Multiobjective Multiple Mobile Sink Scheduling via Evolutionary Fuzzy Rough Neural Network for Wireless Sensor Networks

The sensor nodes in wireless sensor networks have the deficiency of limited energy, and the multihop transmission of information will lead to a premature paralysis of nodes near the sink. The use of the mobile sink can balance the energy consumption and greatly prolong the lifetime. Therefore, this...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on fuzzy systems Ročník 30; číslo 11; s. 4630 - 4641
Hlavní autori: Zhao, Jianwei, Cao, Bin, Liu, Xin, Yang, Peng, Singh, Amit Kumar, Lv, Zhihan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1063-6706, 1941-0034, 1941-0034
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The sensor nodes in wireless sensor networks have the deficiency of limited energy, and the multihop transmission of information will lead to a premature paralysis of nodes near the sink. The use of the mobile sink can balance the energy consumption and greatly prolong the lifetime. Therefore, this article studies the scheduling strategy of multiple mobile sinks and proposes a heuristic strategy based on interval type-2 fuzzy rough neural network. The energy and lifetime of sensor nodes, as well as location information of the mobile sink and special nodes are taken as input features. Through neural network learning, the outputs determine whether to move, moving direction, moving distance, and residence time, which can complete the scheduling task. The scheduling problem is regarded as a multiobjective optimization problem, and the network lifetime, the moving path length, and the network interpretability are optimized at the same time, so as to obtain a lightweight network with good interpretability and performance. Based on the parallel multiobjective evolutionary algorithm, a multiobjective neural evolutionary framework is constructed. This framework can balance multiple objectives and complete complex scheduling tasks. Compared with static sinks, random-moving sinks, sinks with manually designed strategy, gene expression programming-based sinks, as well as the other state-of-the-art multiobjective evolutionary algorithms, the proposed framework can achieve superior results.
AbstractList The sensor nodes in wireless sensor networks have the deficiency of limited energy, and the multihop transmission of information will lead to a premature paralysis of nodes near the sink. The use of the mobile sink can balance the energy consumption and greatly prolong the lifetime. Therefore, this article studies the scheduling strategy of multiple mobile sinks and proposes a heuristic strategy based on interval type-2 fuzzy rough neural network. The energy and lifetime of sensor nodes, as well as location information of the mobile sink and special nodes are taken as input features. Through neural network learning, the outputs determine whether to move, moving direction, moving distance, and residence time, which can complete the scheduling task. The scheduling problem is regarded as a multiobjective optimization problem, and the network lifetime, the moving path length, and the network interpretability are optimized at the same time, so as to obtain a lightweight network with good interpretability and performance. Based on the parallel multiobjective evolutionary algorithm, a multiobjective neural evolutionary framework is constructed. This framework can balance multiple objectives and complete complex scheduling tasks. Compared with static sinks, random-moving sinks, sinks with manually designed strategy, gene expression programming-based sinks, as well as the other state-of-the-art multiobjective evolutionary algorithms, the proposed framework can achieve superior results.
The sensor nodes in wireless sensor networks have the deficiency of limited energy, and the multi-hop transmission of information will lead to premature paralysis of nodes near the sink. The use of the mobile sink can balance the energy consumption and greatly prolong the lifetime. Therefore, this paper studies the scheduling strategy of multiple mobile sinks and proposes a heuristic strategy based on interval type-2 fuzzy rough neural network. The energy and lifetime of sensor nodes, as well as location information of the mobile sink and special nodes are taken as input features. Through neural network learning, the outputs of whether to move, moving direction, moving distance and residence time can complete the scheduling task. The scheduling problem is regarded as a multiobjective optimization problem, and the network lifetime, the moving path length and the network interpretability are optimized at the same time, so as to obtain a lightweight network with good interpretability and performance. Based on the parallel multiobjective evolutionary algorithm, a neural evolutionary framework is constructed. Compared with static sinks, random- moving sinks, sinks with manually designed strategy and gene expression programming-based sinks as well as other state- of-the-art multiobjective evolutionary algorithms, the proposed framework can achieve superior results. IEEE
Author Cao, Bin
Lv, Zhihan
Liu, Xin
Yang, Peng
Singh, Amit Kumar
Zhao, Jianwei
Author_xml – sequence: 1
  givenname: Jianwei
  orcidid: 0000-0003-0424-4056
  surname: Zhao
  fullname: Zhao, Jianwei
  email: 201422102003@stu.hebut.edu.cn
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
– sequence: 2
  givenname: Bin
  orcidid: 0000-0003-4558-9501
  surname: Cao
  fullname: Cao, Bin
  email: caobin@scse.hebut.edu.cn
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
– sequence: 3
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  email: 202011701002@stu.hebut.edu.cn
  organization: School of Economics and Management, Hebei University of Technology, Tianjin, China
– sequence: 4
  givenname: Peng
  orcidid: 0000-0002-1129-8485
  surname: Yang
  fullname: Yang, Peng
  email: yangp@hebut.edu.cn
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
– sequence: 5
  givenname: Amit Kumar
  orcidid: 0000-0001-7359-2068
  surname: Singh
  fullname: Singh, Amit Kumar
  email: amit.singh@nitp.ac.in
  organization: Department of Computer Science and Engineering, National Institute of Technology Patna, Patna, India
– sequence: 6
  givenname: Zhihan
  orcidid: 0000-0003-2525-3074
  surname: Lv
  fullname: Lv, Zhihan
  email: lvzhihan@gmail.com
  organization: Uppsala University, Uppsala, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-472684$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNp9kU9PGzEQxa2KSg3QL0Avlnrtpv63XvuIKGmRKJVIUqRcLGczGxy262CvE8GnxyERhx44vRn5_cZjv2N01PkOEDqjZEgp0d8no-lsNmSEsSGnkmuiP6AB1YIWhHBxlGsieSErIj-h4xhXhFBRUjVA29-p7Z2fr6Du3Qbwa7tuc-HnLsvYdQ94XN_DIrWuW-KNs_hy49uUoc6GJzxKz89P-Nan5T2-gRRsm6Xf-vCAGx_wnQvQQox4DF3M_eEsnqKPjW0jfD7oCZqOLicXv4rrPz-vLs6vi5pz1hes0rWgjWJSC7KgnDUVscySRjVS7CwNLEQNhMNclKXWtM5vVlopUTLFNecn6Nt-btzCOs3NOrh_eW3jrTM_3N9z48PSpGRExaQS2f51b18H_5gg9mblU-jyhoZVnDLBhZDZxfauOvgYAzRvYykxuzzMax5ml4c55JEh9R9Uu97uvrEP1rXvo1_2qAOAt7t0JUpJGX8BVVib9Q
CODEN IEFSEV
CitedBy_id crossref_primary_10_1109_TFUZZ_2024_3397728
crossref_primary_10_1007_s11227_024_06630_8
crossref_primary_10_1088_1361_6501_adf133
crossref_primary_10_3390_w16203001
crossref_primary_10_1007_s11432_023_4011_4
crossref_primary_10_1007_s12652_023_04535_7
crossref_primary_10_3390_app13116631
crossref_primary_10_1016_j_adhoc_2023_103350
Cites_doi 10.1007/s11277-015-2998-6
10.1016/j.asoc.2015.04.061
10.1109/TFUZZ.2019.2930488
10.1007/s11276-007-0017-x
10.1109/JPROC.2019.2921977
10.1177/1059712314536909
10.1016/j.future.2017.10.015
10.1109/TEVC.2018.2868770
10.1007/978-3-319-68759-9_63
10.1016/j.swevo.2019.04.008
10.1109/TFUZZ.2016.2574915
10.1145/3369798
10.1109/TWC.2002.804190
10.1002/0471656895.ch8
10.1109/TFUZZ.2004.832538
10.1109/ICSMC.1998.728196
10.1109/TFUZZ.2020.2972207
10.1109/TCYB.2015.2490669
10.1007/s12652-018-0901-5
10.1002/widm.1402
10.1109/ICCV.2019.00138
10.1109/4235.996017
10.1109/TII.2018.2803758
10.1155/2021/6577492
10.1016/j.neucom.2013.04.005
10.1016/j.swevo.2020.100697
10.1177/1475921719854528
10.32604/cmc.2020.08674
10.1007/978-3-662-44599-0
10.1016/j.neucom.2020.01.114
10.1109/TEVC.2007.892759
10.1109/TEVC.2015.2455812
10.1109/UKRCON.2017.8100357
10.1007/s11277-019-06717-z
10.5004/dwt.2021.26871
10.1016/j.engappai.2020.103924
10.1038/s42256-020-00278-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
DF2
DOI 10.1109/TFUZZ.2022.3163909
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 4641
ExternalDocumentID oai_DiVA_org_uu_472684
10_1109_TFUZZ_2022_3163909
9745612
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61976242
  funderid: 10.13039/501100001809
– fundername: Hebei University of Technology
  grantid: JBKYTD2002
  funderid: 10.13039/501100010850
– fundername: Natural Science Fund of Hebei Province for Distinguished Young Scholars
  grantid: F2021202010
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c332t-279c41f826940d132f70a2a0f8f64c332fed4ce03eb455991c941898845283933
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000878174700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
1941-0034
IngestDate Tue Nov 04 16:35:14 EST 2025
Sun Nov 30 03:55:16 EST 2025
Tue Nov 18 22:28:58 EST 2025
Sat Nov 29 03:12:42 EST 2025
Wed Aug 27 02:14:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-279c41f826940d132f70a2a0f8f64c332fed4ce03eb455991c941898845283933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2525-3074
0000-0001-7359-2068
0000-0002-1129-8485
0000-0003-0424-4056
0000-0003-4558-9501
PQID 2731243446
PQPubID 85428
PageCount 12
ParticipantIDs ieee_primary_9745612
crossref_citationtrail_10_1109_TFUZZ_2022_3163909
crossref_primary_10_1109_TFUZZ_2022_3163909
swepub_primary_oai_DiVA_org_uu_472684
proquest_journals_2731243446
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Lu (ref32) 2018
ref35
ref12
ref34
ref15
ref37
ref36
ref31
ref30
ref11
ref33
ref2
ref1
ref17
ref39
ref16
ref19
ref18
Antonio (ref38)
Zhao (ref24) 2020; 46
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
Eaton (ref10) 2015
ref28
ref27
Ha (ref14)
ref29
ref8
ref7
Gaier (ref13) 2019
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref5
  doi: 10.1007/s11277-015-2998-6
– ident: ref30
  doi: 10.1016/j.asoc.2015.04.061
– ident: ref23
  doi: 10.1109/TFUZZ.2019.2930488
– ident: ref8
  doi: 10.1007/s11276-007-0017-x
– ident: ref18
  doi: 10.1109/JPROC.2019.2921977
– ident: ref12
  doi: 10.1177/1059712314536909
– ident: ref36
  doi: 10.1016/j.future.2017.10.015
– start-page: 5364
  volume-title: Proc. 33rd Annu. Conf. Neural Inf. Process. Syst.
  year: 2019
  ident: ref13
  article-title: Weight agnostic neural networks
– ident: ref29
  doi: 10.1109/TEVC.2018.2868770
– ident: ref9
  doi: 10.1007/978-3-319-68759-9_63
– ident: ref26
  doi: 10.1016/j.swevo.2019.04.008
– ident: ref20
  doi: 10.1109/TFUZZ.2016.2574915
– ident: ref19
  doi: 10.1145/3369798
– start-page: 2758
  volume-title: Proc. IEEE Congr. Evol. Comput.
  ident: ref38
  article-title: Use of cooperative coevolution for solving large-scale multi-objective optimization problems
– ident: ref31
  doi: 10.1109/TWC.2002.804190
– ident: ref34
  doi: 10.1002/0471656895.ch8
– year: 2018
  ident: ref32
  article-title: Research on rough modeling of type-2 fuzzy sets
– ident: ref22
  doi: 10.1109/TFUZZ.2004.832538
– ident: ref33
  doi: 10.1109/ICSMC.1998.728196
– ident: ref17
  doi: 10.1109/TFUZZ.2020.2972207
– ident: ref39
  doi: 10.1109/TCYB.2015.2490669
– ident: ref4
  doi: 10.1007/s12652-018-0901-5
– ident: ref15
  doi: 10.1002/widm.1402
– ident: ref27
  doi: 10.1109/ICCV.2019.00138
– ident: ref42
  doi: 10.1109/4235.996017
– ident: ref35
  doi: 10.1109/TII.2018.2803758
– ident: ref1
  doi: 10.1155/2021/6577492
– ident: ref11
  doi: 10.1016/j.neucom.2013.04.005
– ident: ref37
  doi: 10.1016/j.swevo.2020.100697
– ident: ref2
  doi: 10.1177/1475921719854528
– ident: ref6
  doi: 10.32604/cmc.2020.08674
– volume-title: Evolutionary Humanoid Robotics
  year: 2015
  ident: ref10
  doi: 10.1007/978-3-662-44599-0
– ident: ref28
  doi: 10.1016/j.neucom.2020.01.114
– volume: 46
  start-page: 2350
  issue: 11
  year: 2020
  ident: ref24
  article-title: Deep neural fuzzy system algorithm and its regression application
  publication-title: Acta Automatica Sinica
– ident: ref41
  doi: 10.1109/TEVC.2007.892759
– ident: ref40
  doi: 10.1109/TEVC.2015.2455812
– ident: ref21
  doi: 10.1109/UKRCON.2017.8100357
– ident: ref7
  doi: 10.1007/s11277-019-06717-z
– ident: ref3
  doi: 10.5004/dwt.2021.26871
– start-page: 2450
  volume-title: Proc. 32nd Conf. Neural Inf. Process. Syst.
  ident: ref14
  article-title: Recurrent world models facilitate policy evolution
– ident: ref16
  doi: 10.1016/j.engappai.2020.103924
– ident: ref25
  doi: 10.1038/s42256-020-00278-8
SSID ssj0014518
Score 2.4495919
Snippet The sensor nodes in wireless sensor networks have the deficiency of limited energy, and the multihop transmission of information will lead to a premature...
The sensor nodes in wireless sensor networks have the deficiency of limited energy, and the multi-hop transmission of information will lead to premature...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4630
SubjectTerms Artificial neural networks
Energy consumption
Energy utilization
Evolutionary algorithms
Fuzzy inference
Fuzzy logic
Fuzzy neural networks
Fuzzy rough neural network
Fuzzy rough neural network (FRNN)
Fuzzy sets
Gene expression
Genetic algorithms
Multi-Objective Evolutionary Algorithm
multi-objective evolutionary algorithm (MOEA)
multiobjective evolutionary algorithm
Multiobjective evolutionary algorithms
Multiobjective optimization
multiple mobile sink scheduling
Multiple mobile sinks
Multiple objective analysis
network lifetime
neural evolution
Neural evolutions
Neural networks
Nodes
Optimisations
Optimization
Paralysis
Rough neural networks
Rough sets
Scheduling
Sensor nodes
Sensors
Task complexity
Task scheduling
Wireless communication
Wireless communications
Wireless networks
Wireless sensor networks
Title Multiobjective Multiple Mobile Sink Scheduling via Evolutionary Fuzzy Rough Neural Network for Wireless Sensor Networks
URI https://ieeexplore.ieee.org/document/9745612
https://www.proquest.com/docview/2731243446
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-472684
Volume 30
WOSCitedRecordID wos000878174700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1941-0034
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4VtIftgbKyiTJAftieICM_3Nh5rDYqXqim8UOIF8txHFFUtahtispfvzvHjYqEJvGWKHZk6bvYd7m77wP43stIttrawIScBzzt5YHktgxyra0pddJLjXFiE2I4lHd32Z8WnDa9MNZaV3xmf9Kly-UXU1PRr7Iz9H1JzHELtoQQda9WkzHgvahue0uTIBVhum6QCbOz68HN_T2GgnGMESqeyFR8uHEIOVWV1w7mJmmoO2gG7fctcRd2vEPJ-rUFfIaWnXSgvRZrYP7b7cCnDebBPXh2jbfT_LHe79ilrytkl9Mc9wl2hSEqzn3Ag4j61dlypNn50pupnq3YoHp5WbG_pPHDiOADlzCsK8oZusGMimrHuImyKwyT8d4_m3-Bm8H59a-LwGswBCZJ4kUQi8zwqJTU8BoWGLqWItSxDktZppyGlLbgpDlmc07kZZHJeCQzKTmxxmRJ8hW2J9OJ3QcmrRRSa0r0lDzSRR7HBU85JVoFYsK7EK1BUcYTlJNOxli5QCXMlANSEZDKA9mFk2bOU03P8d_Re4RYM9KD1YXDNfbKf8FzhW4duj4JRstd-FHbQzOPKLl_j277CqFXVaW4IM6cg7ff_g0-0hrq_sVD2F7MKnsEH8xyMZrPjp0R_wNnOe_r
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgcT2wGBjojDAD_AEYflxSZzHCVYNsVaIdWjai-U4jtZpalHbdNr-eu4cNyoSQuItUezI0nex73J33wfwLi1YttrawISIAWZpGUi0dVBqbU2tkzQzxolN5MOhvLgovm_Ax64Xxlrris_sJ750ufxqahr-VXZIvi-LOT6AhyliHLXdWl3OANOobXzLkiDLw2zVIhMWh6P--eUlBYNxTDEqnclcfrh2DDldlT9dzHXaUHfU9Hf-b5FP4Yl3KcVRawPPYMNOdmFnJdcg_Ne7C9tr3IN7cOtab6fldbvjiYGvLBSDaUk7hTijIJXmXtFRxB3rYjnW4njpDVXP7kS_ub-_Ez9Y5UcwxQctYdjWlAtyhAWX1d7QNirOKFCme_9s_hzO-8ejzyeBV2EITJLEiyDOC4NRLbnlNawoeK3zUMc6rGWdIQ-pbYWsOmZLZPqyyBQYyUJKZN6YIkn2YXMyndgXIKSVudSaUz01Rroq47jCDDnVmhMm2INoBYoynqKclTJulAtVwkI5IBUDqTyQPfjQzfnVEnT8c_QeI9aN9GD14GCFvfLf8FyRY0fOT0Lxcg_et_bQzWNS7i_jn0eKoFdNozBn1pyXf3_7W3h8MhqcqtOvw2-vYIvX03YzHsDmYtbY1_DILBfj-eyNM-jfBDPzMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+Multiple+Mobile+Sink+Scheduling+via+Evolutionary+Fuzzy+Rough+Neural+Network+for+Wireless+Sensor+Networks&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zhao%2C+J.&rft.au=Cao%2C+B.&rft.au=Liu%2C+X.&rft.au=Yang%2C+P.&rft.date=2022-11-01&rft.issn=1941-0034&rft.volume=30&rft.issue=11&rft.spage=4630&rft_id=info:doi/10.1109%2FTFUZZ.2022.3163909&rft.externalDocID=oai_DiVA_org_uu_472684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon