Spanning eulerian subdigraphs in semicomplete digraphs
A digraph is eulerian if it is connected and every vertex has its in‐degree equal to its out‐degree. Having a spanning eulerian subdigraph is thus a weakening of having a hamiltonian cycle. In this paper, we first characterize the pairs (D,a) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$...
Gespeichert in:
| Veröffentlicht in: | Journal of graph theory Jg. 102; H. 3; S. 578 - 606 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc
01.03.2023
|
| Schlagworte: | |
| ISSN: | 0364-9024, 1097-0118 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A digraph is eulerian if it is connected and every vertex has its in‐degree equal to its out‐degree. Having a spanning eulerian subdigraph is thus a weakening of having a hamiltonian cycle. In this paper, we first characterize the pairs (D,a) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$ such that D $D$ has a spanning eulerian subdigraph containing a $a$. In particular, we show that if D $D$ is 2‐arc‐strong, then every arc is contained in a spanning eulerian subdigraph. We then characterize the pairs (
D
,
a
) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$ such that D $D$ has a spanning eulerian subdigraph avoiding a $a$. In particular, we prove that every 2‐arc‐strong semicomplete digraph has a spanning eulerian subdigraph avoiding any prescribed arc. We also prove the existence of a (minimum) function f
(
k
) $f(k)$ such that every f
(
k
) $f(k)$‐arc‐strong semicomplete digraph contains a spanning eulerian subdigraph avoiding any prescribed set of k $k$ arcs. We conjecture that f
(
k
)
=
k
+
1 $f(k)=k+1$ and establish this conjecture for k
≤
3 $k\le 3$ and when the k $k$ arcs that we delete form a forest of stars. A digraph D $D$ is eulerian‐connected if for any two distinct vertices x
,
y $x,y$, the digraph D $D$ has a spanning (
x
,
y
) $(x,y)$‐trail. We prove that every 2‐arc‐strong semicomplete digraph is eulerian‐connected. All our results may be seen as arc analogues of well‐known results on hamiltonian paths and cycles in semicomplete digraphs. |
|---|---|
| AbstractList | A digraph is eulerian if it is connected and every vertex has its in‐degree equal to its out‐degree. Having a spanning eulerian subdigraph is thus a weakening of having a hamiltonian cycle. In this paper, we first characterize the pairs (D,a) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$ such that D $D$ has a spanning eulerian subdigraph containing a $a$. In particular, we show that if D $D$ is 2‐arc‐strong, then every arc is contained in a spanning eulerian subdigraph. We then characterize the pairs (D,a) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$ such that D $D$ has a spanning eulerian subdigraph avoiding a $a$. In particular, we prove that every 2‐arc‐strong semicomplete digraph has a spanning eulerian subdigraph avoiding any prescribed arc. We also prove the existence of a (minimum) function f(k) $f(k)$ such that every f(k) $f(k)$‐arc‐strong semicomplete digraph contains a spanning eulerian subdigraph avoiding any prescribed set of k $k$ arcs. We conjecture that f(k)=k+1 $f(k)=k+1$ and establish this conjecture for k≤3 $k\le 3$ and when the k $k$ arcs that we delete form a forest of stars. A digraph D $D$ is eulerian‐connected if for any two distinct vertices x,y $x,y$, the digraph D $D$ has a spanning (x,y) $(x,y)$‐trail. We prove that every 2‐arc‐strong semicomplete digraph is eulerian‐connected. All our results may be seen as arc analogues of well‐known results on hamiltonian paths and cycles in semicomplete digraphs. A digraph is eulerian if it is connected and every vertex has its in‐degree equal to its out‐degree. Having a spanning eulerian subdigraph is thus a weakening of having a hamiltonian cycle. In this paper, we first characterize the pairs of a semicomplete digraph and an arc such that has a spanning eulerian subdigraph containing . In particular, we show that if is 2‐arc‐strong, then every arc is contained in a spanning eulerian subdigraph. We then characterize the pairs of a semicomplete digraph and an arc such that has a spanning eulerian subdigraph avoiding . In particular, we prove that every 2‐arc‐strong semicomplete digraph has a spanning eulerian subdigraph avoiding any prescribed arc. We also prove the existence of a (minimum) function such that every ‐arc‐strong semicomplete digraph contains a spanning eulerian subdigraph avoiding any prescribed set of arcs. We conjecture that and establish this conjecture for and when the arcs that we delete form a forest of stars. A digraph is eulerian‐connected if for any two distinct vertices , the digraph has a spanning ‐trail. We prove that every 2‐arc‐strong semicomplete digraph is eulerian‐connected. All our results may be seen as arc analogues of well‐known results on hamiltonian paths and cycles in semicomplete digraphs. A digraph is eulerian if it is connected and every vertex has its in‐degree equal to its out‐degree. Having a spanning eulerian subdigraph is thus a weakening of having a hamiltonian cycle. In this paper, we first characterize the pairs (D,a) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$ such that D $D$ has a spanning eulerian subdigraph containing a $a$. In particular, we show that if D $D$ is 2‐arc‐strong, then every arc is contained in a spanning eulerian subdigraph. We then characterize the pairs ( D , a ) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$ such that D $D$ has a spanning eulerian subdigraph avoiding a $a$. In particular, we prove that every 2‐arc‐strong semicomplete digraph has a spanning eulerian subdigraph avoiding any prescribed arc. We also prove the existence of a (minimum) function f ( k ) $f(k)$ such that every f ( k ) $f(k)$‐arc‐strong semicomplete digraph contains a spanning eulerian subdigraph avoiding any prescribed set of k $k$ arcs. We conjecture that f ( k ) = k + 1 $f(k)=k+1$ and establish this conjecture for k ≤ 3 $k\le 3$ and when the k $k$ arcs that we delete form a forest of stars. A digraph D $D$ is eulerian‐connected if for any two distinct vertices x , y $x,y$, the digraph D $D$ has a spanning ( x , y ) $(x,y)$‐trail. We prove that every 2‐arc‐strong semicomplete digraph is eulerian‐connected. All our results may be seen as arc analogues of well‐known results on hamiltonian paths and cycles in semicomplete digraphs. |
| Author | Havet, Frédéric Yeo, Anders Bang‐Jensen, Jørgen |
| Author_xml | – sequence: 1 givenname: Jørgen orcidid: 0000-0001-5783-7125 surname: Bang‐Jensen fullname: Bang‐Jensen, Jørgen organization: University of Southern Denmark – sequence: 2 givenname: Frédéric orcidid: 0000-0002-3447-8112 surname: Havet fullname: Havet, Frédéric email: frederic.havet@inria.fr organization: CNRS, Université Côte d'Azur, I3S and INRIA – sequence: 3 givenname: Anders surname: Yeo fullname: Yeo, Anders organization: University of Southern Denmark |
| BookMark | eNp1kDFPwzAQhS1UJNrCwD-IxMSQ9mwnjj2iCgqoEgNlthxjB1epE-xEqP-eQMqCYDrd3ffek94MTXzjDUKXGBYYgCx3VbcghHN-gqYYRJECxnyCpkBZlgog2RmaxbiD4ZwDnyL23Crvna8S09cmOOWT2JevrgqqfYuJG1azd7rZt7XpTPLzOEenVtXRXBznHL3c3W5X9-nmaf2wutmkmlLCU80sLjEGgrWhOjes5AW32GaKAM4sZYKIHExe5hkTnBeQMwpKK1taK6wSdI6uRt82NO-9iZ3cNX3wQ6QkBSNAC0aLgVqOlA5NjMFYqV2nOtf4LihXSwzyqxw5lCO_yxkU178UbXB7FQ5_skf3D1ebw_-gfFxvR8UnRI11LA |
| CitedBy_id | crossref_primary_10_1002_jgt_23199 crossref_primary_10_1002_jgt_23157 crossref_primary_10_1002_jgt_23256 crossref_primary_10_1016_j_disc_2023_113867 crossref_primary_10_11650_tjm_230805 |
| Cites_doi | 10.1016/0196-6774(92)90008-Z 10.1016/S0166-218X(97)00037-1 10.1016/0095-8956(80)90061-1 10.1007/978-3-319-71840-8 10.1002/jgt.21810 10.1016/j.disc.2009.04.019 10.1016/j.amc.2020.125595 10.1007/978-1-84800-998-1 10.1007/BF01788546 10.1090/psapm/010/0114759 10.1016/j.disc.2020.112129 10.1017/S0963548397003027 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by Wiley Periodicals LLC. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION |
| DOI | 10.1002/jgt.22888 |
| DatabaseName | Wiley Online Library Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1097-0118 |
| EndPage | 606 |
| ExternalDocumentID | 10_1002_jgt_22888 JGT22888 |
| Genre | article |
| GrantInformation_xml | – fundername: PICS, CNRS – fundername: Agence Nationale de la Recherche – fundername: Danish Research Council |
| GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 24P 3-9 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TN5 UB1 UPT V2E V8K VH1 VJK VQA W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XJT XPP XV2 XXG YQT ZZTAW ~IA ~WT AAMMB AAYXX ADXHL AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION O8X |
| ID | FETCH-LOGICAL-c3328-c6f1b11021ce3c5e6b878f1f4a2014f3692950e5b546988705630acafbff9fa93 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000857147300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0364-9024 |
| IngestDate | Fri Jul 25 12:11:53 EDT 2025 Sat Nov 29 03:03:52 EST 2025 Tue Nov 18 21:58:26 EST 2025 Wed Jan 22 16:20:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3328-c6f1b11021ce3c5e6b878f1f4a2014f3692950e5b546988705630acafbff9fa93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3447-8112 0000-0001-5783-7125 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.22888 |
| PQID | 2762037637 |
| PQPubID | 1006407 |
| PageCount | 29 |
| ParticipantIDs | proquest_journals_2762037637 crossref_citationtrail_10_1002_jgt_22888 crossref_primary_10_1002_jgt_22888 wiley_primary_10_1002_jgt_22888_JGT22888 |
| PublicationCentury | 2000 |
| PublicationDate | March 2023 2023-03-00 20230301 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Journal of graph theory |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 79 1980; 28 1987; 3 2020; 343 1992; 13 1960 1934; 7 1997; 6 2021; 389 2010; 310 1997; 79 1959; 249 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 Camion P. (e_1_2_9_9_1) 1959; 249 e_1_2_9_2_1 e_1_2_9_15_1 Rédei L. (e_1_2_9_14_1) 1934; 7 |
| References_xml | – volume: 343 issue: 12 year: 2020 article-title: Spanning eulerian subdigraphs avoiding k prescribed arcs in tournaments publication-title: Discrete Mathematics – volume: 389 year: 2021 article-title: Trail‐connected tournaments publication-title: Appl. Math. Computat – volume: 7 start-page: 39 year: 1934 end-page: 43 article-title: Ein kombinatorischer Satz publication-title: Acta. Litt. Sci. Szeged – volume: 6 start-page: 255 issue: 3 year: 1997 end-page: 261 article-title: Hamiltonian cycles avoiding prescribed arcs in tournaments publication-title: Combin. Prob. Comput – volume: 3 start-page: 239 issue: 3 year: 1987 end-page: 250 article-title: Hamiltonian dicycles avoiding prescribed arcs in tournaments publication-title: Graphs Combin – volume: 249 start-page: 2151 year: 1959 end-page: 2152 article-title: Chemins et circuits hamiltoniens des graphes complets publication-title: C. R. Acad. Sci. Paris – volume: 79 start-page: 119 issue: 1‐3 year: 1997 end-page: 125 article-title: Spanning local tournaments in locally semicomplete digraphs publication-title: Discrete Appl. Math – volume: 310 start-page: 1424 year: 2010 end-page: 1428 article-title: Spanning 2‐strong tournaments in 3‐strong semicomplete digraphs publication-title: Discrete Math – volume: 13 start-page: 114 issue: 1 year: 1992 end-page: 127 article-title: A polynomial algorithm for Hamiltonian‐connectedness in semicomplete digraphs publication-title: J. Algor – start-page: 113 year: 1960 end-page: 128 – volume: 79 start-page: 8 issue: 1 year: 2015 end-page: 20 article-title: Sufficient conditions for a digraph to be supereulerian publication-title: J. Graph Theory – volume: 28 start-page: 142 issue: 2 year: 1980 end-page: 163 article-title: Hamiltonian‐connected tournaments publication-title: J. Combin. Theory Ser. B – ident: e_1_2_9_8_1 doi: 10.1016/0196-6774(92)90008-Z – ident: e_1_2_9_11_1 doi: 10.1016/S0166-218X(97)00037-1 – ident: e_1_2_9_15_1 doi: 10.1016/0095-8956(80)90061-1 – ident: e_1_2_9_5_1 doi: 10.1007/978-3-319-71840-8 – ident: e_1_2_9_2_1 doi: 10.1002/jgt.21810 – ident: e_1_2_9_7_1 doi: 10.1016/j.disc.2009.04.019 – ident: e_1_2_9_13_1 doi: 10.1016/j.amc.2020.125595 – ident: e_1_2_9_4_1 doi: 10.1007/978-1-84800-998-1 – volume: 249 start-page: 2151 year: 1959 ident: e_1_2_9_9_1 article-title: Chemins et circuits hamiltoniens des graphes complets publication-title: C. R. Acad. Sci. Paris – ident: e_1_2_9_10_1 doi: 10.1007/BF01788546 – ident: e_1_2_9_12_1 doi: 10.1090/psapm/010/0114759 – ident: e_1_2_9_3_1 doi: 10.1016/j.disc.2020.112129 – volume: 7 start-page: 39 year: 1934 ident: e_1_2_9_14_1 article-title: Ein kombinatorischer Satz publication-title: Acta. Litt. Sci. Szeged – ident: e_1_2_9_6_1 doi: 10.1017/S0963548397003027 |
| SSID | ssj0011508 |
| Score | 2.3570337 |
| Snippet | A digraph is eulerian if it is connected and every vertex has its in‐degree equal to its out‐degree. Having a spanning eulerian subdigraph is thus a weakening... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 578 |
| SubjectTerms | Apexes arc‐connectivity eulerian subdigraph Graph theory polynomial algorithm semicomplete digraph tournament |
| Title | Spanning eulerian subdigraphs in semicomplete digraphs |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.22888 https://www.proquest.com/docview/2762037637 |
| Volume | 102 |
| WOSCitedRecordID | wos000857147300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011508 issn: 0364-9024 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MzQd98C5O5yjigy_RJr2l-CTqFJlj6CZ7K02ayGTUsW7-fpP0MgUFwbeWphdOzsn50uR8H8BpEAYS40AgIT2CXAWZUSywRCRU3a1gEo9NfcVLN-j16GgU9mtwWdbC5PwQ1Q83HRlmvNYBHrPsYkka-vY6PydETeBWoIGxQ7VuA3H71RKCJjrPFypdFKpMVNIK2eSiuvV7MloizK841SSazua_PnELNgp8aV3lDrENNZHuwPpjRc6a7YL_PM2FiiyxmGgHTK1swZKx4a7OrLE61Tvm9V5zhait8sIeDDu3g-t7VMgnIO44hCLuS8ywlu7mwuGe8BkNqMTSjVXSd6XjK2Tk2cJjnlaRVHGrqcJiHksmZSjj0NmHevqeigOwbMycIPFtrustbUmZHRLOuO0lInEo9ZpwVtox4gW3uJa4mEQ5KzKJlCkiY4omnFRNpzmhxk-NWmVnREVMZRFR47atx8NAvc6Y_fcHRA93A3Nw-PemR7CmteTzDWYtqM9nC3EMq_xjPs5mbeNcbWjcPHWG3U9DsdIJ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MTVAfvIvTqUV88CUuTe_gi6hz6jZEN_EtNGkik1HHuvn7TXqbgoLgW0tPL5ycy9fk5DsAJ17gSdP0BBLSIchWkBmFwpSIBGq4FUziYbq_4rnj9Xr-y0vwUIHzYi9Mxg9RTrhpz0jjtXZwPSHdnLOGvr1OzwhRf3ALULOVGSn7rl09tgadchVBc51na5U2ClQyKpiFMGmWN3_PR3OQ-RWqprmmtfa_r1yH1RxjGheZUWxARcSbsNItCVqTLXCfxlmzIkPMRtoIYyOZsWiY8lcnxlCd6qp5XW-uULVRXNiGQeu6f9lGeQsFxC2L-Ii70mSmbt_NhcUd4TLf86Up7VAlfltarkJHDhYOc3QnSeW7mi4s5KFkUgYyDKwdqMbvsdgFA5vM8iIXc73nEkuf4YBwxrETicjyfacOp4UiKc_5xXWbixHNmJEJVaqgqSrqcFyKjjNSjZ-EGsVo0NyvEkpU7MY6Jnrqdanef38Avbvppwd7fxc9gqV2v9uhndve_T4s697yWcFZA6rTyUwcwCL_mA6TyWFua58ndtXv |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MTUQfvIvTqUV88CUuTe_gi6jzNsfQTfYWmjSRyahj3fz9Jr1NQUHwraXphZNzcr40Od8HcOIFnjRNTyAhHYJsBZlRKEyJSKC6W8EkHqb1FS9tr9PxB4OgW4HzohYm44cof7jpyEjHax3gYhzJ5pw19O11ekaImsEtQM3WIjJVqF09tfrtchVBc51na5U2ClQyKpiFMGmWN3_PR3OQ-RWqprmmtfa_r1yH1RxjGheZU2xARcSbsPJYErQmW-A-jzOxIkPMRtoJYyOZsWiY8lcnxlCd6l3zer-5QtVGcWEb-q3r3uUtyiUUELcs4iPuSpOZWr6bC4s7wmW-50tT2qFK_La0XIWOHCwc5mglSRW7mi4s5KFkUgYyDKwdqMbvsdgFA5vM8iIXc11ziaXPcEA449iJRGT5vlOH08KQlOf84lrmYkQzZmRClSloaoo6HJdNxxmpxk-NGkVv0DyuEkrU2I31mOip16V2__0B9P6mlx7s_b3pESx1r1q0fdd52IdlLS2f7TdrQHU6mYkDWOQf02EyOcxd7RPv9NVq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spanning+eulerian+subdigraphs+in+semicomplete+digraphs&rft.jtitle=Journal+of+graph+theory&rft.au=Bang%E2%80%90Jensen%2C+J%C3%B8rgen&rft.au=Havet%2C+Fr%C3%A9d%C3%A9ric&rft.au=Yeo%2C+Anders&rft.date=2023-03-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=102&rft.issue=3&rft.spage=578&rft.epage=606&rft_id=info:doi/10.1002%2Fjgt.22888&rft.externalDBID=10.1002%252Fjgt.22888&rft.externalDocID=JGT22888 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon |