Deterministic symbolic regression with derivative information: General methodology and application to equations of state
Symbolic regression methods simultaneously determine the model functional form and the regression parameter values by generating expression trees. Symbolic regression can capture the complexity of real‐world phenomena but the use of deterministic optimization for symbolic regression has been limited...
Uloženo v:
| Vydáno v: | AIChE journal Ročník 68; číslo 6 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2022
American Institute of Chemical Engineers |
| Témata: | |
| ISSN: | 0001-1541, 1547-5905 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Symbolic regression methods simultaneously determine the model functional form and the regression parameter values by generating expression trees. Symbolic regression can capture the complexity of real‐world phenomena but the use of deterministic optimization for symbolic regression has been limited due to the complexity of the search space of existing formulations. We present a novel deterministic mixed‐integer nonlinear programming formulation for symbolic regression that incorporates derivative constraints through auxiliary expression trees. By applying the chain rule to mathematical operations, binary expression trees are capable of representing the calculation of first and second derivatives. We apply this formulation to illustrative examples using derivative information to show increased model discrimination capability. In addition, we perform a case study of a thermodynamic equation of state to gain insight on valid functional forms with thermodynamics‐based constraints on the first and second derivatives. |
|---|---|
| Bibliografie: | Funding information U.S. Department of Energy; Office of Fossil Energy ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0001-1541 1547-5905 |
| DOI: | 10.1002/aic.17457 |