Deterministic symbolic regression with derivative information: General methodology and application to equations of state

Symbolic regression methods simultaneously determine the model functional form and the regression parameter values by generating expression trees. Symbolic regression can capture the complexity of real‐world phenomena but the use of deterministic optimization for symbolic regression has been limited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal Jg. 68; H. 6
Hauptverfasser: Engle, Marissa R., Sahinidis, Nikolaos V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.06.2022
American Institute of Chemical Engineers
Schlagworte:
ISSN:0001-1541, 1547-5905
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Symbolic regression methods simultaneously determine the model functional form and the regression parameter values by generating expression trees. Symbolic regression can capture the complexity of real‐world phenomena but the use of deterministic optimization for symbolic regression has been limited due to the complexity of the search space of existing formulations. We present a novel deterministic mixed‐integer nonlinear programming formulation for symbolic regression that incorporates derivative constraints through auxiliary expression trees. By applying the chain rule to mathematical operations, binary expression trees are capable of representing the calculation of first and second derivatives. We apply this formulation to illustrative examples using derivative information to show increased model discrimination capability. In addition, we perform a case study of a thermodynamic equation of state to gain insight on valid functional forms with thermodynamics‐based constraints on the first and second derivatives.
AbstractList Symbolic regression methods simultaneously determine the model functional form and the regression parameter values by generating expression trees. Symbolic regression can capture the complexity of real‐world phenomena but the use of deterministic optimization for symbolic regression has been limited due to the complexity of the search space of existing formulations. We present a novel deterministic mixed‐integer nonlinear programming formulation for symbolic regression that incorporates derivative constraints through auxiliary expression trees. By applying the chain rule to mathematical operations, binary expression trees are capable of representing the calculation of first and second derivatives. We apply this formulation to illustrative examples using derivative information to show increased model discrimination capability. In addition, we perform a case study of a thermodynamic equation of state to gain insight on valid functional forms with thermodynamics‐based constraints on the first and second derivatives.
Author Sahinidis, Nikolaos V.
Engle, Marissa R.
Author_xml – sequence: 1
  givenname: Marissa R.
  surname: Engle
  fullname: Engle, Marissa R.
  organization: Carnegie Mellon University
– sequence: 2
  givenname: Nikolaos V.
  orcidid: 0000-0003-2087-9131
  surname: Sahinidis
  fullname: Sahinidis, Nikolaos V.
  email: nikos@gatech.edu
  organization: H. Milton Stewart School of Industrial and Systems Engineering, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
BookMark eNp9kD9PwzAQxS1UJNrCwDewxMSQ1o7j_GGrChSkSiwwR05yaV0ldmq7Lfn2mJQJCaZ7d_rdO92boJHSChC6pWRGCQnnQpYzmkQ8uUBjyqMk4BnhIzQmhNDAD-gVmli7812YpOEYfT6CA9NKJa2TJbZ9W-jGCwMbA9ZKrfBJui2uwMijcPIIWKpam9ZrrR7wChQY0eAW3FZXutGbHgtVYdF13maAsNMY9odBW6xrbJ1wcI0ua9FYuPmpU_Tx_PS-fAnWb6vX5WIdlIyFSZDVIimKMAbOMkIqWrOKZWXM4zhkLGUJz6qyKH0rIE2pHyS0oEBpVHDOQw9P0d3ZtzN6fwDr8p0-GOVP5mEc-0AiEjNP3Z-p0mhrDdR5Z2QrTJ9Tkn8Hm_tg8yFYz85_saV0w3fOCNn8t3GSDfR_W-eL1-V54wsAkI1n
CitedBy_id crossref_primary_10_1145_3735634
crossref_primary_10_1007_s00521_023_08335_0
crossref_primary_10_3390_lubricants13020054
crossref_primary_10_1007_s11831_023_09922_z
crossref_primary_10_1016_j_energy_2024_131614
crossref_primary_10_1038_s41467_024_50074_w
crossref_primary_10_1088_2632_2153_ad4a1e
crossref_primary_10_1002_idm2_12180
crossref_primary_10_1007_s11433_023_2346_2
Cites_doi 10.1007/s10107-018-1289-x
10.1021/i200022a008
10.1039/f29848001019
10.1016/j.supflu.2016.05.012
10.1016/j.compchemeng.2018.10.007
10.1002/aic.14741
10.1007/s10957-018-1396-0
10.1145/2576768.2598264
10.1016/j.cryogenics.2017.04.001
10.1007/s10710-010-9124-z
10.1002/cjce.5450640224
10.1016/0378-3812(83)80084-3
10.1007/s10710-019-09371-3
10.1016/j.compchemeng.2017.06.023
10.1016/j.fluid.2017.04.015
10.1016/j.molliq.2019.111971
10.1126/sciadv.aay2631
10.1016/j.asoc.2020.106432
10.1016/j.ins.2017.11.041
10.1016/0009-2509(84)80034-2
10.1016/S0098-1354(96)00329-8
10.1023/B:IJOT.0000022331.46865.2f
10.1016/j.cej.2019.123412
10.1016/j.compchemeng.2020.107051
10.1080/10556788.2017.1350178
10.1016/j.fluid.2017.05.007
10.1016/j.fluid.2016.12.015
10.1016/0009-2509(72)80096-4
10.1023/A:1021039126272
10.1109/LA-CCI47412.2019.9036755
10.1016/j.engappai.2017.10.021
10.1016/j.fluid.2016.07.026
10.1016/j.compchemeng.2014.05.013
ContentType Journal Article
Copyright 2021 American Institute of Chemical Engineers.
2022 American Institute of Chemical Engineers
Copyright_xml – notice: 2021 American Institute of Chemical Engineers.
– notice: 2022 American Institute of Chemical Engineers
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.17457
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage n/a
ExternalDocumentID 10_1002_aic_17457
AIC17457
Genre article
GrantInformation_xml – fundername: Office of Fossil Energy
– fundername: U.S. Department of Energy
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABJIA
ADMLS
AEFGJ
AEYWJ
AFFHD
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
PHGZM
PHGZT
PQGLB
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c3327-9fa7bb26e53900d1f3d39c656623383759dcbc566ae88183771b1e114b55523d3
IEDL.DBID DRFUL
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000705526000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-1541
IngestDate Mon Nov 10 03:09:10 EST 2025
Sat Nov 29 07:25:23 EST 2025
Tue Nov 18 20:55:33 EST 2025
Wed Jan 22 16:26:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3327-9fa7bb26e53900d1f3d39c656623383759dcbc566ae88183771b1e114b55523d3
Notes Funding information
U.S. Department of Energy; Office of Fossil Energy
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2087-9131
OpenAccessLink https://www.osti.gov/biblio/1981379
PQID 2665414063
PQPubID 7879
PageCount 14
ParticipantIDs proquest_journals_2665414063
crossref_primary_10_1002_aic_17457
crossref_citationtrail_10_1002_aic_17457
wiley_primary_10_1002_aic_17457_AIC17457
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle AIChE journal
PublicationYear 2022
Publisher John Wiley & Sons, Inc
American Institute of Chemical Engineers
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Institute of Chemical Engineers
References 2017; 84
1984; 80
1997; 21
2011
2020; 142
2016; 427
2015; 72
2004; 25
2002; 98
2002; 3
2020; 387
2011; 12
1992
2003
1983; 13
2017; 436
1972; 27
2018; 68
2019; 121
2020; 6
2018; 430
2019; 180
2018; 170
2001
1986; 64
2021
2020; 94
2019; 21
2020
2015; 61
1984; 39
2019
2018
2020; 298
2014
2017; 120
2018; 33
2017; 445
2017; 106
2017; 447
1983; 22
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
Keijzer M (e_1_2_11_38_1) 2003
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
Koza JR (e_1_2_11_2_1) 1992
Korns MF (e_1_2_11_11_1) 2011
Lemmon EW (e_1_2_11_37_1) 2020
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
Kim J (e_1_2_11_20_1) 2021
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
Topchy A (e_1_2_11_9_1) 2001
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_39_1
e_1_2_11_19_1
Twu CH (e_1_2_11_30_1) 2002; 98
References_xml – volume: 39
  start-page: 357
  issue: 2
  year: 1984
  end-page: 369
  article-title: Improvement of the Van Der Waals equation of state
  publication-title: Chem Eng Sci
– volume: 180
  start-page: 925
  issue: 3
  year: 2019
  end-page: 948
  article-title: Deterministic global optimization with artificial neural networks embedded
  publication-title: J Optim Theor Appl
– volume: 142
  year: 2020
  article-title: A generalized benders decomposition‐based global optimization approach to symbolic regression for explicit surrogate modeling from limited data information
  publication-title: Comput Chem Eng
– start-page: 1
  year: 2019
  end-page: 6
– volume: 298
  year: 2020
  article-title: Development of models for surface tension of alcohols through symbolic regression
  publication-title: J Mol Liq
– volume: 68
  start-page: 110
  year: 2018
  end-page: 120
  article-title: Solving stochastic differential equations through genetic programming and automatic differentiation
  publication-title: Eng Appl Artif Intel
– year: 2021
– volume: 427
  start-page: 513
  year: 2016
  end-page: 538
  article-title: A consistency test for ‐functions of cubic equations of state
  publication-title: Fluid Phase Equilibria
– start-page: 895
  year: 2014
  end-page: 902
– volume: 430
  start-page: 287
  year: 2018
  end-page: 313
  article-title: Automatic feature engineering for regression models with machine learning: an evolutionary computation and statistics hybrid
  publication-title: Inform Sci
– start-page: 155
  year: 2001
  end-page: 162
– volume: 170
  start-page: 97
  year: 2018
  end-page: 119
  article-title: A global MINLP approach to symbolic regression
  publication-title: Math Progam
– volume: 13
  start-page: 91
  year: 1983
  end-page: 108
  article-title: Extension of the Peng–Robinson equation of state to complex mixtures: evaluation of the various forms of the local composition concept
  publication-title: Fluid Phase Equilibria
– start-page: 70
  year: 2003
  end-page: 82
– year: 2018
– year: 1992
– volume: 72
  start-page: 3
  year: 2015
  end-page: 20
  article-title: A framework for efficient large scale equation‐oriented flowsheet optimization
  publication-title: Comput Chem Eng
– volume: 436
  start-page: 69
  year: 2017
  end-page: 84
  article-title: A consistent and precise alpha function for cubic equations of state
  publication-title: Fluid Phase Equilibria
– volume: 387
  year: 2020
  article-title: A new formulation for symbolic regression to identify physico‐chemical laws from experimental data
  publication-title: Chem Eng J
– volume: 3
  start-page: 227
  year: 2002
  end-page: 252
  article-title: Review of nonlinear mixed‐integer and disjunctive programming techniques
  publication-title: Optim Eng
– volume: 106
  start-page: 407
  year: 2017
  end-page: 420
  article-title: Thermodynamic analysis of formulations to discriminate multiple roots of cubic equations of state in process models
  publication-title: Comput Chem Eng
– volume: 121
  start-page: 67
  year: 2019
  end-page: 74
  article-title: Deterministic global process optimization: accurate (single‐species) properties via artificial neural networks
  publication-title: Comput Chem Eng
– volume: 25
  start-page: 133
  issue: 1
  year: 2004
  end-page: 158
  article-title: Development of a new alpha function for the Peng–Robinson equation of state: comparative study of alpha function models for pure gases (natural gas components) and water–gas systems
  publication-title: Int J Thermophys
– volume: 84
  start-page: 13
  year: 2017
  end-page: 19
  article-title: A comparison between Peng–Robinson and Soave–Redlich–Kwong cubic equations of state from modification perspective
  publication-title: Cryogenics
– volume: 120
  start-page: 191
  year: 2017
  end-page: 206
  article-title: Second derivative of alpha functions in cubic equations of state
  publication-title: J Supercritic Fluids
– volume: 6
  start-page: eaay2631
  issue: 16
  year: 2020
  article-title: AI Feynman: a physics‐inspired method for symbolic regression
  publication-title: Sci Adv
– volume: 12
  start-page: 173
  issue: 2
  year: 2011
  end-page: 178
  article-title: Eureqa: software review
  publication-title: Genet Program Evolvable Mach
– volume: 33
  start-page: 540
  issue: 3
  year: 2018
  end-page: 562
  article-title: Exploiting integrality in the global optimization of mixed‐integer nonlinear programming problems with BARON
  publication-title: Optim Methods Softw
– volume: 21
  start-page: 471
  year: 2019
  end-page: 501
  article-title: Parameter identification for symbolic regression using nonlinear least squares
  publication-title: Genet Program Evolvable Mach
– start-page: 129
  year: 2011
  end-page: 151
– year: 2020
– volume: 21
  start-page: 981
  year: 1997
  end-page: 996
  article-title: Steady‐state modelling of chemical process systems using genetic programming
  publication-title: Comput Chem Eng
– volume: 27
  start-page: 1197
  issue: 6
  year: 1972
  end-page: 1203
  article-title: Equilibrium constants from a modified Redlich–Kwong equation of state
  publication-title: Chem Eng Sci
– volume: 61
  start-page: 2824
  issue: 9
  year: 2015
  end-page: 2831
  article-title: Understanding cubic equations of state: a search for the hidden clues of their success
  publication-title: AIChE J
– volume: 98
  start-page: 58
  year: 2002
  end-page: 65
  article-title: Getting a handle on advanced cubic equations of state
  publication-title: Chem Eng Prog
– volume: 445
  start-page: 45
  year: 2017
  end-page: 53
  article-title: On the imperative need to use a consistent ‐function for the prediction of pure‐compound supercritical properties with a cubic equation of state
  publication-title: Fluid Phase Equilibria
– volume: 22
  start-page: 385
  issue: 3
  year: 1983
  end-page: 391
  article-title: A versatile phase equilibrium equation of state
  publication-title: Ind Eng Chem Process Des Dev
– volume: 94
  year: 2020
  article-title: Constructing parsimonious analytic models for dynamic systems via symbolic regression
  publication-title: Appl Soft Comput
– volume: 64
  start-page: 323
  year: 1986
  end-page: 333
  article-title: PRSV: an improved Peng–Robinson equation of state for pure compounds and mixtures
  publication-title: Can J Chem Eng
– volume: 447
  start-page: 39
  year: 2017
  end-page: 71
  article-title: Peng–Robinson equation of state: 40 years through cubics
  publication-title: Fluid Phase Equilibria
– volume: 80
  start-page: 1019
  year: 1984
  end-page: 1038
  article-title: An equation of state for polar and non‐polar substances and mixtures
  publication-title: J Chem Soc Faraday Trans 2
– ident: e_1_2_11_17_1
  doi: 10.1007/s10107-018-1289-x
– volume-title: Learning Symbolic Expressions: Mixed‐Integer Formulations, Cuts, and Heuristics
  year: 2021
  ident: e_1_2_11_20_1
– ident: e_1_2_11_43_1
  doi: 10.1021/i200022a008
– ident: e_1_2_11_40_1
  doi: 10.1039/f29848001019
– ident: e_1_2_11_16_1
– ident: e_1_2_11_35_1
  doi: 10.1016/j.supflu.2016.05.012
– start-page: 129
  volume-title: Accuracy in Symbolic Regression
  year: 2011
  ident: e_1_2_11_11_1
– ident: e_1_2_11_26_1
  doi: 10.1016/j.compchemeng.2018.10.007
– ident: e_1_2_11_29_1
  doi: 10.1002/aic.14741
– ident: e_1_2_11_21_1
– ident: e_1_2_11_27_1
  doi: 10.1007/s10957-018-1396-0
– ident: e_1_2_11_12_1
  doi: 10.1145/2576768.2598264
– ident: e_1_2_11_33_1
  doi: 10.1016/j.cryogenics.2017.04.001
– ident: e_1_2_11_10_1
  doi: 10.1007/s10710-010-9124-z
– ident: e_1_2_11_42_1
  doi: 10.1002/cjce.5450640224
– ident: e_1_2_11_44_1
  doi: 10.1016/0378-3812(83)80084-3
– ident: e_1_2_11_8_1
  doi: 10.1007/s10710-019-09371-3
– ident: e_1_2_11_25_1
  doi: 10.1016/j.compchemeng.2017.06.023
– ident: e_1_2_11_36_1
  doi: 10.1016/j.fluid.2017.04.015
– start-page: 70
  volume-title: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling
  year: 2003
  ident: e_1_2_11_38_1
– ident: e_1_2_11_6_1
  doi: 10.1016/j.molliq.2019.111971
– ident: e_1_2_11_3_1
  doi: 10.1126/sciadv.aay2631
– ident: e_1_2_11_5_1
  doi: 10.1016/j.asoc.2020.106432
– ident: e_1_2_11_13_1
  doi: 10.1016/j.ins.2017.11.041
– ident: e_1_2_11_39_1
  doi: 10.1016/0009-2509(84)80034-2
– volume: 98
  start-page: 58
  year: 2002
  ident: e_1_2_11_30_1
  article-title: Getting a handle on advanced cubic equations of state
  publication-title: Chem Eng Prog
– ident: e_1_2_11_4_1
  doi: 10.1016/S0098-1354(96)00329-8
– ident: e_1_2_11_31_1
  doi: 10.1023/B:IJOT.0000022331.46865.2f
– ident: e_1_2_11_18_1
  doi: 10.1016/j.cej.2019.123412
– ident: e_1_2_11_19_1
  doi: 10.1016/j.compchemeng.2020.107051
– ident: e_1_2_11_23_1
  doi: 10.1080/10556788.2017.1350178
– ident: e_1_2_11_28_1
  doi: 10.1016/j.fluid.2017.05.007
– ident: e_1_2_11_15_1
– ident: e_1_2_11_34_1
  doi: 10.1016/j.fluid.2016.12.015
– volume-title: NIST Chemistry WebBook
  year: 2020
  ident: e_1_2_11_37_1
– start-page: 155
  volume-title: GECCO'01
  year: 2001
  ident: e_1_2_11_9_1
– volume-title: Genetic Programming: on the Programming of Computers by Means of Natural Selection
  year: 1992
  ident: e_1_2_11_2_1
– ident: e_1_2_11_41_1
  doi: 10.1016/0009-2509(72)80096-4
– ident: e_1_2_11_22_1
  doi: 10.1023/A:1021039126272
– ident: e_1_2_11_14_1
  doi: 10.1109/LA-CCI47412.2019.9036755
– ident: e_1_2_11_7_1
  doi: 10.1016/j.engappai.2017.10.021
– ident: e_1_2_11_32_1
  doi: 10.1016/j.fluid.2016.07.026
– ident: e_1_2_11_24_1
  doi: 10.1016/j.compchemeng.2014.05.013
SSID ssj0012782
Score 2.4668725
Snippet Symbolic regression methods simultaneously determine the model functional form and the regression parameter values by generating expression trees. Symbolic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Complexity
cubic equations of state
Equations of state
mixed‐integer nonlinear programming
Nonlinear programming
Optimization
Regression
surrogate modeling
symbolic regression
Thermodynamics
Trees
Title Deterministic symbolic regression with derivative information: General methodology and application to equations of state
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.17457
https://www.proquest.com/docview/2665414063
Volume 68
WOSCitedRecordID wos000705526000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_m5oM--C1OpwTxwZeyNlmbVp_G5lAYQ8TB3kq-KgPtdJ1D_3uTtOsmKAi-tXBpSy7p_e5y9zuACxVoM4c94mDBE6flh9xhBEtHI2OfR1QyLGzXkj4dDMLRKLqvwPWiFibnhygDbmZn2P-12eCMZ80laSgbC5ON49M1qGG9bv0q1LoPvWG_PETANMzJwrXHrJGCtyAWcnGzHPzdHC0x5ipStaamt_2vj9yBrQJhona-JHahotI92FzhHdyHj26RBGNZmlH2-cINPTCaqqc8LTZFJj6LpJafW2ZwVBCsGjVeoYKrGuXtp21gHrFUopXTcDSbIPWW84hnaJIgW7l0AMPezWPn1ilaMDiCEEydKGGUcxwon0SuK72ESBIJgwGx9W39SAou9C1ToTb9hFKPe0r7WNz3tYsrySFU00mqjgAlSZS0qCvdhIhWi1CupKIB0whMmWRBVofLhSZiUfCTmzYZz3HOrIxjPZmxncw6nJeirzkpx09CjYU642JfZjEObN9zjcv066zifn9A3L7r2Ivjv4uewAY29RE2TNOA6mz6rk5hXcxn42x6VizQL_Fv6t0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90E9QHv8Xp1CA--FLWJu2yii9jc2xYh8gGeyvNR2WgnW5z6H9vknbdBAXBtxYubclder-7XH4HcCmrys1hh1iYs9hyvRqzIoKFpZCxx3wqIsxN15KAdru1wcB_WIGb-VmYlB8iT7jplWH-13qB64R0ZcEaGg25Lsfx6CoUXWVGyr6LzcdWP8h3ETCtpWzhKmRWUMGZMwvZuJIP_u6PFiBzGaoaX9Pa_t9X7sBWhjFRPTWKXViRyR5sLjEP7sNHMyuDMTzNaPL5wjRBMBrLp7QwNkE6Q4uEkp8ZbnCUUaxqRV6jjK0apQ2oTWoeRYlAS_vhaDpC8i1lEp-gUYzM2aUD6Ldue422lTVhsDghmFp-HFHGcFV6xLdt4cREEJ9rFIhNdOv5gjOubiNZU86fUOowR6ooi3meCnIFOYRCMkrkEaA49mOX2sKOCXddQpkUklYjhcGkLheMSnA1V0XIM4Zy3SjjOUy5lXGoJjM0k1mCi1z0NaXl-EmoPNdnmK3MSYirpvO5QmbqdUZzvz8grHca5uL476LnsN7u3Qdh0OnencAG1qclTNKmDIXp-F2ewhqfTYeT8VlmrV_-Ne7N
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mJqIPfovTqUF88KWsTdplFV_G5nA4xhAHeyvNlwy0m9sc-t-bpN2HoCD41sKlLbmk97vL3e8ArmRFmznsEQdzphw_qDInJlg4GhkHLKQixtx2LWnTTqfa74fdHNzOa2FSfohFwM3sDPu_NhtcjoQqL1lD4wE36TgBXYOCb5rI5KHQeGz22otTBEyrKVu4dpk1VPDmzEIuLi8Gf7dHS5C5ClWtrWnu_O8rd2E7w5ioli6KPcjJZB-2VpgHD-CjkaXBWJ5mNPl8ZYYgGI3lc5oYmyAToUVCy88sNzjKKFaNIm9QxlaN0gbUNjSP4kSglfNwNB0i-ZYyiU_QUCFbu3QIvebdU_3eyZowOJwQTJ1QxZQxXJEBCV1XeIoIEnKDArH1boNQcMb1bSyr2vgTSj3mSe1lsSDQTq4gR5BPhok8BqRUqHzqClcR7vuEMikkrcQag0mTLhgX4XquiohnDOWmUcZLlHIr40hPZmQnswiXC9FRSsvxk1Bprs8o25mTCFds53ONzPTrrOZ-f0BUa9XtxcnfRS9go9toRu1W5-EUNrEplrAxmxLkp-N3eQbrfDYdTMbn2WL9AqNU7kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deterministic+symbolic+regression+with+derivative+information%3A+General+methodology+and+application+to+equations+of+state&rft.jtitle=AIChE+journal&rft.au=Engle%2C+Marissa+R&rft.au=Sahinidis%2C+Nikolaos+V&rft.date=2022-06-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=68&rft.issue=6&rft_id=info:doi/10.1002%2Faic.17457&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon