Perceptual Quality Assessment of NeRF and Neural View Synthesis Methods for Front‐Facing Views
Neural view synthesis (NVS) is one of the most successful techniques for synthesizing free viewpoint videos, capable of achieving high fidelity from only a sparse set of captured images. This success has led to many variants of the techniques, each evaluated on a set of test views typically using im...
Gespeichert in:
| Veröffentlicht in: | Computer graphics forum Jg. 43; H. 2 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Blackwell Publishing Ltd
01.05.2024
|
| Schlagworte: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Neural view synthesis (NVS) is one of the most successful techniques for synthesizing free viewpoint videos, capable of achieving high fidelity from only a sparse set of captured images. This success has led to many variants of the techniques, each evaluated on a set of test views typically using image quality metrics such as PSNR, SSIM, or LPIPS. There has been a lack of research on how NVS methods perform with respect to perceived video quality. We present the first study on perceptual evaluation of NVS and NeRF variants. For this study, we collected two datasets of scenes captured in a controlled lab environment as well as in‐the‐wild. In contrast to existing datasets, these scenes come with reference video sequences, allowing us to test for temporal artifacts and subtle distortions that are easily overlooked when viewing only static images. We measured the quality of videos synthesized by several NVS methods in a well‐controlled perceptual quality assessment experiment as well as with many existing state‐of‐the‐art image/video quality metrics. We present a detailed analysis of the results and recommendations for dataset and metric selection for NVS evaluation. |
|---|---|
| AbstractList | Neural view synthesis (NVS) is one of the most successful techniques for synthesizing free viewpoint videos, capable of achieving high fidelity from only a sparse set of captured images. This success has led to many variants of the techniques, each evaluated on a set of test views typically using image quality metrics such as PSNR, SSIM, or LPIPS. There has been a lack of research on how NVS methods perform with respect to perceived video quality. We present the first study on perceptual evaluation of NVS and NeRF variants. For this study, we collected two datasets of scenes captured in a controlled lab environment as well as in‐the‐wild. In contrast to existing datasets, these scenes come with reference video sequences, allowing us to test for temporal artifacts and subtle distortions that are easily overlooked when viewing only static images. We measured the quality of videos synthesized by several NVS methods in a well‐controlled perceptual quality assessment experiment as well as with many existing state‐of‐the‐art image/video quality metrics. We present a detailed analysis of the results and recommendations for dataset and metric selection for NVS evaluation. |
| Author | Öztireli, C. Wu, T. Banterle, F. Liang, H. Hanji, P. Gao, H. Mantiuk, R. |
| Author_xml | – sequence: 1 givenname: H. orcidid: 0009-0005-9078-8042 surname: Liang fullname: Liang, H. organization: University of Cambridge – sequence: 2 givenname: T. orcidid: 0000-0002-3807-5839 surname: Wu fullname: Wu, T. organization: University of Cambridge – sequence: 3 givenname: P. orcidid: 0000-0002-7985-4177 surname: Hanji fullname: Hanji, P. organization: University of Cambridge – sequence: 4 givenname: F. orcidid: 0000-0002-6374-6657 surname: Banterle fullname: Banterle, F. organization: ISTI‐CNR – sequence: 5 givenname: H. orcidid: 0000-0001-5546-6906 surname: Gao fullname: Gao, H. organization: University of Cambridge – sequence: 6 givenname: R. orcidid: 0000-0003-2353-0349 surname: Mantiuk fullname: Mantiuk, R. organization: University of Cambridge – sequence: 7 givenname: C. orcidid: 0000-0002-4700-2236 surname: Öztireli fullname: Öztireli, C. organization: University of Cambridge |
| BookMark | eNp1kE1OwzAQhS0EEm1hwQ0ssWKR1o5jJ1lWFSlI5f9nGxzHbl2lSbEdVdlxBM7ISTBtVwhmMfMW35sZvT44rJtaAnCG0RD7Gom5GmKKCDsAPRyxOEgYTQ9BD2GvY0TpMehbu0QIRTGjPfB2L42Qa9fyCj74pl0Hx9ZKa1eydrBR8FY-ZpDXpRet8dSrlhv41NVuIa228Ea6RVNaqBoDM9PU7uvjM-NC1_MtaU_AkeKVlaf7OQAv2eXz5CqY3U2vJ-NZIAgJWZCmJWcijYlKIkULHEdYCUYKGoUCsbBkhHEVCooTmSClKEOES0LiIoniQpSIDMD5bu_aNO-ttC5fNq2p_cmcIBqHaZSGkadGO0qYxlojVS604077vw3XVY5R_hNj7mPMtzF6x8Uvx9roFTfdn-x--0ZXsvsfzCfTbOf4BvSjhAE |
| CitedBy_id | crossref_primary_10_1016_j_dib_2025_111484 crossref_primary_10_3390_app15179422 crossref_primary_10_1109_TVCG_2025_3549538 crossref_primary_10_1109_ACCESS_2025_3603970 |
| Cites_doi | 10.1109/CVPR.2014.59 10.1109/TCSVT.2012.2214933 10.1145/3072959.3073599 10.2352/ISSN.2470‐1173.2020.11.HVEI‐233 10.1109/CVPR52688.2022.00538 10.1109/QoMEX.2019.8743252 10.1109/CVPR42600.2020.00186 10.1109/TIP.2019.2936103 10.1016/j.image.2015.04.009 10.4135/9781412983532 10.1145/280814.280882 10.1145/3406183 10.1109/MSP.2015.2506199 10.1109/TIP.2005.859378 10.1109/ICRA.2011.5979561 10.1145/3197517.3201323 10.1109/CVPR52688.2022.00539 10.1145/166117.166153 10.1145/3306346.3322980 10.1145/2999533 10.1145/3528223.3530139 10.1109/ICMEW46912.2020.9106041 10.1145/2010324.1964935 10.1117/12.386541 10.1109/CVPR46437.2021.00843 10.1145/3338696 10.1109/ACSSC.2003.1292216 10.1145/2366145.2366166 10.1109/TIP.2003.819861 10.1109/QoMEX58391.2023.10178625 10.1109/CVPR46437.2021.00466 10.1109/CVPR52688.2022.00542 10.1109/LSP.2012.2227726 10.1145/1073204.1073242 10.1145/3450626.3459831 10.1109/CVPR.2019.00247 10.1109/CVPR52688.2022.00809 10.1145/3528233.3530729 10.1109/34.888718 10.1109/APSIPA.2014.7041705 10.1109/WACV56688.2023.00088 10.1109/TIP.2011.2109730 10.1109/TIP.2012.2214050 10.1111/cgf.12235 10.1109/NCC.2015.7084843 10.1145/3550454.3555497 10.1016/j.image.2014.10.009 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. Computer Graphics Forum published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. Computer Graphics Forum published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1111/cgf.15036 |
| DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | n/a |
| ExternalDocumentID | 10_1111_cgf_15036 CGF15036 |
| Genre | article |
| GrantInformation_xml | – fundername: Marie Skłodowska‐Curie funderid: 765911 – fundername: Royal Society funderid: IES\R2\202141 – fundername: UKRI Future Leaders Fellowship funderid: G104084 |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 24P 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAYXX AIQQE CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3326-99da6c973f84f5b1741fc63b542c062d636af2c518e80ff5603ae337b847bcd03 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208862800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Sun Sep 07 03:29:00 EDT 2025 Tue Nov 18 22:41:34 EST 2025 Sat Nov 29 03:41:23 EST 2025 Sun Jul 06 04:45:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3326-99da6c973f84f5b1741fc63b542c062d636af2c518e80ff5603ae337b847bcd03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3807-5839 0000-0001-5546-6906 0000-0002-4700-2236 0009-0005-9078-8042 0000-0002-6374-6657 0000-0003-2353-0349 0000-0002-7985-4177 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.15036 |
| PQID | 3057294924 |
| PQPubID | 30877 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_3057294924 crossref_citationtrail_10_1111_cgf_15036 crossref_primary_10_1111_cgf_15036 wiley_primary_10_1111_cgf_15036_CGF15036 |
| PublicationCentury | 2000 |
| PublicationDate | May 2024 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationYear | 2024 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2015; 35 2013; 20.3 2019; 38.4 2019; 38.5 2023; 42.4 2021; 40.4 2020; 2020.11 2011 2017; 36.1 2012; 21.12 2013; 23 2011; 20.8 2012; 31.6 2006; 15.2 2015; 30 1998 2016; 33.2 2020; 3.2 2020; 44.5 2017; 36.4 1993 2020; 33 2005; 24.3 2000; 4067 2019; 161 2004; 13.4 2013; 32.7 2022; 41.6 2011; 30.4 2023 2022 2021 2020 2000; 22.11 2022; 41.4 2003; 2 2019 2018 2017 2016 2015 2014 2020; 29 e_1_2_10_23_2 e_1_2_10_44_2 e_1_2_10_42_3 e_1_2_10_42_2 e_1_2_10_40_2 Kerbl Bernhard (e_1_2_10_21_2) 2023; 42 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_39_2 e_1_2_10_4_3 e_1_2_10_14_3 e_1_2_10_53_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_6_3 e_1_2_10_12_3 e_1_2_10_55_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_35_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_56_3 e_1_2_10_8_2 e_1_2_10_58_2 e_1_2_10_32_2 e_1_2_10_30_3 e_1_2_10_30_2 e_1_2_10_51_3 e_1_2_10_51_2 Ding Keyan (e_1_2_10_13_2) 2020; 44 e_1_2_10_29_3 e_1_2_10_61_2 e_1_2_10_61_3 e_1_2_10_29_2 e_1_2_10_48_2 e_1_2_10_65_2 e_1_2_10_25_2 e_1_2_10_46_2 e_1_2_10_67_2 e_1_2_10_22_2 e_1_2_10_45_2 e_1_2_10_68_2 e_1_2_10_20_2 e_1_2_10_43_2 e_1_2_10_41_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_17_3 e_1_2_10_52_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_3_3 e_1_2_10_54_2 e_1_2_10_7_2 e_1_2_10_36_2 e_1_2_10_56_2 e_1_2_10_57_2 e_1_2_10_7_3 e_1_2_10_12_2 e_1_2_10_33_2 e_1_2_10_31_3 e_1_2_10_59_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_50_2 Yariv Lior (e_1_2_10_63_2) 2020; 33 Community, Blender Online (e_1_2_10_9_2) 2018 Hanji Param (e_1_2_10_19_2) 2020 e_1_2_10_60_2 e_1_2_10_60_3 e_1_2_10_28_2 e_1_2_10_62_2 Liu Lingjie (e_1_2_10_27_2) 2020; 33 e_1_2_10_28_3 e_1_2_10_26_2 e_1_2_10_49_2 e_1_2_10_64_2 e_1_2_10_26_3 e_1_2_10_24_2 e_1_2_10_47_2 e_1_2_10_66_2 |
| References_xml | – start-page: 279 year: 1993 end-page: 288 – volume: 35 year: 2015 article-title: HDR‐VQM: An objective quality measure for high dynamic range video publication-title: Signal Processing: Image Communication – start-page: 5449 year: 2022 end-page: 5459 article-title: Direct Voxel Grid Optimization: Super‐fast Convergence for Radiance Fields Reconstruction – volume: 36.4 start-page: 1 year: 2017 end-page: 13 article-title: Tanks and temples: Benchmarking large‐scale scene reconstruction publication-title: ACM Transactions on Graphics (ToG) – year: 2021 – volume: 22.11 start-page: 1330 year: 2000 end-page: 1334 article-title: A flexible new technique for camera calibration publication-title: IEEE Transactions on pattern analysis and machine intelligence – start-page: 5491 year: 2022 end-page: 5500 article-title: Plenoxels: Radiance Fields without Neural Networks – start-page: 2367 year: 2019 end-page: 2376 – volume: 29 start-page: 1139 year: 2020 end-page: 1151 article-title: From Pairwise Comparisons and Rating to a Unified Quality Scale publication-title: IEEE Transactions on Image Processing – volume: 30 start-page: 57 year: 2015 end-page: 77 article-title: Image database TID2013: Peculiarities, results and perspectives publication-title: Signal Processing: Image Communication – year: 2018 – volume: 33.2 start-page: 118 year: 2016 end-page: 124 article-title: JPEG XT: A Compression Standard for HDR and WCG Images [Standards in a Nutshell] publication-title: IEEE Signal Process. Mag. – start-page: 406 year: 2014 end-page: 413 article-title: Large scale multi‐view stereopsis evaluation – start-page: 8534 year: 2021 end-page: 8543 article-title: NeX: Real‐Time View Synthesis With Neural Basis Expansion – start-page: 3400 year: 2011 end-page: 3407 article-title: AprilTag: A robust and flexible visual fiducial system – year: 2022 – start-page: 816 year: 2023 end-page: 825 – volume: 32.7 start-page: 275 year: 2013 end-page: 284 article-title: Evaluation of Tone Mapping Operators for HDR‐Video publication-title: Comput. Graph. Forum – year: 1993 – start-page: 8269 year: 2022 end-page: 8279 – volume: 13.4 start-page: 600 year: 2004 end-page: 612 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 36.1 start-page: 1 year: 2017 end-page: 11 article-title: Virtual rephotography: Novel view prediction error for 3D reconstruction publication-title: ACM Transactions on Graphics (TOG) – volume: 3.2 year: 2020 article-title: FLIP: A Difference Evaluator for Alternating Images publication-title: Proc. ACM Comput. Graph. Interact. Tech. – volume: 38.4 start-page: 1 year: 2019 end-page: 14 article-title: Local light field fusion: Practical view synthesis with prescriptive sampling guidelines publication-title: ACM Transactions on Graphics (TOG) – volume: 41.6 start-page: 1 year: 2022 end-page: 15 article-title: Neural point catacaustics for novel‐view synthesis of reflections publication-title: ACM Transactions on Graphics (TOG) – volume: 40.4 year: 2021 article-title: FovVideoVDP: A Visible Difference Predictor for Wide Field‐of‐View Video publication-title: ACM Trans. Graph. – volume: 23 start-page: 684 year: 2013 end-page: 694 article-title: Video Quality Assessment by Reduced Reference Spatio‐Temporal Entropic Differencing publication-title: Circuits and Systems for Video Technology, IEEE Transactions on – volume: 31.6 start-page: 147 year: 2012 article-title: New Measurements Reveal Weaknesses of Image Quality Metrics in Evaluating Graphics Artifacts publication-title: ACM Transactions on Graphics (proc. of SIGGRAPH Asia) – volume: 20.8 start-page: 2378 year: 2011 end-page: 2386 article-title: FSIM: A Feature Similarity Index for Image Quality Assessment publication-title: IEEE Transactions on Image Processing – start-page: 1 year: 2015 end-page: 6 – volume: 41.4 start-page: 125:1 year: 2022 end-page: 125:18 article-title: Differentiable Signed Distance Function Rendering publication-title: Transactions on Graphics (Proceedings of SIGGRAPH) – volume: 21.12 start-page: 4695 year: 2012 end-page: 4708 article-title: No‐Reference Image Quality Assessment in the Spatial Domain publication-title: IEEE Transactions on Image Processing – volume: 2020.11 year: 2020 article-title: Predicting visible flicker in temporally changing images publication-title: Electronic Imaging – volume: 24.3 start-page: 640 year: 2005 end-page: 648 article-title: Evaluation of tone mapping operators using a High Dynamic Range display publication-title: ACM Trans. Graph. – start-page: 1790 year: 2020 end-page: 1799 – volume: 33 year: 2020 article-title: Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance publication-title: Advances in Neural Information Processing Systems – volume: 20.3 start-page: 209 year: 2013 end-page: 212 article-title: Making a “Completely Blind” Image Quality Analyzer publication-title: IEEE Signal Processing Letters – volume: 30.4 start-page: 1 year: 2011 end-page: 14 article-title: HDR‐VDP‐2: A calibrated visual metric for visibility and quality predictions in all luminance conditions publication-title: ACM Transactions on graphics (TOG) – start-page: 4690 end-page: 4699 – year: 2016 – volume: 38.5 year: 2019 article-title: A Luminance‐Aware Model of Judder Perception publication-title: ACM Trans. Graph. – volume: 15.2 start-page: 430 year: 2006 end-page: 444 article-title: Image information and visual quality publication-title: IEEE Transactions on Image Processing – start-page: 1 year: 2022 end-page: 8 – volume: 44.5 start-page: 2567 year: 2020 end-page: 2581 article-title: Image quality assessment: Unifying structure and texture similarity publication-title: IEEE transactions on pattern analysis and machine intelligence – start-page: 5460 year: 2022 end-page: 5469 article-title: Mip‐NeRF 360: Unbounded Anti‐Aliased Neural Radiance Fields – start-page: 376 year: 2020 end-page: 391 article-title: Noise‐aware merging of high dynamic range image stacks without camera calibration – year: 2018 article-title: Blender ‐ a 3D modelling and rendering package – volume: 2 start-page: 1398 year: 2003 end-page: 1402 article-title: Multiscale structural similarity for image quality assessment publication-title: The Thrity‐Seventh Asilomar Conference on Signals, Systems Computers, 2003. – year: 2020 – year: 2023 – volume: 161 start-page: 1 year: 2019 end-page: 3 article-title: KADID‐10k: A Large‐scale Artificially Distorted IQA Database – start-page: 231 year: 1998 end-page: 242 – start-page: 5470 year: 2022 end-page: 5479 – volume: 33 start-page: 15651 year: 2020 end-page: 15663 article-title: Neural sparse voxel fields publication-title: Advances in Neural Information Processing Systems – year: 2017 – start-page: 1 year: 2020 end-page: 6 – volume: 42.4 year: 2023 article-title: 3D Gaussian Splatting for Real‐Time Radiance Field Rendering publication-title: ACM Transactions on Graphics – start-page: 1 year: 2014 end-page: 5 article-title: A fusion‐based video quality assessment (fvqa) index – volume: 4067 start-page: 2 year: 2000 end-page: 13 article-title: Review of image‐based rendering techniques – volume: 13.4 start-page: 600 year: 2004 end-page: 612 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Transactions on Image Processing – volume-title: Blender Foundation year: 2018 ident: e_1_2_10_9_2 – ident: e_1_2_10_20_2 doi: 10.1109/CVPR.2014.59 – ident: e_1_2_10_46_2 doi: 10.1109/TCSVT.2012.2214933 – volume: 33 start-page: 15651 year: 2020 ident: e_1_2_10_27_2 article-title: Neural sparse voxel fields publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_10_57_2 – start-page: 376 volume-title: European Conference on Computer Vision year: 2020 ident: e_1_2_10_19_2 – ident: e_1_2_10_23_2 doi: 10.1145/3072959.3073599 – ident: e_1_2_10_12_2 doi: 10.2352/ISSN.2470‐1173.2020.11.HVEI‐233 – ident: e_1_2_10_51_2 doi: 10.1109/CVPR52688.2022.00538 – ident: e_1_2_10_28_2 doi: 10.1109/QoMEX.2019.8743252 – ident: e_1_2_10_64_2 doi: 10.1109/CVPR42600.2020.00186 – ident: e_1_2_10_44_2 doi: 10.1109/TIP.2019.2936103 – ident: e_1_2_10_25_2 – ident: e_1_2_10_40_2 doi: 10.1016/j.image.2015.04.009 – ident: e_1_2_10_34_2 doi: 10.4135/9781412983532 – ident: e_1_2_10_49_2 doi: 10.1145/280814.280882 – ident: e_1_2_10_4_2 doi: 10.1145/3406183 – ident: e_1_2_10_48_2 – ident: e_1_2_10_3_2 doi: 10.1109/MSP.2015.2506199 – ident: e_1_2_10_45_2 doi: 10.1109/TIP.2005.859378 – ident: e_1_2_10_6_3 – ident: e_1_2_10_39_2 – ident: e_1_2_10_41_2 doi: 10.1109/ICRA.2011.5979561 – volume: 44 start-page: 2567 year: 2020 ident: e_1_2_10_13_2 article-title: Image quality assessment: Unifying structure and texture similarity publication-title: IEEE transactions on pattern analysis and machine intelligence – ident: e_1_2_10_67_2 doi: 10.1145/3197517.3201323 – ident: e_1_2_10_28_3 – ident: e_1_2_10_6_2 doi: 10.1109/CVPR52688.2022.00539 – ident: e_1_2_10_10_2 doi: 10.1145/166117.166153 – ident: e_1_2_10_37_2 doi: 10.1145/3306346.3322980 – ident: e_1_2_10_14_3 – ident: e_1_2_10_17_3 – volume: 42 year: 2023 ident: e_1_2_10_21_2 article-title: 3D Gaussian Splatting for Real‐Time Radiance Field Rendering publication-title: ACM Transactions on Graphics – ident: e_1_2_10_54_2 doi: 10.1145/2999533 – ident: e_1_2_10_3_3 – ident: e_1_2_10_53_2 doi: 10.1145/3528223.3530139 – ident: e_1_2_10_62_2 doi: 10.1109/ICMEW46912.2020.9106041 – ident: e_1_2_10_66_2 – ident: e_1_2_10_32_2 doi: 10.1145/2010324.1964935 – ident: e_1_2_10_50_2 doi: 10.1117/12.386541 – ident: e_1_2_10_58_2 doi: 10.1109/CVPR46437.2021.00843 – ident: e_1_2_10_30_3 – ident: e_1_2_10_7_2 doi: 10.1145/3338696 – ident: e_1_2_10_59_2 doi: 10.1109/ACSSC.2003.1292216 – ident: e_1_2_10_60_3 – ident: e_1_2_10_8_2 doi: 10.1145/2366145.2366166 – ident: e_1_2_10_56_2 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_10_5_2 doi: 10.1109/CVPR52688.2022.00539 – ident: e_1_2_10_35_2 doi: 10.1109/QoMEX58391.2023.10178625 – ident: e_1_2_10_60_2 doi: 10.1109/CVPR46437.2021.00466 – ident: e_1_2_10_17_2 doi: 10.1109/CVPR52688.2022.00542 – ident: e_1_2_10_36_2 doi: 10.1109/LSP.2012.2227726 – ident: e_1_2_10_26_2 doi: 10.1145/1073204.1073242 – ident: e_1_2_10_30_2 doi: 10.1145/3450626.3459831 – ident: e_1_2_10_51_3 – ident: e_1_2_10_61_2 – ident: e_1_2_10_15_2 doi: 10.1109/CVPR.2019.00247 – ident: e_1_2_10_2_2 – ident: e_1_2_10_47_2 doi: 10.1109/CVPR52688.2022.00809 – ident: e_1_2_10_26_3 – ident: e_1_2_10_18_2 doi: 10.1145/3528233.3530729 – volume: 33 year: 2020 ident: e_1_2_10_63_2 article-title: Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_10_12_3 – ident: e_1_2_10_65_2 doi: 10.1109/34.888718 – ident: e_1_2_10_31_3 – ident: e_1_2_10_4_3 – ident: e_1_2_10_29_2 doi: 10.1109/APSIPA.2014.7041705 – ident: e_1_2_10_7_3 – ident: e_1_2_10_11_2 doi: 10.1109/WACV56688.2023.00088 – ident: e_1_2_10_55_2 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_10_68_2 doi: 10.1109/TIP.2011.2109730 – ident: e_1_2_10_38_2 – ident: e_1_2_10_42_3 – ident: e_1_2_10_33_2 doi: 10.1109/TIP.2012.2214050 – ident: e_1_2_10_24_2 – ident: e_1_2_10_14_2 doi: 10.1111/cgf.12235 – ident: e_1_2_10_52_2 doi: 10.1109/NCC.2015.7084843 – ident: e_1_2_10_29_3 – ident: e_1_2_10_43_2 – ident: e_1_2_10_56_3 – ident: e_1_2_10_61_3 – ident: e_1_2_10_16_2 – ident: e_1_2_10_22_2 doi: 10.1145/3550454.3555497 – ident: e_1_2_10_31_2 doi: 10.1145/3450626.3459831 – ident: e_1_2_10_42_2 doi: 10.1016/j.image.2014.10.009 |
| SSID | ssj0004765 |
| Score | 2.4766757 |
| Snippet | Neural view synthesis (NVS) is one of the most successful techniques for synthesizing free viewpoint videos, capable of achieving high fidelity from only a... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | CCS Concepts Computing methodologies → Image‐based rendering Datasets Evaluation Image and video acquisition Image quality Perception Quality assessment Synthesis Video |
| Title | Perceptual Quality Assessment of NeRF and Neural View Synthesis Methods for Front‐Facing Views |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.15036 https://www.proquest.com/docview/3057294924 |
| Volume | 43 |
| WOSCitedRecordID | wos001208862800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEC3G5aAHd3EZpREPXiKTdNJJ42kYjR50GMYFbzHpRQYkinHBm5_gN_olVneSmREUBG85VLpDLV2vQvUrgN2ASx6p1HU097FAUYw5WeZ7DpORMhaXme3NuToNu93o-pr3GnBQ34Up-SGGP9xMZNjz2gR4mhVjQS5u9T6iGcomYMp1aWhc2vN7o0uRIQtqYm9DGVPRCpk2nuGr35PRCGGO41SbaOL5f33iAsxV-JK0S4dYhIbKl2B2jHVwGW56ZTPLM8qVFBpvpD0k6CT3mnRVPyZpLomh7kCpq4F6JedvOYLFYlCQMzt1uiCId0lsCBA-3z_iVODiVrJYgcv46KJz4lSDFhxBEb45nMuUCR5SHfk6yLBIcbVgNAt8T7SYJxllqfZE4EYqammNIImmitIww9SWCdmiqzCZ3-dqDYiOpAq4MMNvhC8p5SLQPqII7bkp9yK2Dnu1xhNRsZCbYRh3SV2NoNISq7R12BmKPpTUGz8JNWuzJVX0FQmeYVgz-Fha4nbWQL8vkHSOY_uw8XfRTZjxENuUfY9NmHx6fFZbMC1engbF47Z1w22YOuzHl6dfd67geQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CurBt_h2EQ9eIk022WbBi6hRsZZS29JbTPYhBUnF-MCbP8Hf6C9xNo9aQUHwlsNkE-ax880y-w3Anscl91VkW5q7WKAoxqw4dh2LSV8Zi8s4683p1muNht_r8eYYHJZ3YXJ-iOGBm4mMbL82AW4OpEeiXNzqA4QzlI3DhItu5FVg4qQVdOpf9yJrzCu5vQ1rTMEsZDp5hi9_z0dfIHMUqma5Jpj731_Ow2yBMclR7hQLMKaSRZgZYR5cgptm3tDyhHI5jcYrORqSdJKBJg3VCkiUSGLoO1Cq21cv5Po1QcCY9lNylU2eTgliXhIYEoSPt_cgErh4JpkuQyc4bR-fW8WwBUtQhHAW5zJigteo9l3txVio2FowGnuuI6rMkYyySDvCs33lV7VGoEQjRWktxvQWC1mlK1BJBolaBaJ9qTwuzAAc4UpKufC0i0hCO3bEHZ-twX6p8lAUTORmIMZdWFYkqLQwU9oa7A5F73P6jZ-ENku7hUUEpiHuY1g3uFhe4ucyC_2-QHh8FmQP638X3YGp8_ZVPaxfNC43YNpBrJP3QW5C5fHhSW3BpHh-7KcP24VXfgLnoeRW |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa7PIB68VHabNNuAF1Groi6LL7zVNg9ZkCrWB3vzJ_gb_SVO0nZdQUHw1sM0KTOZmW_K5BuAjUAoEeqk4RnBsEDRnHtpynyPq1Bbi6vU9eZcnTRbrfD6WrQHYLu6C1PwQ_R-uFnPcPHaOrh-UKbPy-Wt2UI4Q_kgDLMAY6zldWbtr1uRTR5UzN6WM6bkFbJ9PL1Xv2ejL4jZD1Rdpokm__eNUzBRIkyyUxyJaRjQ2QyM9_EOzsJNu2hneUa5gkSjS3Z6FJ3k3pCWPotIkiliyTtQ6qqjX8l5N0O4mHdycurmTucEES-JLAXCx9t7lEhc3Enmc3AZ7V_sHnrlqAVPUgRwnhAq4VI0qQmZCVIsUxpGcpoGzJd17itOeWJ8GTRCHdaNQZhEE01pM8XklkpVp_MwlN1negGICZUOhLTjbyRTlAoZGIY4wviNRPghr8FmpfJYljzkdhzGXVzVI6i02CmtBus90YeCfOMnoeXKbnHpf3mMUQyrBobFJW7nLPT7AvHuQeQeFv8uugaj7b0oPjlqHS_BmI9Ap2iCXIahp8dnvQIj8uWpkz-uuiP5CYdg4j8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perceptual+Quality+Assessment+of+NeRF+and+Neural+View+Synthesis+Methods+for+Front%E2%80%90Facing+Views&rft.jtitle=Computer+graphics+forum&rft.au=Liang%2C+H.&rft.au=Wu%2C+T.&rft.au=Hanji%2C+P.&rft.au=Banterle%2C+F.&rft.date=2024-05-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=43&rft.issue=2&rft_id=info:doi/10.1111%2Fcgf.15036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_15036 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |