Spanning eulerian subdigraphs in semicomplete digraphs

A digraph is eulerian if it is connected and every vertex has its in‐degree equal to its out‐degree. Having a spanning eulerian subdigraph is thus a weakening of having a hamiltonian cycle. In this paper, we first characterize the pairs (D,a) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of graph theory Ročník 102; číslo 3; s. 578 - 606
Hlavní autoři: Bang‐Jensen, Jørgen, Havet, Frédéric, Yeo, Anders
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.03.2023
Témata:
ISSN:0364-9024, 1097-0118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A digraph is eulerian if it is connected and every vertex has its in‐degree equal to its out‐degree. Having a spanning eulerian subdigraph is thus a weakening of having a hamiltonian cycle. In this paper, we first characterize the pairs (D,a) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$ such that D $D$ has a spanning eulerian subdigraph containing a $a$. In particular, we show that if D $D$ is 2‐arc‐strong, then every arc is contained in a spanning eulerian subdigraph. We then characterize the pairs ( D , a ) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$ such that D $D$ has a spanning eulerian subdigraph avoiding a $a$. In particular, we prove that every 2‐arc‐strong semicomplete digraph has a spanning eulerian subdigraph avoiding any prescribed arc. We also prove the existence of a (minimum) function f ( k ) $f(k)$ such that every f ( k ) $f(k)$‐arc‐strong semicomplete digraph contains a spanning eulerian subdigraph avoiding any prescribed set of k $k$ arcs. We conjecture that f ( k ) = k + 1 $f(k)=k+1$ and establish this conjecture for k ≤ 3 $k\le 3$ and when the k $k$ arcs that we delete form a forest of stars. A digraph D $D$ is eulerian‐connected if for any two distinct vertices x , y $x,y$, the digraph D $D$ has a spanning ( x , y ) $(x,y)$‐trail. We prove that every 2‐arc‐strong semicomplete digraph is eulerian‐connected. All our results may be seen as arc analogues of well‐known results on hamiltonian paths and cycles in semicomplete digraphs.
AbstractList A digraph is eulerian if it is connected and every vertex has its in‐degree equal to its out‐degree. Having a spanning eulerian subdigraph is thus a weakening of having a hamiltonian cycle. In this paper, we first characterize the pairs (D,a) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$ such that D $D$ has a spanning eulerian subdigraph containing a $a$. In particular, we show that if D $D$ is 2‐arc‐strong, then every arc is contained in a spanning eulerian subdigraph. We then characterize the pairs (D,a) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$ such that D $D$ has a spanning eulerian subdigraph avoiding a $a$. In particular, we prove that every 2‐arc‐strong semicomplete digraph has a spanning eulerian subdigraph avoiding any prescribed arc. We also prove the existence of a (minimum) function f(k) $f(k)$ such that every f(k) $f(k)$‐arc‐strong semicomplete digraph contains a spanning eulerian subdigraph avoiding any prescribed set of k $k$ arcs. We conjecture that f(k)=k+1 $f(k)=k+1$ and establish this conjecture for k≤3 $k\le 3$ and when the k $k$ arcs that we delete form a forest of stars. A digraph D $D$ is eulerian‐connected if for any two distinct vertices x,y $x,y$, the digraph D $D$ has a spanning (x,y) $(x,y)$‐trail. We prove that every 2‐arc‐strong semicomplete digraph is eulerian‐connected. All our results may be seen as arc analogues of well‐known results on hamiltonian paths and cycles in semicomplete digraphs.
A digraph is eulerian if it is connected and every vertex has its in‐degree equal to its out‐degree. Having a spanning eulerian subdigraph is thus a weakening of having a hamiltonian cycle. In this paper, we first characterize the pairs of a semicomplete digraph and an arc such that has a spanning eulerian subdigraph containing . In particular, we show that if is 2‐arc‐strong, then every arc is contained in a spanning eulerian subdigraph. We then characterize the pairs of a semicomplete digraph and an arc such that has a spanning eulerian subdigraph avoiding . In particular, we prove that every 2‐arc‐strong semicomplete digraph has a spanning eulerian subdigraph avoiding any prescribed arc. We also prove the existence of a (minimum) function such that every ‐arc‐strong semicomplete digraph contains a spanning eulerian subdigraph avoiding any prescribed set of arcs. We conjecture that and establish this conjecture for and when the arcs that we delete form a forest of stars. A digraph is eulerian‐connected if for any two distinct vertices , the digraph has a spanning ‐trail. We prove that every 2‐arc‐strong semicomplete digraph is eulerian‐connected. All our results may be seen as arc analogues of well‐known results on hamiltonian paths and cycles in semicomplete digraphs.
A digraph is eulerian if it is connected and every vertex has its in‐degree equal to its out‐degree. Having a spanning eulerian subdigraph is thus a weakening of having a hamiltonian cycle. In this paper, we first characterize the pairs (D,a) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$ such that D $D$ has a spanning eulerian subdigraph containing a $a$. In particular, we show that if D $D$ is 2‐arc‐strong, then every arc is contained in a spanning eulerian subdigraph. We then characterize the pairs ( D , a ) $(D,a)$ of a semicomplete digraph D $D$ and an arc a $a$ such that D $D$ has a spanning eulerian subdigraph avoiding a $a$. In particular, we prove that every 2‐arc‐strong semicomplete digraph has a spanning eulerian subdigraph avoiding any prescribed arc. We also prove the existence of a (minimum) function f ( k ) $f(k)$ such that every f ( k ) $f(k)$‐arc‐strong semicomplete digraph contains a spanning eulerian subdigraph avoiding any prescribed set of k $k$ arcs. We conjecture that f ( k ) = k + 1 $f(k)=k+1$ and establish this conjecture for k ≤ 3 $k\le 3$ and when the k $k$ arcs that we delete form a forest of stars. A digraph D $D$ is eulerian‐connected if for any two distinct vertices x , y $x,y$, the digraph D $D$ has a spanning ( x , y ) $(x,y)$‐trail. We prove that every 2‐arc‐strong semicomplete digraph is eulerian‐connected. All our results may be seen as arc analogues of well‐known results on hamiltonian paths and cycles in semicomplete digraphs.
Author Havet, Frédéric
Yeo, Anders
Bang‐Jensen, Jørgen
Author_xml – sequence: 1
  givenname: Jørgen
  orcidid: 0000-0001-5783-7125
  surname: Bang‐Jensen
  fullname: Bang‐Jensen, Jørgen
  organization: University of Southern Denmark
– sequence: 2
  givenname: Frédéric
  orcidid: 0000-0002-3447-8112
  surname: Havet
  fullname: Havet, Frédéric
  email: frederic.havet@inria.fr
  organization: CNRS, Université Côte d'Azur, I3S and INRIA
– sequence: 3
  givenname: Anders
  surname: Yeo
  fullname: Yeo, Anders
  organization: University of Southern Denmark
BookMark eNp1kDFPwzAQhS1UJNrCwD-IxMSQ9mwnjj2iCgqoEgNlthxjB1epE-xEqP-eQMqCYDrd3ffek94MTXzjDUKXGBYYgCx3VbcghHN-gqYYRJECxnyCpkBZlgog2RmaxbiD4ZwDnyL23Crvna8S09cmOOWT2JevrgqqfYuJG1azd7rZt7XpTPLzOEenVtXRXBznHL3c3W5X9-nmaf2wutmkmlLCU80sLjEGgrWhOjes5AW32GaKAM4sZYKIHExe5hkTnBeQMwpKK1taK6wSdI6uRt82NO-9iZ3cNX3wQ6QkBSNAC0aLgVqOlA5NjMFYqV2nOtf4LihXSwzyqxw5lCO_yxkU178UbXB7FQ5_skf3D1ebw_-gfFxvR8UnRI11LA
CitedBy_id crossref_primary_10_1002_jgt_23199
crossref_primary_10_1002_jgt_23157
crossref_primary_10_1002_jgt_23256
crossref_primary_10_1016_j_disc_2023_113867
crossref_primary_10_11650_tjm_230805
Cites_doi 10.1016/0196-6774(92)90008-Z
10.1016/S0166-218X(97)00037-1
10.1016/0095-8956(80)90061-1
10.1007/978-3-319-71840-8
10.1002/jgt.21810
10.1016/j.disc.2009.04.019
10.1016/j.amc.2020.125595
10.1007/978-1-84800-998-1
10.1007/BF01788546
10.1090/psapm/010/0114759
10.1016/j.disc.2020.112129
10.1017/S0963548397003027
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
DOI 10.1002/jgt.22888
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 606
ExternalDocumentID 10_1002_jgt_22888
JGT22888
Genre article
GrantInformation_xml – fundername: PICS, CNRS
– fundername: Agence Nationale de la Recherche
– fundername: Danish Research Council
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
24P
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADXHL
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
ID FETCH-LOGICAL-c3328-c6f1b11021ce3c5e6b878f1f4a2014f3692950e5b546988705630acafbff9fa93
IEDL.DBID 24P
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000857147300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0364-9024
IngestDate Fri Jul 25 12:11:53 EDT 2025
Sat Nov 29 03:03:52 EST 2025
Tue Nov 18 21:58:26 EST 2025
Wed Jan 22 16:20:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3328-c6f1b11021ce3c5e6b878f1f4a2014f3692950e5b546988705630acafbff9fa93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3447-8112
0000-0001-5783-7125
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.22888
PQID 2762037637
PQPubID 1006407
PageCount 29
ParticipantIDs proquest_journals_2762037637
crossref_citationtrail_10_1002_jgt_22888
crossref_primary_10_1002_jgt_22888
wiley_primary_10_1002_jgt_22888_JGT22888
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 79
1980; 28
1987; 3
2020; 343
1992; 13
1960
1934; 7
1997; 6
2021; 389
2010; 310
1997; 79
1959; 249
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Camion P. (e_1_2_9_9_1) 1959; 249
e_1_2_9_2_1
e_1_2_9_15_1
Rédei L. (e_1_2_9_14_1) 1934; 7
References_xml – volume: 343
  issue: 12
  year: 2020
  article-title: Spanning eulerian subdigraphs avoiding k prescribed arcs in tournaments
  publication-title: Discrete Mathematics
– volume: 389
  year: 2021
  article-title: Trail‐connected tournaments
  publication-title: Appl. Math. Computat
– volume: 7
  start-page: 39
  year: 1934
  end-page: 43
  article-title: Ein kombinatorischer Satz
  publication-title: Acta. Litt. Sci. Szeged
– volume: 6
  start-page: 255
  issue: 3
  year: 1997
  end-page: 261
  article-title: Hamiltonian cycles avoiding prescribed arcs in tournaments
  publication-title: Combin. Prob. Comput
– volume: 3
  start-page: 239
  issue: 3
  year: 1987
  end-page: 250
  article-title: Hamiltonian dicycles avoiding prescribed arcs in tournaments
  publication-title: Graphs Combin
– volume: 249
  start-page: 2151
  year: 1959
  end-page: 2152
  article-title: Chemins et circuits hamiltoniens des graphes complets
  publication-title: C. R. Acad. Sci. Paris
– volume: 79
  start-page: 119
  issue: 1‐3
  year: 1997
  end-page: 125
  article-title: Spanning local tournaments in locally semicomplete digraphs
  publication-title: Discrete Appl. Math
– volume: 310
  start-page: 1424
  year: 2010
  end-page: 1428
  article-title: Spanning 2‐strong tournaments in 3‐strong semicomplete digraphs
  publication-title: Discrete Math
– volume: 13
  start-page: 114
  issue: 1
  year: 1992
  end-page: 127
  article-title: A polynomial algorithm for Hamiltonian‐connectedness in semicomplete digraphs
  publication-title: J. Algor
– start-page: 113
  year: 1960
  end-page: 128
– volume: 79
  start-page: 8
  issue: 1
  year: 2015
  end-page: 20
  article-title: Sufficient conditions for a digraph to be supereulerian
  publication-title: J. Graph Theory
– volume: 28
  start-page: 142
  issue: 2
  year: 1980
  end-page: 163
  article-title: Hamiltonian‐connected tournaments
  publication-title: J. Combin. Theory Ser. B
– ident: e_1_2_9_8_1
  doi: 10.1016/0196-6774(92)90008-Z
– ident: e_1_2_9_11_1
  doi: 10.1016/S0166-218X(97)00037-1
– ident: e_1_2_9_15_1
  doi: 10.1016/0095-8956(80)90061-1
– ident: e_1_2_9_5_1
  doi: 10.1007/978-3-319-71840-8
– ident: e_1_2_9_2_1
  doi: 10.1002/jgt.21810
– ident: e_1_2_9_7_1
  doi: 10.1016/j.disc.2009.04.019
– ident: e_1_2_9_13_1
  doi: 10.1016/j.amc.2020.125595
– ident: e_1_2_9_4_1
  doi: 10.1007/978-1-84800-998-1
– volume: 249
  start-page: 2151
  year: 1959
  ident: e_1_2_9_9_1
  article-title: Chemins et circuits hamiltoniens des graphes complets
  publication-title: C. R. Acad. Sci. Paris
– ident: e_1_2_9_10_1
  doi: 10.1007/BF01788546
– ident: e_1_2_9_12_1
  doi: 10.1090/psapm/010/0114759
– ident: e_1_2_9_3_1
  doi: 10.1016/j.disc.2020.112129
– volume: 7
  start-page: 39
  year: 1934
  ident: e_1_2_9_14_1
  article-title: Ein kombinatorischer Satz
  publication-title: Acta. Litt. Sci. Szeged
– ident: e_1_2_9_6_1
  doi: 10.1017/S0963548397003027
SSID ssj0011508
Score 2.3570337
Snippet A digraph is eulerian if it is connected and every vertex has its in‐degree equal to its out‐degree. Having a spanning eulerian subdigraph is thus a weakening...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 578
SubjectTerms Apexes
arc‐connectivity
eulerian subdigraph
Graph theory
polynomial algorithm
semicomplete digraph
tournament
Title Spanning eulerian subdigraphs in semicomplete digraphs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.22888
https://www.proquest.com/docview/2762037637
Volume 102
WOSCitedRecordID wos000857147300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011508
  issn: 0364-9024
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_MzYMe_BancxTx4KWuSdq0xZOoU2SOoRvsVpImkcmoY938-036NQUFwVtDX9ry-r7avPx-AOdCqNBniNm-g7ntIsZtnRWVTbHAQlIhJc02Cvf8fj8Yj8NBDa7KvTA5PkT1w814RhavjYMznnZWoKFvr4tLjPUH3Bo0ECKB4W3A7qBaQjBA5_lCpWuHOhOVsEIO7lRTvyejVYX5tU7NEk13-1-PuANbRX1pXecGsQs1mezB5lMFzpruA32Z5URFllxOjQEmVrrkYpJhV6fWRA9Nx7zpNdcVtVWeOIBR925482AX9Al2TAgO7JgqxJGh7o4liT1JeeAHCimX6aTvKkJ1ZeQ50uOeYZHUfmugwljMFFcqVCwkh1BP3hN5BJaPCSdCIsSo53JGQ4aZIDzgVLjCo6oJF6Ueo7jAFjcUF9MoR0XGkVZFlKmiCWeV6CwH1PhJqFW-jKjwqTTCOm47Jh76-naZ2n-_QPR4P8wOjv8uegIbhks-bzBrQX0xX8pTWI8_FpN03s6Mqw2N2-fuqPcJ6KjTsQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MTVAfvIvTqUV88KWuTdq0BV9EnVO3IbrB3krSJDIZdaybv9-ktykoCL619PTC6bklOfk-gDPOZeBRm5qehZjp2JSZKitKkyCOuCBcCJJuFO54vZ4_HAZPFbgs9sJk-BDlhJv2jDReawfXE9LNBWro2-vsAiE1gluCmqPMSNl37ea5NeiUqwga6zxbq3TMQCWjAlnIQs3y5u_5aFFkfi1V01zT2vjfV27Cel5jGleZUWxBRcTbsNYtAVqTHSAvk4ysyBDzsTbC2EjmjI9S_OrEGKlT3TWv-81VVW0UF3Zh0LrtX7fNnELBjDBGvhkRaTNb03dHAkeuIMz3fGlLh6rE70hMVHXkWsJlrmaSVL6r4cJoRCWTMpA0wHtQjd9jsQ-GhzDDXNg2Ja7DKAkoohwznxHucJfIOpwXigyjHF9c01yMwwwZGYVKFWGqijqclqKTDFTjJ6FG8TfC3K-SEKnYbemY6KnXpXr__QHhw10_PTj4u-gJrLT73U7Yue89HsKq5pbPGs4aUJ1N5-IIlqOP2SiZHue29gnaxdeX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MTUQfvIvTqUV88KWuTdq0BV_EOW9zDN1gbyVpEpmMOtbN32_S2xQUBN8aetKW03Nrc_J9AGecy8CjNjU9CzHTsSkzVVaUJkEccUG4ECTdKNzxul1_OAx6Fbgs9sJk-BDlDzftGWm81g4uJlw2F6ihb6-zC4TUF9wS1BxNIlOFWuu5PeiUqwga6zxbq3TMQCWjAlnIQs1y8vd8tCgyv5aqaa5pb_zvKTdhPa8xjavMKLagIuJtWHsqAVqTHSAvk4ysyBDzsTbC2EjmjI9S_OrEGKmh7prX_eaqqjaKE7swaN_0r-_MnELBjDBGvhkRaTNb03dHAkeuIMz3fGlLh6rE70hMVHXkWsJlrmaSVL6r4cJoRCWTMpA0wHtQjd9jsQ-GhzDDXNg2Ja7DKAkoohwznxHucJfIOpwXigyjHF9c01yMwwwZGYVKFWGqijqclqKTDFTjJ6FG8TbC3K-SEKnYbemY6KnbpXr__QLhw20_PTj4u-gJrPRa7bBz3308hFVNLZ_1mzWgOpvOxREsRx-zUTI9zk3tE6Gq1xI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spanning+eulerian+subdigraphs+in+semicomplete+digraphs&rft.jtitle=Journal+of+graph+theory&rft.au=Bang%E2%80%90Jensen%2C+J%C3%B8rgen&rft.au=Havet%2C+Fr%C3%A9d%C3%A9ric&rft.au=Yeo%2C+Anders&rft.date=2023-03-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=102&rft.issue=3&rft.spage=578&rft.epage=606&rft_id=info:doi/10.1002%2Fjgt.22888&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jgt_22888
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon