Accelerating Distributed Graphical Fluid Simulations with Micro‐partitioning

Graphical fluid simulations are CPU‐bound. Parallelizing simulations on hundreds of cores in the computing cloud would make them faster, but requires evenly balancing load across nodes. Good load balancing depends on manual decisions from experts, which are time‐consuming and error prone, or dynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 39; H. 1; S. 375 - 388
Hauptverfasser: Qu, Hang, Mashayekhi, Omid, Shah, Chinmayee, Levis, Philip
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.02.2020
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Graphical fluid simulations are CPU‐bound. Parallelizing simulations on hundreds of cores in the computing cloud would make them faster, but requires evenly balancing load across nodes. Good load balancing depends on manual decisions from experts, which are time‐consuming and error prone, or dynamic approaches that estimate and react to future load, which are non‐deterministic and hard to debug. This paper proposes Birdshot scheduling, an automatic and purely static load balancing algorithm whose performance is close to expert decisions and reactive algorithms without their difficulty or complexity. Birdshot scheduling's key insight is to leverage the high‐latency, high‐throughput, full bisection bandwidth of cloud computing nodes. Birdshot scheduling splits the simulation domain into many micro‐partitions and statically assigns them to nodes randomly. Analytical results show that randomly assigned micro‐partitions balance load with high probability. The high‐throughput network easily handles the increased data transfers from micro‐partitions, and full bisection bandwidth allows random placement with no performance penalty. Overlapping the communications and computations of different micro‐partitions masks latency. Experiments with particle‐level set, SPH, FLIP and explicit Eulerian methods show that Birdshot scheduling speeds up simulations by a factor of 2‐3, and can out‐perform reactive scheduling algorithms. Birdshot scheduling performs within 21% of state‐of‐the‐art dynamic methods that require running a second, parallel simulation. Unlike speculative algorithms, Birdshot scheduling is purely static: it requires no controller, runtime data collection, partition migration or support for these operations from the programmer. Graphical fluid simulations are CPU‐bound. Parallelizing simulations on hundreds of cores in the computing cloud would make them faster, but requires evenly balancing load across nodes. Good load balancing depends on manual decisions from experts, which are time‐consuming and error prone, or dynamic approaches that estimate and react to future load, which are non‐deterministic and hard to debug. This paper proposes Birdshot scheduling, an automatic and purely static load balancing algorithm whose performance is close to expert decisions and reactive algorithms without their difficulty or complexity. Birdshot scheduling's key insight is to leverage the high‐latency, high‐throughput, full bisection bandwidth of cloud computing nodes. Birdshot scheduling splits the simulation domain into many micro‐partitions and statically assigns them to nodes randomly. Analytical results show that randomly assigned micro‐partitions balance load with high probability. The high‐throughput network easily handles the increased data transfers from micro‐partitions, and full bisection bandwidth allows random placement with no performance penalty. Overlapping the communications and computations of different micro‐partitions masks latency.
AbstractList Graphical fluid simulations are CPU‐bound. Parallelizing simulations on hundreds of cores in the computing cloud would make them faster, but requires evenly balancing load across nodes. Good load balancing depends on manual decisions from experts, which are time‐consuming and error prone, or dynamic approaches that estimate and react to future load, which are non‐deterministic and hard to debug. This paper proposes Birdshot scheduling, an automatic and purely static load balancing algorithm whose performance is close to expert decisions and reactive algorithms without their difficulty or complexity. Birdshot scheduling's key insight is to leverage the high‐latency, high‐throughput, full bisection bandwidth of cloud computing nodes. Birdshot scheduling splits the simulation domain into many micro‐partitions and statically assigns them to nodes randomly. Analytical results show that randomly assigned micro‐partitions balance load with high probability. The high‐throughput network easily handles the increased data transfers from micro‐partitions, and full bisection bandwidth allows random placement with no performance penalty. Overlapping the communications and computations of different micro‐partitions masks latency. Experiments with particle‐level set, SPH, FLIP and explicit Eulerian methods show that Birdshot scheduling speeds up simulations by a factor of 2‐3, and can out‐perform reactive scheduling algorithms. Birdshot scheduling performs within 21% of state‐of‐the‐art dynamic methods that require running a second, parallel simulation. Unlike speculative algorithms, Birdshot scheduling is purely static: it requires no controller, runtime data collection, partition migration or support for these operations from the programmer.
Graphical fluid simulations are CPU‐bound. Parallelizing simulations on hundreds of cores in the computing cloud would make them faster, but requires evenly balancing load across nodes. Good load balancing depends on manual decisions from experts, which are time‐consuming and error prone, or dynamic approaches that estimate and react to future load, which are non‐deterministic and hard to debug. This paper proposes Birdshot scheduling, an automatic and purely static load balancing algorithm whose performance is close to expert decisions and reactive algorithms without their difficulty or complexity. Birdshot scheduling's key insight is to leverage the high‐latency, high‐throughput, full bisection bandwidth of cloud computing nodes. Birdshot scheduling splits the simulation domain into many micro‐partitions and statically assigns them to nodes randomly. Analytical results show that randomly assigned micro‐partitions balance load with high probability. The high‐throughput network easily handles the increased data transfers from micro‐partitions, and full bisection bandwidth allows random placement with no performance penalty. Overlapping the communications and computations of different micro‐partitions masks latency. Experiments with particle‐level set, SPH, FLIP and explicit Eulerian methods show that Birdshot scheduling speeds up simulations by a factor of 2‐3, and can out‐perform reactive scheduling algorithms. Birdshot scheduling performs within 21% of state‐of‐the‐art dynamic methods that require running a second, parallel simulation. Unlike speculative algorithms, Birdshot scheduling is purely static: it requires no controller, runtime data collection, partition migration or support for these operations from the programmer. Graphical fluid simulations are CPU‐bound. Parallelizing simulations on hundreds of cores in the computing cloud would make them faster, but requires evenly balancing load across nodes. Good load balancing depends on manual decisions from experts, which are time‐consuming and error prone, or dynamic approaches that estimate and react to future load, which are non‐deterministic and hard to debug. This paper proposes Birdshot scheduling, an automatic and purely static load balancing algorithm whose performance is close to expert decisions and reactive algorithms without their difficulty or complexity. Birdshot scheduling's key insight is to leverage the high‐latency, high‐throughput, full bisection bandwidth of cloud computing nodes. Birdshot scheduling splits the simulation domain into many micro‐partitions and statically assigns them to nodes randomly. Analytical results show that randomly assigned micro‐partitions balance load with high probability. The high‐throughput network easily handles the increased data transfers from micro‐partitions, and full bisection bandwidth allows random placement with no performance penalty. Overlapping the communications and computations of different micro‐partitions masks latency.
Graphical fluid simulations are CPU‐bound. Parallelizing simulations on hundreds of cores in the computing cloud would make them faster, but requires evenly balancing load across nodes. Good load balancing depends on manual decisions from experts, which are time‐consuming and error prone, or dynamic approaches that estimate and react to future load, which are non‐deterministic and hard to debug.This paper proposes Birdshot scheduling, an automatic and purely static load balancing algorithm whose performance is close to expert decisions and reactive algorithms without their difficulty or complexity. Birdshot scheduling's key insight is to leverage the high‐latency, high‐throughput, full bisection bandwidth of cloud computing nodes. Birdshot scheduling splits the simulation domain into many micro‐partitions and statically assigns them to nodes randomly. Analytical results show that randomly assigned micro‐partitions balance load with high probability. The high‐throughput network easily handles the increased data transfers from micro‐partitions, and full bisection bandwidth allows random placement with no performance penalty. Overlapping the communications and computations of different micro‐partitions masks latency.Experiments with particle‐level set, SPH, FLIP and explicit Eulerian methods show that Birdshot scheduling speeds up simulations by a factor of 2‐3, and can out‐perform reactive scheduling algorithms. Birdshot scheduling performs within 21% of state‐of‐the‐art dynamic methods that require running a second, parallel simulation. Unlike speculative algorithms, Birdshot scheduling is purely static: it requires no controller, runtime data collection, partition migration or support for these operations from the programmer.
Author Levis, Philip
Qu, Hang
Mashayekhi, Omid
Shah, Chinmayee
Author_xml – sequence: 1
  givenname: Hang
  orcidid: 0000-0002-4195-1588
  surname: Qu
  fullname: Qu, Hang
  email: quhang@stanford.edu
  organization: Stanford University
– sequence: 2
  givenname: Omid
  surname: Mashayekhi
  fullname: Mashayekhi, Omid
  email: omidmsu@gmail.com
  organization: Stanford University
– sequence: 3
  givenname: Chinmayee
  orcidid: 0000-0001-6470-8356
  surname: Shah
  fullname: Shah, Chinmayee
  email: chshah@stanford.edu
  organization: Stanford University
– sequence: 4
  givenname: Philip
  surname: Levis
  fullname: Levis, Philip
  email: pal@cs.stanford.edu
  organization: Stanford University
BookMark eNp1kL1OwzAUhS1UJNrCwBtEYmJIa8eOE49VoQWpwADMlmM7ras0CbajqhuPwDPyJLg_E4Lr4V5Z3znXPgPQq5taA3CN4AiFGstlOUI4h-wM9BGhWZzTlPVAH6IwZzBNL8DAuTWEkGQ07YPniZS60lZ4Uy-jO-O8NUXntYrmVrQrI0UVzarOqOjVbLoqYE3toq3xq-jJSNt8f361wnqzvw8Ol-C8FJXTV6c-BO-z-7fpQ7x4mT9OJ4tYYpywWLCcpEwkVBYUC4U0SrICZgoSxHBepuHAlCoGM8IQlYpJojUjGqqkQCVleAhujr6tbT467TxfN52tw0qeYEoYZXmWBGp8pMJDnbO65NL4wxe8FabiCPJ9aDyExg-hBcXtL0VrzUbY3Z_syX1rKr37H-TT-eyo-AHSR36g
CitedBy_id crossref_primary_10_1007_s41095_023_0368_y
Cites_doi 10.1145/2766996
10.1111/cgf.13350
10.1002/(SICI)1096-9128(199712)9:12<1351::AID-CPE283>3.0.CO;2-C
10.1145/2487228.2487235
10.1145/2661229.2661269
10.1007/978-3-7091-7486-9_5
10.2172/4769185
10.1023/A:1024081112501
10.21236/ADA439573
10.1177/1094342005051521
10.1063/1.1761178
10.1145/2785956.2787508
10.1109/SC.2012.71
10.1145/3272127.3275044
10.1145/1592568.1592577
10.1145/1402958.1402967
10.1145/1592568.1592576
10.1093/mnras/181.3.375
10.1145/3190508.3190516
10.1145/2616498.2616537
10.1145/277650.277725
10.1145/2485895.2485897
10.1109/SC.2014.75
10.1145/311535.311548
10.1145/2503210.2503284
10.1145/2775280.2792544
10.1145/2517349.2522716
10.1145/2897839.2927406
10.1145/3173551
10.1145/369028.369103
10.1109/TSE.1985.232489
10.1006/jcph.2002.7166
10.1145/2676870.2676883
10.1109/TSE.1984.5010224
10.1145/2980179.2982430
10.1145/383259.383260
10.1109/SC.2014.58
10.1177/1094342010394383
10.1145/3092818
10.1109/52.43056
ContentType Journal Article
Copyright 2019 The Authors. published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd
2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd
– notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.13809
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 388
ExternalDocumentID 10_1111_cgf_13809
CGF13809
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 1409847
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
24P
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3329-a98459a26cb63ad1e127b07d041938f5f5f056d9074916cd9c4ee94e0d2b1f693
IEDL.DBID 24P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519969500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Jul 13 03:30:10 EDT 2025
Sat Nov 29 03:41:17 EST 2025
Tue Nov 18 22:20:23 EST 2025
Wed Jan 22 16:34:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3329-a98459a26cb63ad1e127b07d041938f5f5f056d9074916cd9c4ee94e0d2b1f693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6470-8356
0000-0002-4195-1588
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13809
PQID 2364969872
PQPubID 30877
PageCount 14
ParticipantIDs proquest_journals_2364969872
crossref_citationtrail_10_1111_cgf_13809
crossref_primary_10_1111_cgf_13809
wiley_primary_10_1111_cgf_13809_CGF13809
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 34
2012
2011
2010
2002; 5
1998
2009
2008
2007
1996
2003
1997; 9
2016; 35
1999
1977; 181
2005; 19
2002; 183
2001
2017; 36
2013; 32
1984; 2
1965; 8
2018
1962
2016
2015
2014
2013
2011; 25
1985; 11
1990; 7
2018; 37
2014; 33
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
Ousterhout K. (e_1_2_10_42_1) 2013
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
Dubey P. (e_1_2_10_15_1)
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
Shah C. (e_1_2_10_47_1) 2018
e_1_2_10_32_1
e_1_2_10_51_1
Catalyurek U. V. (e_1_2_10_11_1) 2007
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Alverson R. (e_1_2_10_5_1) 2010
Ananthanarayanan G. (e_1_2_10_4_1) 2010
Humphrey A. (e_1_2_10_26_1) 2012
Bienia C. (e_1_2_10_9_1) 2011
Jeannot E. (e_1_2_10_28_1) 2013
Jeong E. Y. (e_1_2_10_30_1) 2014
e_1_2_10_49_1
References_xml – year: 2011
– start-page: 183
  year: 2015
  end-page: 197
– volume: 19
  start-page: 49
  issue: 1
  year: 2005
  end-page: 66
  article-title: Optimization of collective communication operations in MPICH
  publication-title: International Journal of High Performance Computing Applications
– start-page: 83
  year: 2010
  end-page: 87
  article-title: The Gemini system interconnect
  publication-title: IEEE 18th Annual Symposium on High Performance Interconnects
– volume: 25
  start-page: 371
  issue: 4
  year: 2011
  end-page: 385
  article-title: Periodic hierarchical load balancing for large supercomputers
  publication-title: International Journal of High Performance Computing Applications
– year: 1962
– start-page: 6:1
  year: 2014
  end-page: 6:11
– start-page: 212
  year: 1998
  end-page: 223
– start-page: 254
  year: 2018
– start-page: 647
  year: 2014
  end-page: 658
– start-page: 44
  year: 2015
– volume: 183
  start-page: 83
  issue: 1
  year: 2002
  end-page: 116
  article-title: A hybrid particle level set method for improved interface capturing
  publication-title: Journal of Computational Physics
– year: 2018
– volume: 33
  start-page: 205:1
  issue: 6
  year: 2014
  end-page: 205:12
  article-title: Spgrid: A sparse paged grid structure applied to adaptive smoke simulation
  publication-title: ACM Transactions on Graphics
– volume: 36
  start-page: 163:1
  issue: 5
  year: 2017
  end-page: 163:11
  article-title: A Schur complement preconditioner for scalable parallel fluid simulation
  publication-title: ACM Transactions on Graphics
– start-page: 489
  year: 2014
  end-page: 502
– volume: 35
  start-page: 201
  issue: 6
  year: 2016
  article-title: A scalable Schur‐complement fluids solver for heterogeneous compute platforms
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 47:1
  year: 2014
  end-page: 47:7
– start-page: 265
  year: 2010
  end-page: 278
– volume: 32
  start-page: 27:1
  issue: 3
  year: 2013
  end-page: 27:22
  article-title: Vdb: High‐resolution sparse volumes with dynamic topology
  publication-title: ACM Transactions on Graphics
– start-page: 40
  year: 2016
– start-page: 56
  year: 2003
– volume: 8
  start-page: 2182
  issue: 12
  year: 1965
  end-page: 2189
  article-title: Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface
  publication-title: Physics of Fluids
– start-page: 85
  year: 2013
  end-page: 94
– start-page: 10:1
  end-page: 10:22
– start-page: 63
  year: 2008
  end-page: 74
– start-page: 63
  year: 2009
  end-page: 74
– volume: 2
  start-page: 210
  year: 1984
  end-page: 219
  article-title: Debugging a distributed computing system
  publication-title: IEEE Transactions on Software Engineering
– year: 1996
– volume: 11
  start-page: 491
  issue: 5
  year: 1985
  end-page: 496
  article-title: Optimal load balancing in a multiple processor system with many job classes
  publication-title: IEEE Transactions on Software Engineering
– start-page: 1
  year: 2013
  end-page: 8
  article-title: Communication and topology‐aware load balancing in Charm++ with TreeMatch
  publication-title: IEEE International Conference on Cluster Computing
– start-page: 61
  year: 1996
  end-page: 76
– volume: 37
  year: 2018
  article-title: Automatically distributing Eulerian and hybrid fluid simulations in the cloud
  publication-title: ACM Transactions on Graphics
– start-page: 121
  year: 1999
  end-page: 128
– start-page: 157
  year: 2018
  end-page: 167
– volume: 181
  start-page: 375
  issue: 3
  year: 1977
  end-page: 389
  article-title: Smoothed particle hydrodynamics: Theory and application to non‐spherical stars
  publication-title: Monthly Notices of the Royal Astronomical Society
– volume: 5
  start-page: 287
  issue: 3
  year: 2002
  end-page: 294
  article-title: Asymptotics of maxima of discrete random variables
  publication-title: Extremes
– start-page: 51
  year: 2009
  end-page: 62
– volume: 34
  start-page: 51
  issue: 4
  year: 2015
  article-title: The affine particle‐in‐cell method
  publication-title: ACM Transactions on Graphics
– start-page: 14
  year: 2013
  end-page: 14
– volume: 9
  start-page: 1351
  issue: 12
  year: 1997
  end-page: 1376
  article-title: Decentralized remapping of data parallel applications in distributed memory multiprocessors
  publication-title: Concurrency ‐ Practice and Experience
– start-page: 2441
  year: 2012
  end-page: 2448
– start-page: 69
  year: 2013
  end-page: 84
– year: 2018
  article-title: Distributing and load balancing sparse fluid simulations
  publication-title: Proceedings of the 17th Annual Symposium on Computer Animation
– start-page: 857
  year: 2014
  end-page: 868
– start-page: 66:1
  year: 2012
  end-page: 66:11
– volume: 7
  start-page: 106
  issue: 1
  year: 1990
  end-page: 115
  article-title: A framework for distributed debugging
  publication-title: IEEE Software
– start-page: 1
  year: 2007
  end-page: 11
  article-title: Hypergraph‐based dynamic load balancing for adaptive scientific computations
  publication-title: IEEE International Parallel and Distributed Processing Symposium
– start-page: 15
  year: 2001
  end-page: 22
– start-page: 15:1
  year: 2013
  end-page: 15:11
– ident: e_1_2_10_29_1
  doi: 10.1145/2766996
– ident: e_1_2_10_52_1
– ident: e_1_2_10_54_1
  doi: 10.1111/cgf.13350
– ident: e_1_2_10_55_1
  doi: 10.1002/(SICI)1096-9128(199712)9:12<1351::AID-CPE283>3.0.CO;2-C
– start-page: 1
  year: 2013
  ident: e_1_2_10_28_1
  article-title: Communication and topology‐aware load balancing in Charm++ with TreeMatch
  publication-title: IEEE International Conference on Cluster Computing
– year: 2018
  ident: e_1_2_10_47_1
  article-title: Distributing and load balancing sparse fluid simulations
  publication-title: Proceedings of the 17th Annual Symposium on Computer Animation
– start-page: 2441
  volume-title: SC Companion: High Performance Computing, Networking Storage and Analysis
  year: 2012
  ident: e_1_2_10_26_1
– ident: e_1_2_10_39_1
  doi: 10.1145/2487228.2487235
– ident: e_1_2_10_46_1
  doi: 10.1145/2661229.2661269
– start-page: 265
  volume-title: Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation
  year: 2010
  ident: e_1_2_10_4_1
– ident: e_1_2_10_14_1
  doi: 10.1007/978-3-7091-7486-9_5
– start-page: 83
  year: 2010
  ident: e_1_2_10_5_1
  article-title: The Gemini system interconnect
  publication-title: IEEE 18th Annual Symposium on High Performance Interconnects
– ident: e_1_2_10_25_1
  doi: 10.2172/4769185
– ident: e_1_2_10_53_1
– ident: e_1_2_10_7_1
– ident: e_1_2_10_41_1
  doi: 10.1023/A:1024081112501
– ident: e_1_2_10_31_1
  doi: 10.21236/ADA439573
– ident: e_1_2_10_50_1
  doi: 10.1177/1094342005051521
– volume-title: Benchmarking Modern Multiprocessors
  year: 2011
  ident: e_1_2_10_9_1
– ident: e_1_2_10_27_1
  doi: 10.1063/1.1761178
– ident: e_1_2_10_48_1
  doi: 10.1145/2785956.2787508
– ident: e_1_2_10_10_1
  doi: 10.1109/SC.2012.71
– ident: e_1_2_10_24_1
  doi: 10.1145/3272127.3275044
– start-page: 14
  volume-title: Proceedings of the 14th USENIX Conference on Hot Topics in Operating Systems
  year: 2013
  ident: e_1_2_10_42_1
– ident: e_1_2_10_21_1
  doi: 10.1145/1592568.1592577
– ident: e_1_2_10_2_1
  doi: 10.1145/1402958.1402967
– ident: e_1_2_10_20_1
  doi: 10.1145/1592568.1592576
– ident: e_1_2_10_22_1
  doi: 10.1093/mnras/181.3.375
– ident: e_1_2_10_44_1
  doi: 10.1145/3190508.3190516
– ident: e_1_2_10_36_1
  doi: 10.1145/2616498.2616537
– ident: e_1_2_10_18_1
  doi: 10.1145/277650.277725
– ident: e_1_2_10_17_1
  doi: 10.1145/2485895.2485897
– ident: e_1_2_10_34_1
  doi: 10.1109/SC.2014.75
– ident: e_1_2_10_49_1
  doi: 10.1145/311535.311548
– ident: e_1_2_10_37_1
  doi: 10.1145/2503210.2503284
– ident: e_1_2_10_6_1
  doi: 10.1145/2775280.2792544
– start-page: 10:1
  volume-title: ACM SIGGRAPH 2011 Courses
  ident: e_1_2_10_15_1
– ident: e_1_2_10_43_1
  doi: 10.1145/2517349.2522716
– ident: e_1_2_10_45_1
  doi: 10.1145/2897839.2927406
– ident: e_1_2_10_38_1
  doi: 10.1145/3173551
– ident: e_1_2_10_33_1
  doi: 10.1145/369028.369103
– ident: e_1_2_10_8_1
– ident: e_1_2_10_40_1
  doi: 10.1109/TSE.1985.232489
– ident: e_1_2_10_51_1
– ident: e_1_2_10_16_1
  doi: 10.1006/jcph.2002.7166
– ident: e_1_2_10_32_1
  doi: 10.1145/2676870.2676883
– ident: e_1_2_10_23_1
  doi: 10.1109/TSE.1984.5010224
– ident: e_1_2_10_35_1
  doi: 10.1145/2980179.2982430
– ident: e_1_2_10_19_1
  doi: 10.1145/383259.383260
– start-page: 489
  volume-title: Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation
  year: 2014
  ident: e_1_2_10_30_1
– ident: e_1_2_10_3_1
  doi: 10.1109/SC.2014.58
– ident: e_1_2_10_56_1
  doi: 10.1177/1094342010394383
– ident: e_1_2_10_13_1
  doi: 10.1145/3092818
– ident: e_1_2_10_12_1
  doi: 10.1109/52.43056
– start-page: 1
  year: 2007
  ident: e_1_2_10_11_1
  article-title: Hypergraph‐based dynamic load balancing for adaptive scientific computations
  publication-title: IEEE International Parallel and Distributed Processing Symposium
SSID ssj0004765
Score 2.2891471
Snippet Graphical fluid simulations are CPU‐bound. Parallelizing simulations on hundreds of cores in the computing cloud would make them faster, but requires evenly...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 375
SubjectTerms Algorithms
animation
Cloud computing
Computer simulation
Computing methodologies → Distributed computing methodologies; Distributed simulation; Computer graphics
Data collection
Debugging
Decisions
distributed graphics
fluid modelling
hardware
Load balancing
Masks
Nodes
Parallel processing
Partitions
Scheduling
Simulation
Static loads
Title Accelerating Distributed Graphical Fluid Simulations with Micro‐partitioning
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13809
https://www.proquest.com/docview/2364969872
Volume 39
WOSCitedRecordID wos000519969500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6K9aAH32K1lkU8eInkvbt4Kq2pBy1FLfQWso-UQo2laT37E_yN_hJ3tklbQUGQXPYwuwnzyMwsM98gdMmozaRIHYuljOoEhXuWdgrckjwQLhFE-4TEDJsg3S4dDFivgm7KXpgFPsTywg0sw_yvwcATnq8ZuRim145HoXmv6sACYJ393qopkoRBCewNkDEFrBCU8Sy3fndGqwhzPU41jiba_dcn7qGdIr7EzYVC7KOKyg7Q9hrq4CHqNoXQzgZEnw1xG5BzYeiVkrgD6NUgNRyN5yOJn0YvxXSvHMOFLX6A8r3P948JKFxxlXuE-tHtc-vOKsYqWMLzXGYljPoBS9xQ8NBLpKMcl3CbSNvXwRxNA_3oqEhC1qxjRyGZ8JVivrKly500ZN4x2sheM3WCMLFFQoUIA59LP0xJAkCQHuR1qT5XOjV0VfI3FgXmOIy-GMdl7qFZFBsW1dDFknSyANr4iaheCikubC2PAQKfhYwSV7_OiOP3A-JWJzKL07-TnqEtF5JsU6pdRxuz6Vydo03xNhvl04ZRugaqth-j_v0XqmjbUg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KFdSDb7FadREPXiJ57y54Ka1pxbaIttBbSHY3pVBj6cOzP8Hf6C9xJ920FRQEySWHySbMI_Ng5huErhg1meCJZbCEUZWgxI6hnEJsiNjjNuFE-YQoWzZB2m3a67HHArrNZ2Hm-BCLghtYRva_BgOHgvSKlfN-cmM5FKb3iq5SI6XfxdpT0G0u5yKJ7-XY3oAao5GFoJNn8fB3f7QMMldD1czXBDv_-8pdtK1jTFyZK8UeKsh0H22tIA8eoHaFc-VwQPxpH9cAPRcWX0mB64BgDZLDwXA2EPh58KI3fE0wFG1xC1r4Pt8_RqB0upx7iLrBXafaMPRqBYM7js2MiFHXY5Ht89h3ImFJyyaxSYTpqoCOJp66VGQkIHNW8SMXjLtSMleawo6txGfOEVpLX1N5jDAxeUQ59z03Fq6fkAjAIB3I7RJ1rrBK6DpncMg17jisvxiGef6hWBRmLCqhywXpaA628RNROZdSqO1tEgIMPvMZJbZ6XSaP3w8Iq_Uguzn5O-kF2mh0Ws2wed9-OEWbNiTdWet2Ga1NxzN5htb523QwGZ9rHfwC8l3fOA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kFdGDb7FaNYgHL5G8NwteSmuqWENRC72FZHdTCjWWPjz7E_yN_hJ30k1bQUGQXHKYbMI8Mg9mvgG4oL5BOUtNnabUlwlKYuvSKSQ6T1xmEUakT4jzZRMkDP1ul7ZX4LqYhZnhQ8wLbmgZ-f8aDVwMebpk5ayXXpm2j9N7ZQeXyJSg3HgMOq3FXCTx3ALbG1FjFLIQdvLMH_7ujxZB5nKomvuaYOt_X7kNmyrG1GozpdiBFZHtwsYS8uAehDXGpMNB8Wc9rYHoubj4SnCtiQjWKDktGEz7XHvqv6gNX2MNi7baA7bwfb5_DFHpVDl3HzrBzXP9VlerFXRm2xbVY-pLlsWWxxLPjrkpTIskBuGGIwM6P3XlJSMjjpmzjB8Zp8wRgjrC4FZiph61D6CUvWbiEDRisNhnzHOdhDteSmIEg7Qxt0vludyswGXB4Igp3HFcfzGIivxDsijKWVSB8znpcAa28RNRtZBSpOxtHCEMPvWoTyz5ulwevx8Q1ZtBfnP0d9IzWGs3gqh1F94fw7qFOXfeuV2F0mQ0FSewyt4m_fHoVKngF63F3rM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Distributed+Graphical+Fluid+Simulations+with+Micro%E2%80%90partitioning&rft.jtitle=Computer+graphics+forum&rft.au=Qu%2C+Hang&rft.au=Mashayekhi%2C+Omid&rft.au=Shah%2C+Chinmayee&rft.au=Levis%2C+Philip&rft.date=2020-02-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=39&rft.issue=1&rft.spage=375&rft.epage=388&rft_id=info:doi/10.1111%2Fcgf.13809&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_13809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon