Perceptual Quality Assessment of NeRF and Neural View Synthesis Methods for Front‐Facing Views

Neural view synthesis (NVS) is one of the most successful techniques for synthesizing free viewpoint videos, capable of achieving high fidelity from only a sparse set of captured images. This success has led to many variants of the techniques, each evaluated on a set of test views typically using im...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 43; no. 2
Main Authors: Liang, H., Wu, T., Hanji, P., Banterle, F., Gao, H., Mantiuk, R., Öztireli, C.
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.05.2024
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Neural view synthesis (NVS) is one of the most successful techniques for synthesizing free viewpoint videos, capable of achieving high fidelity from only a sparse set of captured images. This success has led to many variants of the techniques, each evaluated on a set of test views typically using image quality metrics such as PSNR, SSIM, or LPIPS. There has been a lack of research on how NVS methods perform with respect to perceived video quality. We present the first study on perceptual evaluation of NVS and NeRF variants. For this study, we collected two datasets of scenes captured in a controlled lab environment as well as in‐the‐wild. In contrast to existing datasets, these scenes come with reference video sequences, allowing us to test for temporal artifacts and subtle distortions that are easily overlooked when viewing only static images. We measured the quality of videos synthesized by several NVS methods in a well‐controlled perceptual quality assessment experiment as well as with many existing state‐of‐the‐art image/video quality metrics. We present a detailed analysis of the results and recommendations for dataset and metric selection for NVS evaluation.
AbstractList Neural view synthesis (NVS) is one of the most successful techniques for synthesizing free viewpoint videos, capable of achieving high fidelity from only a sparse set of captured images. This success has led to many variants of the techniques, each evaluated on a set of test views typically using image quality metrics such as PSNR, SSIM, or LPIPS. There has been a lack of research on how NVS methods perform with respect to perceived video quality. We present the first study on perceptual evaluation of NVS and NeRF variants. For this study, we collected two datasets of scenes captured in a controlled lab environment as well as in‐the‐wild. In contrast to existing datasets, these scenes come with reference video sequences, allowing us to test for temporal artifacts and subtle distortions that are easily overlooked when viewing only static images. We measured the quality of videos synthesized by several NVS methods in a well‐controlled perceptual quality assessment experiment as well as with many existing state‐of‐the‐art image/video quality metrics. We present a detailed analysis of the results and recommendations for dataset and metric selection for NVS evaluation.
Author Öztireli, C.
Wu, T.
Banterle, F.
Liang, H.
Hanji, P.
Gao, H.
Mantiuk, R.
Author_xml – sequence: 1
  givenname: H.
  orcidid: 0009-0005-9078-8042
  surname: Liang
  fullname: Liang, H.
  organization: University of Cambridge
– sequence: 2
  givenname: T.
  orcidid: 0000-0002-3807-5839
  surname: Wu
  fullname: Wu, T.
  organization: University of Cambridge
– sequence: 3
  givenname: P.
  orcidid: 0000-0002-7985-4177
  surname: Hanji
  fullname: Hanji, P.
  organization: University of Cambridge
– sequence: 4
  givenname: F.
  orcidid: 0000-0002-6374-6657
  surname: Banterle
  fullname: Banterle, F.
  organization: ISTI‐CNR
– sequence: 5
  givenname: H.
  orcidid: 0000-0001-5546-6906
  surname: Gao
  fullname: Gao, H.
  organization: University of Cambridge
– sequence: 6
  givenname: R.
  orcidid: 0000-0003-2353-0349
  surname: Mantiuk
  fullname: Mantiuk, R.
  organization: University of Cambridge
– sequence: 7
  givenname: C.
  orcidid: 0000-0002-4700-2236
  surname: Öztireli
  fullname: Öztireli, C.
  organization: University of Cambridge
BookMark eNp1kE1OwzAQhS0EEm1hwQ0ssWKR1o5jJ1lWFSlI5f9nGxzHbl2lSbEdVdlxBM7ISTBtVwhmMfMW35sZvT44rJtaAnCG0RD7Gom5GmKKCDsAPRyxOEgYTQ9BD2GvY0TpMehbu0QIRTGjPfB2L42Qa9fyCj74pl0Hx9ZKa1eydrBR8FY-ZpDXpRet8dSrlhv41NVuIa228Ea6RVNaqBoDM9PU7uvjM-NC1_MtaU_AkeKVlaf7OQAv2eXz5CqY3U2vJ-NZIAgJWZCmJWcijYlKIkULHEdYCUYKGoUCsbBkhHEVCooTmSClKEOES0LiIoniQpSIDMD5bu_aNO-ttC5fNq2p_cmcIBqHaZSGkadGO0qYxlojVS604077vw3XVY5R_hNj7mPMtzF6x8Uvx9roFTfdn-x--0ZXsvsfzCfTbOf4BvSjhAE
CitedBy_id crossref_primary_10_1016_j_dib_2025_111484
crossref_primary_10_3390_app15179422
crossref_primary_10_1109_TVCG_2025_3549538
crossref_primary_10_1109_ACCESS_2025_3603970
Cites_doi 10.1109/CVPR.2014.59
10.1109/TCSVT.2012.2214933
10.1145/3072959.3073599
10.2352/ISSN.2470‐1173.2020.11.HVEI‐233
10.1109/CVPR52688.2022.00538
10.1109/QoMEX.2019.8743252
10.1109/CVPR42600.2020.00186
10.1109/TIP.2019.2936103
10.1016/j.image.2015.04.009
10.4135/9781412983532
10.1145/280814.280882
10.1145/3406183
10.1109/MSP.2015.2506199
10.1109/TIP.2005.859378
10.1109/ICRA.2011.5979561
10.1145/3197517.3201323
10.1109/CVPR52688.2022.00539
10.1145/166117.166153
10.1145/3306346.3322980
10.1145/2999533
10.1145/3528223.3530139
10.1109/ICMEW46912.2020.9106041
10.1145/2010324.1964935
10.1117/12.386541
10.1109/CVPR46437.2021.00843
10.1145/3338696
10.1109/ACSSC.2003.1292216
10.1145/2366145.2366166
10.1109/TIP.2003.819861
10.1109/QoMEX58391.2023.10178625
10.1109/CVPR46437.2021.00466
10.1109/CVPR52688.2022.00542
10.1109/LSP.2012.2227726
10.1145/1073204.1073242
10.1145/3450626.3459831
10.1109/CVPR.2019.00247
10.1109/CVPR52688.2022.00809
10.1145/3528233.3530729
10.1109/34.888718
10.1109/APSIPA.2014.7041705
10.1109/WACV56688.2023.00088
10.1109/TIP.2011.2109730
10.1109/TIP.2012.2214050
10.1111/cgf.12235
10.1109/NCC.2015.7084843
10.1145/3550454.3555497
10.1016/j.image.2014.10.009
ContentType Journal Article
Copyright 2024 The Authors. Computer Graphics Forum published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Computer Graphics Forum published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.15036
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage n/a
ExternalDocumentID 10_1111_cgf_15036
CGF15036
Genre article
GrantInformation_xml – fundername: Marie Skłodowska‐Curie
  funderid: 765911
– fundername: Royal Society
  funderid: IES\R2\202141
– fundername: UKRI Future Leaders Fellowship
  funderid: G104084
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
24P
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3326-99da6c973f84f5b1741fc63b542c062d636af2c518e80ff5603ae337b847bcd03
IEDL.DBID 24P
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208862800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Sep 07 03:29:00 EDT 2025
Tue Nov 18 22:41:34 EST 2025
Sat Nov 29 03:41:23 EST 2025
Sun Jul 06 04:45:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3326-99da6c973f84f5b1741fc63b542c062d636af2c518e80ff5603ae337b847bcd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3807-5839
0000-0001-5546-6906
0000-0002-4700-2236
0009-0005-9078-8042
0000-0002-6374-6657
0000-0003-2353-0349
0000-0002-7985-4177
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.15036
PQID 3057294924
PQPubID 30877
PageCount 12
ParticipantIDs proquest_journals_3057294924
crossref_citationtrail_10_1111_cgf_15036
crossref_primary_10_1111_cgf_15036
wiley_primary_10_1111_cgf_15036_CGF15036
PublicationCentury 2000
PublicationDate May 2024
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 35
2013; 20.3
2019; 38.4
2019; 38.5
2023; 42.4
2021; 40.4
2020; 2020.11
2011
2017; 36.1
2012; 21.12
2013; 23
2011; 20.8
2012; 31.6
2006; 15.2
2015; 30
1998
2016; 33.2
2020; 3.2
2020; 44.5
2017; 36.4
1993
2020; 33
2005; 24.3
2000; 4067
2019; 161
2004; 13.4
2013; 32.7
2022; 41.6
2011; 30.4
2023
2022
2021
2020
2000; 22.11
2022; 41.4
2003; 2
2019
2018
2017
2016
2015
2014
2020; 29
e_1_2_10_23_2
e_1_2_10_44_2
e_1_2_10_42_3
e_1_2_10_42_2
e_1_2_10_40_2
Kerbl Bernhard (e_1_2_10_21_2) 2023; 42
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_4_3
e_1_2_10_14_3
e_1_2_10_53_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_6_3
e_1_2_10_12_3
e_1_2_10_55_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_35_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_56_3
e_1_2_10_8_2
e_1_2_10_58_2
e_1_2_10_32_2
e_1_2_10_30_3
e_1_2_10_30_2
e_1_2_10_51_3
e_1_2_10_51_2
Ding Keyan (e_1_2_10_13_2) 2020; 44
e_1_2_10_29_3
e_1_2_10_61_2
e_1_2_10_61_3
e_1_2_10_29_2
e_1_2_10_48_2
e_1_2_10_65_2
e_1_2_10_25_2
e_1_2_10_46_2
e_1_2_10_67_2
e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_68_2
e_1_2_10_20_2
e_1_2_10_43_2
e_1_2_10_41_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_17_3
e_1_2_10_52_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_3_3
e_1_2_10_54_2
e_1_2_10_7_2
e_1_2_10_36_2
e_1_2_10_56_2
e_1_2_10_57_2
e_1_2_10_7_3
e_1_2_10_12_2
e_1_2_10_33_2
e_1_2_10_31_3
e_1_2_10_59_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_50_2
Yariv Lior (e_1_2_10_63_2) 2020; 33
Community, Blender Online (e_1_2_10_9_2) 2018
Hanji Param (e_1_2_10_19_2) 2020
e_1_2_10_60_2
e_1_2_10_60_3
e_1_2_10_28_2
e_1_2_10_62_2
Liu Lingjie (e_1_2_10_27_2) 2020; 33
e_1_2_10_28_3
e_1_2_10_26_2
e_1_2_10_49_2
e_1_2_10_64_2
e_1_2_10_26_3
e_1_2_10_24_2
e_1_2_10_47_2
e_1_2_10_66_2
References_xml – start-page: 279
  year: 1993
  end-page: 288
– volume: 35
  year: 2015
  article-title: HDR‐VQM: An objective quality measure for high dynamic range video
  publication-title: Signal Processing: Image Communication
– start-page: 5449
  year: 2022
  end-page: 5459
  article-title: Direct Voxel Grid Optimization: Super‐fast Convergence for Radiance Fields Reconstruction
– volume: 36.4
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Tanks and temples: Benchmarking large‐scale scene reconstruction
  publication-title: ACM Transactions on Graphics (ToG)
– year: 2021
– volume: 22.11
  start-page: 1330
  year: 2000
  end-page: 1334
  article-title: A flexible new technique for camera calibration
  publication-title: IEEE Transactions on pattern analysis and machine intelligence
– start-page: 5491
  year: 2022
  end-page: 5500
  article-title: Plenoxels: Radiance Fields without Neural Networks
– start-page: 2367
  year: 2019
  end-page: 2376
– volume: 29
  start-page: 1139
  year: 2020
  end-page: 1151
  article-title: From Pairwise Comparisons and Rating to a Unified Quality Scale
  publication-title: IEEE Transactions on Image Processing
– volume: 30
  start-page: 57
  year: 2015
  end-page: 77
  article-title: Image database TID2013: Peculiarities, results and perspectives
  publication-title: Signal Processing: Image Communication
– year: 2018
– volume: 33.2
  start-page: 118
  year: 2016
  end-page: 124
  article-title: JPEG XT: A Compression Standard for HDR and WCG Images [Standards in a Nutshell]
  publication-title: IEEE Signal Process. Mag.
– start-page: 406
  year: 2014
  end-page: 413
  article-title: Large scale multi‐view stereopsis evaluation
– start-page: 8534
  year: 2021
  end-page: 8543
  article-title: NeX: Real‐Time View Synthesis With Neural Basis Expansion
– start-page: 3400
  year: 2011
  end-page: 3407
  article-title: AprilTag: A robust and flexible visual fiducial system
– year: 2022
– start-page: 816
  year: 2023
  end-page: 825
– volume: 32.7
  start-page: 275
  year: 2013
  end-page: 284
  article-title: Evaluation of Tone Mapping Operators for HDR‐Video
  publication-title: Comput. Graph. Forum
– year: 1993
– start-page: 8269
  year: 2022
  end-page: 8279
– volume: 13.4
  start-page: 600
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 36.1
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Virtual rephotography: Novel view prediction error for 3D reconstruction
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 3.2
  year: 2020
  article-title: FLIP: A Difference Evaluator for Alternating Images
  publication-title: Proc. ACM Comput. Graph. Interact. Tech.
– volume: 38.4
  start-page: 1
  year: 2019
  end-page: 14
  article-title: Local light field fusion: Practical view synthesis with prescriptive sampling guidelines
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 41.6
  start-page: 1
  year: 2022
  end-page: 15
  article-title: Neural point catacaustics for novel‐view synthesis of reflections
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 40.4
  year: 2021
  article-title: FovVideoVDP: A Visible Difference Predictor for Wide Field‐of‐View Video
  publication-title: ACM Trans. Graph.
– volume: 23
  start-page: 684
  year: 2013
  end-page: 694
  article-title: Video Quality Assessment by Reduced Reference Spatio‐Temporal Entropic Differencing
  publication-title: Circuits and Systems for Video Technology, IEEE Transactions on
– volume: 31.6
  start-page: 147
  year: 2012
  article-title: New Measurements Reveal Weaknesses of Image Quality Metrics in Evaluating Graphics Artifacts
  publication-title: ACM Transactions on Graphics (proc. of SIGGRAPH Asia)
– volume: 20.8
  start-page: 2378
  year: 2011
  end-page: 2386
  article-title: FSIM: A Feature Similarity Index for Image Quality Assessment
  publication-title: IEEE Transactions on Image Processing
– start-page: 1
  year: 2015
  end-page: 6
– volume: 41.4
  start-page: 125:1
  year: 2022
  end-page: 125:18
  article-title: Differentiable Signed Distance Function Rendering
  publication-title: Transactions on Graphics (Proceedings of SIGGRAPH)
– volume: 21.12
  start-page: 4695
  year: 2012
  end-page: 4708
  article-title: No‐Reference Image Quality Assessment in the Spatial Domain
  publication-title: IEEE Transactions on Image Processing
– volume: 2020.11
  year: 2020
  article-title: Predicting visible flicker in temporally changing images
  publication-title: Electronic Imaging
– volume: 24.3
  start-page: 640
  year: 2005
  end-page: 648
  article-title: Evaluation of tone mapping operators using a High Dynamic Range display
  publication-title: ACM Trans. Graph.
– start-page: 1790
  year: 2020
  end-page: 1799
– volume: 33
  year: 2020
  article-title: Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance
  publication-title: Advances in Neural Information Processing Systems
– volume: 20.3
  start-page: 209
  year: 2013
  end-page: 212
  article-title: Making a “Completely Blind” Image Quality Analyzer
  publication-title: IEEE Signal Processing Letters
– volume: 30.4
  start-page: 1
  year: 2011
  end-page: 14
  article-title: HDR‐VDP‐2: A calibrated visual metric for visibility and quality predictions in all luminance conditions
  publication-title: ACM Transactions on graphics (TOG)
– start-page: 4690
  end-page: 4699
– year: 2016
– volume: 38.5
  year: 2019
  article-title: A Luminance‐Aware Model of Judder Perception
  publication-title: ACM Trans. Graph.
– volume: 15.2
  start-page: 430
  year: 2006
  end-page: 444
  article-title: Image information and visual quality
  publication-title: IEEE Transactions on Image Processing
– start-page: 1
  year: 2022
  end-page: 8
– volume: 44.5
  start-page: 2567
  year: 2020
  end-page: 2581
  article-title: Image quality assessment: Unifying structure and texture similarity
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– start-page: 5460
  year: 2022
  end-page: 5469
  article-title: Mip‐NeRF 360: Unbounded Anti‐Aliased Neural Radiance Fields
– start-page: 376
  year: 2020
  end-page: 391
  article-title: Noise‐aware merging of high dynamic range image stacks without camera calibration
– year: 2018
  article-title: Blender ‐ a 3D modelling and rendering package
– volume: 2
  start-page: 1398
  year: 2003
  end-page: 1402
  article-title: Multiscale structural similarity for image quality assessment
  publication-title: The Thrity‐Seventh Asilomar Conference on Signals, Systems Computers, 2003.
– year: 2020
– year: 2023
– volume: 161
  start-page: 1
  year: 2019
  end-page: 3
  article-title: KADID‐10k: A Large‐scale Artificially Distorted IQA Database
– start-page: 231
  year: 1998
  end-page: 242
– start-page: 5470
  year: 2022
  end-page: 5479
– volume: 33
  start-page: 15651
  year: 2020
  end-page: 15663
  article-title: Neural sparse voxel fields
  publication-title: Advances in Neural Information Processing Systems
– year: 2017
– start-page: 1
  year: 2020
  end-page: 6
– volume: 42.4
  year: 2023
  article-title: 3D Gaussian Splatting for Real‐Time Radiance Field Rendering
  publication-title: ACM Transactions on Graphics
– start-page: 1
  year: 2014
  end-page: 5
  article-title: A fusion‐based video quality assessment (fvqa) index
– volume: 4067
  start-page: 2
  year: 2000
  end-page: 13
  article-title: Review of image‐based rendering techniques
– volume: 13.4
  start-page: 600
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
– volume-title: Blender Foundation
  year: 2018
  ident: e_1_2_10_9_2
– ident: e_1_2_10_20_2
  doi: 10.1109/CVPR.2014.59
– ident: e_1_2_10_46_2
  doi: 10.1109/TCSVT.2012.2214933
– volume: 33
  start-page: 15651
  year: 2020
  ident: e_1_2_10_27_2
  article-title: Neural sparse voxel fields
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_57_2
– start-page: 376
  volume-title: European Conference on Computer Vision
  year: 2020
  ident: e_1_2_10_19_2
– ident: e_1_2_10_23_2
  doi: 10.1145/3072959.3073599
– ident: e_1_2_10_12_2
  doi: 10.2352/ISSN.2470‐1173.2020.11.HVEI‐233
– ident: e_1_2_10_51_2
  doi: 10.1109/CVPR52688.2022.00538
– ident: e_1_2_10_28_2
  doi: 10.1109/QoMEX.2019.8743252
– ident: e_1_2_10_64_2
  doi: 10.1109/CVPR42600.2020.00186
– ident: e_1_2_10_44_2
  doi: 10.1109/TIP.2019.2936103
– ident: e_1_2_10_25_2
– ident: e_1_2_10_40_2
  doi: 10.1016/j.image.2015.04.009
– ident: e_1_2_10_34_2
  doi: 10.4135/9781412983532
– ident: e_1_2_10_49_2
  doi: 10.1145/280814.280882
– ident: e_1_2_10_4_2
  doi: 10.1145/3406183
– ident: e_1_2_10_48_2
– ident: e_1_2_10_3_2
  doi: 10.1109/MSP.2015.2506199
– ident: e_1_2_10_45_2
  doi: 10.1109/TIP.2005.859378
– ident: e_1_2_10_6_3
– ident: e_1_2_10_39_2
– ident: e_1_2_10_41_2
  doi: 10.1109/ICRA.2011.5979561
– volume: 44
  start-page: 2567
  year: 2020
  ident: e_1_2_10_13_2
  article-title: Image quality assessment: Unifying structure and texture similarity
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– ident: e_1_2_10_67_2
  doi: 10.1145/3197517.3201323
– ident: e_1_2_10_28_3
– ident: e_1_2_10_6_2
  doi: 10.1109/CVPR52688.2022.00539
– ident: e_1_2_10_10_2
  doi: 10.1145/166117.166153
– ident: e_1_2_10_37_2
  doi: 10.1145/3306346.3322980
– ident: e_1_2_10_14_3
– ident: e_1_2_10_17_3
– volume: 42
  year: 2023
  ident: e_1_2_10_21_2
  article-title: 3D Gaussian Splatting for Real‐Time Radiance Field Rendering
  publication-title: ACM Transactions on Graphics
– ident: e_1_2_10_54_2
  doi: 10.1145/2999533
– ident: e_1_2_10_3_3
– ident: e_1_2_10_53_2
  doi: 10.1145/3528223.3530139
– ident: e_1_2_10_62_2
  doi: 10.1109/ICMEW46912.2020.9106041
– ident: e_1_2_10_66_2
– ident: e_1_2_10_32_2
  doi: 10.1145/2010324.1964935
– ident: e_1_2_10_50_2
  doi: 10.1117/12.386541
– ident: e_1_2_10_58_2
  doi: 10.1109/CVPR46437.2021.00843
– ident: e_1_2_10_30_3
– ident: e_1_2_10_7_2
  doi: 10.1145/3338696
– ident: e_1_2_10_59_2
  doi: 10.1109/ACSSC.2003.1292216
– ident: e_1_2_10_60_3
– ident: e_1_2_10_8_2
  doi: 10.1145/2366145.2366166
– ident: e_1_2_10_56_2
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_10_5_2
  doi: 10.1109/CVPR52688.2022.00539
– ident: e_1_2_10_35_2
  doi: 10.1109/QoMEX58391.2023.10178625
– ident: e_1_2_10_60_2
  doi: 10.1109/CVPR46437.2021.00466
– ident: e_1_2_10_17_2
  doi: 10.1109/CVPR52688.2022.00542
– ident: e_1_2_10_36_2
  doi: 10.1109/LSP.2012.2227726
– ident: e_1_2_10_26_2
  doi: 10.1145/1073204.1073242
– ident: e_1_2_10_30_2
  doi: 10.1145/3450626.3459831
– ident: e_1_2_10_51_3
– ident: e_1_2_10_61_2
– ident: e_1_2_10_15_2
  doi: 10.1109/CVPR.2019.00247
– ident: e_1_2_10_2_2
– ident: e_1_2_10_47_2
  doi: 10.1109/CVPR52688.2022.00809
– ident: e_1_2_10_26_3
– ident: e_1_2_10_18_2
  doi: 10.1145/3528233.3530729
– volume: 33
  year: 2020
  ident: e_1_2_10_63_2
  article-title: Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_12_3
– ident: e_1_2_10_65_2
  doi: 10.1109/34.888718
– ident: e_1_2_10_31_3
– ident: e_1_2_10_4_3
– ident: e_1_2_10_29_2
  doi: 10.1109/APSIPA.2014.7041705
– ident: e_1_2_10_7_3
– ident: e_1_2_10_11_2
  doi: 10.1109/WACV56688.2023.00088
– ident: e_1_2_10_55_2
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_10_68_2
  doi: 10.1109/TIP.2011.2109730
– ident: e_1_2_10_38_2
– ident: e_1_2_10_42_3
– ident: e_1_2_10_33_2
  doi: 10.1109/TIP.2012.2214050
– ident: e_1_2_10_24_2
– ident: e_1_2_10_14_2
  doi: 10.1111/cgf.12235
– ident: e_1_2_10_52_2
  doi: 10.1109/NCC.2015.7084843
– ident: e_1_2_10_29_3
– ident: e_1_2_10_43_2
– ident: e_1_2_10_56_3
– ident: e_1_2_10_61_3
– ident: e_1_2_10_16_2
– ident: e_1_2_10_22_2
  doi: 10.1145/3550454.3555497
– ident: e_1_2_10_31_2
  doi: 10.1145/3450626.3459831
– ident: e_1_2_10_42_2
  doi: 10.1016/j.image.2014.10.009
SSID ssj0004765
Score 2.4765995
Snippet Neural view synthesis (NVS) is one of the most successful techniques for synthesizing free viewpoint videos, capable of achieving high fidelity from only a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms CCS Concepts
Computing methodologies → Image‐based rendering
Datasets
Evaluation
Image and video acquisition
Image quality
Perception
Quality assessment
Synthesis
Video
Title Perceptual Quality Assessment of NeRF and Neural View Synthesis Methods for Front‐Facing Views
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.15036
https://www.proquest.com/docview/3057294924
Volume 43
WOSCitedRecordID wos001208862800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-KbIB68VNomTVs8LavVgy6LL7zVNE1kQbqy9cHe_An-Rn-J0_ThCgqCtx6-JiWZyXxTJt8A7AnHljxlymJB4mOCYoeW4JqhX_l2KAOmPNPO5-bM73aD29uwNwGH9V2YUh-i-eFWeIY5rwsHF0k-5uTyXh8gm6F8EqYch_qFSbus93Up0udeLexdSMZUskJFGU_z6vdg9MUwx3mqCTTR_L8-cQHmKn5J2qVBLMKEypZgdkx1cBnuemUxyzPiSgmNEWk3Ap1koElXXUREZCkppDsQddNXr-RylCFZzPs5OTddp3OCfJdEhQDCx9t7JCQObpD5ClxHx1edU6tqtGBJivTNCsNUcBn6VAdMewkmKY6WnCYec6XN3ZRTLrQrPSdQga01kiQqFKV-gqEtkalNV6GVDTK1BiQQCfUk50Kkgilfh1R7TCqpba0cIdU67NcrHstKhbxohvEQ19kILlpsFm0ddhvoYym98RNoq962uPK-PMYzDHMGhqklTmc26PcB4s5JZB42_g7dhBkXuU1Z97gFrafhs9qGafny1M-HO8YMd2Dq6CK6PvsEocjhmw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CurBt_h2EQ9eIml3s0nAS1GjYi2ltqW3uNnsSkFSaarSmz_B3-gvcfKqFRQEbzl82YTdmZ1vltlvAI5E2ZQ8ZMpgTmBjgmK6huCaoV_Zpisdpqy0nU-nZtfrTrfrNqbgtLgLk-lDjA_cEs9I9-vEwZMD6Qkvlw_6BOkM5dMww9CMrBLMnDe9du3rXqTNrULbO1GNyZWFkkqe8cvf49EXyZykqmms8Zb-95fLsJhzTFLNjGIFplS0CgsTyoNrcN_IClqeEZfJaIxIdSzSSfqa1FXTIyIKSSLfgahOT72Su1GEhDHuxeQ27TwdE-S8xEtEED7e3j0hcfAUGa9D27tonV0ZebMFQ1KkcIbrhoJL16baYdoKMFEpa8lpYLGKNHkl5JQLXZFW2VGOqTUSJSoUpXaA4S2QoUk3oBT1I7UJxBEBtSTnQoSCKVu7VFtMKqlNrcpCqi04Lqbcl7kSedIQ49EvMhKcND-dtC04HEOfMvmNn0C7xbr5uQfGPu5jmDcwTC_xc-kK_T6Af3bppQ_bf4cewNxV67bm167rNzswX0Guk9VB7kJpOHhWezArX4a9eLCfW-UnFq7leA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdGDb3F9BvHgpdLdpGkLXkStirosPpa91TRNZEG6YneVvfkT_I3-Eqdpu66gIHjr4WtSkszMN2XyDcCuqNmSx0xZzItcTFBs3xJcM7Qr1_alx5Rj2vm0Lt1Gw2u3_eYYHJR3YXJ9iOEPt8wyjL_ODFw9xXrEyuWD3kc6Q_k4TDAHfWym68yaX7ciXe6Uyt6ZZkyhK5TV8Qxf_R6NvijmKFE1kSaY-983zsNswTDJYX4kFmBMJYswM6I7uAT3zbycpY-4XERjQA6HEp2kq0lDXQdEJDHJxDsQ1eqoV3IzSJAupp2UXJm-0ylBxkuCTALh4-09EBIHN8h0Ge6Ck9ujM6totWBJigTO8v1YcOm7VHtMOxGmKTUtOY0cVpc2r8eccqHr0ql5yrO1RppEhaLUjTC4RTK26QpUkm6iVoF4IqKO5FyIWDDlap9qh0klta1VTUhVhb1yyUNZ6JBn7TAewzIfwUULzaJVYWcIfcrFN34CbZT7Fhb2l4boxTBrYJhc4nRmh34fIDw6DczD2t-h2zDVPA7Cy_PGxTpM15Ho5EWQG1DpPffVJkzKl14nfd4yR_ITs-zjYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perceptual+Quality+Assessment+of+NeRF+and+Neural+View+Synthesis+Methods+for+Front%E2%80%90Facing+Views&rft.jtitle=Computer+graphics+forum&rft.au=Liang%2C+H&rft.au=T+Wu&rft.au=Hanji%2C+P&rft.au=Banterle%2C+F&rft.date=2024-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=43&rft.issue=2&rft_id=info:doi/10.1111%2Fcgf.15036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon