061100144889200_bib27
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177729694
– volume: 486
  start-page: 3702
  year: 2019
  ident: 2022061100144889200_bib48
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1059
– start-page: 1
  volume-title: A Comprehensive Survey on Domain Adaptation for Visual Applications
  year: 2017
  ident: 2022061100144889200_bib8
  doi: 10.1007/978-3-319-58347-1_1
– volume: 473
  start-page: 4077
  year: 2018
  ident: 2022061100144889200_bib38
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2656
– start-page: 13
  volume-title: Algorithmic Learning Theory, Lecture Notes in Computer Science 4754
  year: 2007
  ident: 2022061100144889200_bib46
– start-page: 4888
  volume-title: in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2019
  ident: 2022061100144889200_bib24
  doi: 10.1109/CVPR.2019.00503
– volume: 454
  start-page: 1886
  year: 2015
  ident: 2022061100144889200_bib47
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2078
– volume: 858
  start-page: 114
  year: 2018
  ident: 2022061100144889200_bib22
  publication-title: ApJ
  doi: 10.3847/1538-4357/aabfed
– volume: 126
  start-page: 1183
  year: 2003
  ident: 2022061100144889200_bib7
  publication-title: AJ
  doi: 10.1086/377318
– volume: 154
  start-page: 44
  year: 2013
  ident: 2022061100144889200_bib10
  publication-title: Messenger
– volume: 479
  start-page: 415
  year: 2018
  ident: 2022061100144889200_bib1
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1398
– volume: 410
  start-page: 166
  year: 2010
  ident: 2022061100144889200_bib30
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17432.x
– start-page: 469
  volume-title: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems
  year: 2016
  ident: 2022061100144889200_bib31
– start-page: 213
  volume-title: Proceedings of the 11th European Conference on Computer Vision: Part IV. ECCV’10
  year: 2010
  ident: 2022061100144889200_bib39
– volume: 52
  start-page: 415
  year: 2014
  ident: 2022061100144889200_bib33
  publication-title: Ann. Rev. Astron. Astrophys.
  doi: 10.1146/annurev-astro-081811-125615
– start-page: 469
  volume-title: Proceedings of the 2020 SIAM International Conference on Data Mining (SDM)
  year: 2020
  ident: 2022061100144889200_bib59
  doi: 10.1137/1.9781611976236.53
– volume: 17
  start-page: 1
  year: 2016
  ident: 2022061100144889200_bib15
  publication-title: J. Mach. Learn. Res.
– volume: 50
  start-page: 5.12
  year: 2009
  ident: 2022061100144889200_bib13
  publication-title: A&G
  doi: 10.1111/j.1468-4004.2009.50512.x
– volume: 6
  start-page: 99
  year: 1963
  ident: 2022061100144889200_bib42
  publication-title: Boletin de la Asociacion Argentina de Astronomia La Plata Argentina
– year: 2016
  ident: 2022061100144889200_bib57
  article-title: Distill, How to Use t-SNE Effectively
  doi: 10.23915/distill.00002
– volume: 475
  start-page: 624
  year: 2018
  ident: 2022061100144889200_bib34
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3040
– volume: 11
  start-page: 1
  year: 2020
  ident: 2022061100144889200_bib58
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3400066
– year: 2016
  ident: 2022061100144889200_bib6
  publication-title: CoRR
– volume: 22
  start-page: 199
  year: 2011
  ident: 2022061100144889200_bib36
  publication-title: Trans. Neur. Netw.
  doi: 10.1109/TNN.2010.2091281
– volume: 389
  start-page: 1179
  year: 2008
  ident: 2022061100144889200_bib29
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13689.x
– start-page: 443
  volume-title: Lecture Notes in Computer Science Vol. 9915, Computer Vision – ECCV 2016 Workshops – Amsterdam, Proceedings, Part III
  year: 2016
  ident: 2022061100144889200_bib50
  doi: 10.1007/978-3-319-49409-8_35
– volume: 617
  start-page: L9
  year: 2004
  ident: 2022061100144889200_bib28
  publication-title: ApJ
  doi: 10.1086/427183
– start-page: 248
  volume-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2009
  ident: 2022061100144889200_bib12
  doi: 10.1109/CVPR.2009.5206848
– start-page: 2058
  volume-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI’16
  year: 2016
  ident: 2022061100144889200_bib51
– volume: 9
  start-page: 2579
  year: 2008
  ident: 2022061100144889200_bib52
  publication-title: J. Mach. Learn. Res.
– volume: 475
  start-page: 676
  year: 2018
  ident: 2022061100144889200_bib49
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3304
– start-page: 529
  volume-title: Advances in Neural Information Processing Systems 17
  year: 2005
  ident: 2022061100144889200_bib18
– year: 2015
  ident: 2022061100144889200_bib45
– volume: 312
  start-page: 135
  year: 2018
  ident: 2022061100144889200_bib55
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– volume: 446
  start-page: 521
  year: 2015
  ident: 2022061100144889200_bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2058
– volume: 444
  start-page: 1518
  year: 2014
  ident: 2022061100144889200_bib54
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1536
– volume-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. SC ’19
  year: 2019
  ident: 2022061100144889200_bib3
  doi: 10.1145/3295500.3356202
– start-page: 1205
  volume-title: Advances in Neural Information Processing Systems 25
  year: 2012
  ident: 2022061100144889200_bib19
– volume: 401
  start-page: 1043
  year: 2010
  ident: 2022061100144889200_bib9
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15686.x
– volume: 32
  start-page: 100390
  year: 2020
  ident: 2022061100144889200_bib61
  publication-title: A&A
  doi: 10.1016/j.ascom.2020.100390
– volume: 128
  start-page: 163
  year: 2004
  ident: 2022061100144889200_bib32
  publication-title: AJ
  doi: 10.1086/421849
– volume: 499
  start-page: 814
  year: 2020
  ident: 2022061100144889200_bib23
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2777
– volume: 375
  start-page: 2
  year: 2007
  ident: 2022061100144889200_bib11
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.11287.x
– start-page: 770
  volume-title: in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2016
  ident: 2022061100144889200_bib21
  doi: 10.1109/CVPR.2016.90
– volume: 490
  start-page: 5390
  year: 2019
  ident: 2022061100144889200_bib4
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2934
– volume: 501
  start-page: 730
  year: 2021
  ident: 2022061100144889200_bib17
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3778
– volume: 376
  start-page: 2
  year: 2007
  ident: 2022061100144889200_bib25
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.11458.x
– volume: 644
  start-page: A87
  year: 2020
  ident: 2022061100144889200_bib56
  publication-title: A&A
  doi: 10.1051/0004-6361/202038084
– start-page: 4058
  volume-title: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18)
  year: 2018
  ident: 2022061100144889200_bib44
– volume: 895
  start-page: 115
  year: 2020
  ident: 2022061100144889200_bib14
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab8f9b
– volume: 641
  start-page: A77
  year: 2020
  ident: 2022061100144889200_bib5
  publication-title: A&A
  doi: 10.1051/0004-6361/202037963
– year: 2020
  ident: 2022061100144889200_bib60
– start-page: 42
  volume-title: 2018 IEEE 25th International Conference on High Performance Computing (HiPC)
  year: 2018
  ident: 2022061100144889200_bib2
  doi: 10.1109/HiPC.2018.00014
– volume: 27
  start-page: 379
  year: 1948
  ident: 2022061100144889200_bib43
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 626
  start-page: A49
  year: 2019
  ident: 2022061100144889200_bib37
  publication-title: A&A
  doi: 10.1051/0004-6361/201935355
– volume: 128
  start-page: 336
  year: 2020
  ident: 2022061100144889200_bib41
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01228-7
– volume: 39
  start-page: 1414
  year: 2017
  ident: 2022061100144889200_bib16
  publication-title: IEEE TPAMI
  doi: 10.1109/TPAMI.2016.2599532
– year: 2017
  ident: 2022061100144889200_bib53
  publication-title: CoRR
– volume: 13
  start-page: 723
  year: 2012
  ident: 2022061100144889200_bib20
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: 2022061100144889200_bib26
– volume: 6
  start-page: 2
  year: 2019
  ident: 2022061100144889200_bib35
  publication-title: Comput. Astrophys. Cosmol.
  doi: 10.1186/s40668-019-0028-x
SSID ssj0004326
Score 2.5972104
Snippet In astronomy, neural networks are often trained on simulation data with the prospect of being used on telescope observations. Unfortunately, training a model...
ABSTRACT In astronomy, neural networks are often trained on simulation data with the prospect of being used on telescope observations. Unfortunately, training...
SourceID osti
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 677
SubjectTerms ASTRONOMY AND ASTROPHYSICS
galaxies: evolution
galaxies: interactions
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
methods: data analysis
techniques: image processing
Title DeepMerge – II. Building robust deep learning algorithms for merging galaxy identification across domains
URI https://www.osti.gov/biblio/1807592
Volume 506
WOSCitedRecordID wos000703918800044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6FwIELggJqKKA9IDhYpvZu_HcsLRUFtXAIUm7Wer1uTVM7st2Q3HgHXoun4EmY_XMaClI5cLHsze5KyXyZnRl_M4PQCypYwFmRuGIcyKLalLpJAY6rENzzCprFHslUs4no5CSeTpNPg8EPmwuzmEVVFS-Xyfy_ihrGQNgydfYfxN1vCgNwD0KHK4gdrjcS_IEQ82OZU-lYIgN1jo5eO29MA2ynqbPLtnNymGebRpw6bHZaN2V3puszODIpUw7D-cGWK6fMDalIw4Wps9XJ6wtWmmifbQpVV93ZbOVUtSTVtZaBoIMUe62Mu9e6QIGhi1qBK6M2LOdN-YVV9aJUz9FGsPUDK861UutZygf1V8NW66O174VsBtGuo7ompEH8nrPVq2kagJo2WlhozazoeIlu0WJVd-CF1zCqFXFomsPoMz3UHcGuHRe6lNZF1cjkuUMwxzO_X3i1MvdvJ2bPY9Rv8Gmqdkjt-lvoNomCRBIMJx-n6yxdqpr_9V-uLyFKd9X6Xbt-w0Qa1qDqr5g8k_vonvFV8J7G2AM0ENUW2rZSXOGXWN3r4Fi7hUbH4IHVjXpRAx_uz0pwh9TTQ3TewxL__PYdAyCxBSTWgMQSkNgCEq8BiQGQ2AASa0DiTUBiDUhsAPkIfT58O9l_55pGHy6nlHQu9fIoJzlNBAg09PJxzMCN9angRMQJ8QuSFR7jocfyhGdg84452KUB8_OIkTBg9DEaVnUlthGOi6xgYFUTcITHfBxl4ADxoAArPC4SUogRcu1vm3JTBV82Y5mlf5blCL3q5891_Ze_ztyRokrBcpXll7nkqfEu9WW174Q8ufE-O-ju-j_xFA275lI8Q3f4oivb5rmC1C_pkLl-
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepMerge+%E2%80%93+II.+Building+robust+deep+learning+algorithms+for+merging+galaxy+identification+across+domains&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=%C4%86iprijanovi%C4%87%2C+A&rft.au=Kafkes%2C+D&rft.au=Downey%2C+K&rft.au=Jenkins%2C+S&rft.date=2021-09-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=506&rft.issue=1&rft.spage=677&rft.epage=691&rft_id=info:doi/10.1093%2Fmnras%2Fstab1677&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stab1677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon