Evaluation in Neural Style Transfer: A Review
The field of neural style transfer (NST) has witnessed remarkable progress in the past few years, with approaches being able to synthesize artistic and photorealistic images and videos of exceptional quality. To evaluate such results, a diverse landscape of evaluation methods and metrics is used, in...
Saved in:
| Published in: | Computer graphics forum Vol. 43; no. 6 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Blackwell Publishing Ltd
01.09.2024
|
| Subjects: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The field of neural style transfer (NST) has witnessed remarkable progress in the past few years, with approaches being able to synthesize artistic and photorealistic images and videos of exceptional quality. To evaluate such results, a diverse landscape of evaluation methods and metrics is used, including authors' opinions based on side‐by‐side comparisons, human evaluation studies that quantify the subjective judgements of participants, and a multitude of quantitative computational metrics which objectively assess the different aspects of an algorithm's performance. However, there is no consensus regarding the most suitable and effective evaluation procedure that can guarantee the reliability of the results. In this review, we provide an in‐depth analysis of existing evaluation techniques, identify the inconsistencies and limitations of current evaluation methods, and give recommendations for standardized evaluation practices. We believe that the development of a robust evaluation framework will not only enable more meaningful and fairer comparisons among NST methods but will also enhance the comprehension and interpretation of research findings in the field.
This review paper examines the different evaluation techniques in neural style transfer. It provides an in‐depth analysis of existing evaluation techniques and gives recommendations for standardized evaluation practices. |
|---|---|
| AbstractList | The field of neural style transfer (NST) has witnessed remarkable progress in the past few years, with approaches being able to synthesize artistic and photorealistic images and videos of exceptional quality. To evaluate such results, a diverse landscape of evaluation methods and metrics is used, including authors' opinions based on side‐by‐side comparisons, human evaluation studies that quantify the subjective judgements of participants, and a multitude of quantitative computational metrics which objectively assess the different aspects of an algorithm's performance. However, there is no consensus regarding the most suitable and effective evaluation procedure that can guarantee the reliability of the results. In this review, we provide an in‐depth analysis of existing evaluation techniques, identify the inconsistencies and limitations of current evaluation methods, and give recommendations for standardized evaluation practices. We believe that the development of a robust evaluation framework will not only enable more meaningful and fairer comparisons among NST methods but will also enhance the comprehension and interpretation of research findings in the field. The field of neural style transfer (NST) has witnessed remarkable progress in the past few years, with approaches being able to synthesize artistic and photorealistic images and videos of exceptional quality. To evaluate such results, a diverse landscape of evaluation methods and metrics is used, including authors' opinions based on side‐by‐side comparisons, human evaluation studies that quantify the subjective judgements of participants, and a multitude of quantitative computational metrics which objectively assess the different aspects of an algorithm's performance. However, there is no consensus regarding the most suitable and effective evaluation procedure that can guarantee the reliability of the results. In this review, we provide an in‐depth analysis of existing evaluation techniques, identify the inconsistencies and limitations of current evaluation methods, and give recommendations for standardized evaluation practices. We believe that the development of a robust evaluation framework will not only enable more meaningful and fairer comparisons among NST methods but will also enhance the comprehension and interpretation of research findings in the field. This review paper examines the different evaluation techniques in neural style transfer. It provides an in‐depth analysis of existing evaluation techniques and gives recommendations for standardized evaluation practices. The field of neural style transfer (NST) has witnessed remarkable progress in the past few years, with approaches being able to synthesize artistic and photorealistic images and videos of exceptional quality. To evaluate such results, a diverse landscape of evaluation methods and metrics is used, including authors' opinions based on side‐by‐side comparisons, human evaluation studies that quantify the subjective judgements of participants, and a multitude of quantitative computational metrics which objectively assess the different aspects of an algorithm's performance. However, there is no consensus regarding the most suitable and effective evaluation procedure that can guarantee the reliability of the results. In this review, we provide an in‐depth analysis of existing evaluation techniques, identify the inconsistencies and limitations of current evaluation methods, and give recommendations for standardized evaluation practices. We believe that the development of a robust evaluation framework will not only enable more meaningful and fairer comparisons among NST methods but will also enhance the comprehension and interpretation of research findings in the field. |
| Author | Ioannou, Eleftherios Maddock, Steve |
| Author_xml | – sequence: 1 givenname: Eleftherios orcidid: 0000-0003-3892-2492 surname: Ioannou fullname: Ioannou, Eleftherios email: eioannou1@sheffield.ac.uk organization: The University of Sheffield – sequence: 2 givenname: Steve orcidid: 0000-0003-3179-0263 surname: Maddock fullname: Maddock, Steve email: s.maddock@sheffield.ac.uk organization: The University of Sheffield |
| BookMark | eNp1kDFPwzAQhS1UJNrCwD-IxMSQ1o5zscNWVW1BqkCCMluu7SBXISl20ir_HtN0QnDL3fC993RvhAZVXRmEbgmekDBT9VFMCJAMLtCQpBmLeQb5AA0xCTfDAFdo5P0OY5yyDIYoXhxk2crG1lVkq-jZtE6W0VvTlSbaOFn5wriHaBa9moM1x2t0WcjSm5vzHqP35WIzf4zXL6un-WwdK0oTiAupFZgQkQNPNKbJVqZSMsoTDAoIy7VOOFWMq4xumebAVIJNChKYBK0NHaO73nfv6q_W-Ebs6tZVIVJQgjljlGEcqGlPKVd770whlG1OrzRO2lIQLH46EaETceokKO5_KfbOfkrX_cme3Y-2NN3_oJivlr3iG9wmcB4 |
| CitedBy_id | crossref_primary_10_1631_FITEE_2400904 |
| Cites_doi | 10.1109/CVPR42600.2020.00813 10.1109/CVPR.2017.36 10.5244/C.31.153 10.1109/ICCV51070.2023.02080 10.1109/ICCV.2019.00467 10.1109/CVPR.2012.6247954 10.1145/3503161.3547939 10.1109/TVCG.2019.2921336 10.5244/C.31.114 10.1109/CVPR46437.2021.00092 10.1109/CVPR.2019.00603 10.1109/CVPR.2018.00858 10.1080/01621459.1937.10503522 10.1109/ICCV.2017.167 10.1038/s41598-022-08078-3 10.1007/978-3-031-16788-1_34 10.1016/j.cviu.2021.103203 10.1007/978-3-319-46487-9_43 10.1109/CVPR.2017.740 10.1109/ICCV.2019.00913 10.1007/978-3-319-70139-4 10.1109/ICCV.2015.316 10.1109/CVPR46437.2021.01140 10.1109/CVPR52729.2023.01758 10.1109/CVPR46437.2021.00370 10.24963/ijcai.2017/310 10.1109/CVPR.2018.00068 10.1109/TIP.2003.819861 10.1109/TIP.2020.3024018 10.1007/978-3-030-11018-5_32 10.1609/aaai.v37i1.25212 10.1109/CVPR52729.2023.02144 10.1109/TMM.2024.3410672 10.1109/CVPR.2016.265 10.1007/978-3-319-10602-1_48 10.1109/ICCV51070.2023.02112 10.1609/aaai.v35i2.16208 10.1145/3123266.3123425 10.1109/CVPR52729.2023.01362 10.1007/978-3-319-46475-6_43 10.1109/ICCV48922.2021.01459 10.1145/3605548 10.1037/0033-2909.114.3.494 10.1109/ICCV.2017.355 10.1007/978-3-030-01219-9_28 10.1109/ACCESS.2021.3112996 10.1109/ICCV.2015.164 10.1126/science.adf6369 10.1109/CVPR42600.2020.01383 10.1109/ICCV48922.2021.00658 10.1007/978-3-030-01267-0_11 10.1109/CVPR.2017.296 10.1007/978-3-031-19787-1_11 10.1007/978-1-4612-4380-9_16 10.1109/ICCV.2019.00452 10.1109/WACV48630.2021.00113 10.1145/3306346.3323006 10.1109/TIP.2018.2831899 10.1109/CVPR.2017.397 10.1037/h0026141 10.1109/TMM.2021.3063605 10.1007/s11263-018-1089-z 10.1007/978-3-030-01237-3_43 10.1109/CVPR52729.2023.00972 10.1109/CVPR.2017.622 10.3390/jimaging8110310 10.1007/978-3-030-20876-9_40 10.1016/j.cag.2017.05.025 10.1109/CVPR.2016.272 10.1080/10447318.2022.2049081 10.1109/ICCVW.2019.00396 10.3390/computers12040069 10.1145/3092919.3092924 10.24963/ijcai.2022/687 10.1109/CVPR52688.2022.01104 10.1109/CVPR.2017.745 10.5244/C.28.122 10.1109/CVPR.2018.00841 10.1109/WACV45572.2020.9093420 10.1017/CBO9780511761676 10.1109/CVPR.2013.271 10.1109/CVPR52729.2023.00576 10.1561/0600000106 10.1007/978-3-319-46475-6_7 10.1109/TIP.2019.2936746 10.1109/CVPR.2019.00393 10.1109/ICCV.2017.136 10.1609/aaai.v34i07.6614 10.1145/3394171.3413853 10.1109/WACV56688.2023.00041 10.1007/978-3-319-45886-1_3 10.1109/CVPR.2017.437 10.1007/s10618-008-0114-1 10.1016/j.aiopen.2023.08.012 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1111/cgf.15165 |
| DatabaseName | Wiley Online Library Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | n/a |
| ExternalDocumentID | 10_1111_cgf_15165 CGF15165 |
| Genre | article |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council funderid: EP/R513313/1 |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 24P 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3325-fadc5e0049582d032ba4aa738205c5179dd283c78c63b7d857c20e45a57a5dde3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001281438900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Sat Jul 26 01:37:27 EDT 2025 Sat Nov 29 03:41:23 EST 2025 Tue Nov 18 22:21:53 EST 2025 Wed Jan 22 17:14:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3325-fadc5e0049582d032ba4aa738205c5179dd283c78c63b7d857c20e45a57a5dde3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3892-2492 0000-0003-3179-0263 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.15165 |
| PQID | 3108773700 |
| PQPubID | 30877 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_3108773700 crossref_citationtrail_10_1111_cgf_15165 crossref_primary_10_1111_cgf_15165 wiley_primary_10_1111_cgf_15165_CGF15165 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationYear | 2024 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2021; 9 2023; 380 2023; 12 2012 2023; 39 2023; 15 2010 2023; 37 2018; 126 2021; 207 2017; 67 2019; 38 2022; 24 1995 2020; 34 1992 2024 2018; 27 2023; 42 2021; 35 2017; 30 2016; 1 2021; 34 2023 2022 2021 2020 2022; 8 2004; 13 2022; 12 2019 2018 2020; 26 2022; 36 2019; 29 2017 2016 2015 1937; 32 2014 2020; 44 2013 1993; 114 1968; 70 2009; 18 1988 2020; 29 e_1_2_9_52_2 e_1_2_9_98_2 e_1_2_9_71_2 e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_56_2 e_1_2_9_94_2 e_1_2_9_75_2 e_1_2_9_90_2 e_1_2_9_107_2 e_1_2_9_126_2 e_1_2_9_122_2 e_1_2_9_103_2 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_79_2 e_1_2_9_87_2 e_1_2_9_60_2 e_1_2_9_45_2 e_1_2_9_22_2 e_1_2_9_64_2 e_1_2_9_6_2 e_1_2_9_119_2 e_1_2_9_2_2 Chen H. (e_1_2_9_18_2) 2021; 34 e_1_2_9_111_2 e_1_2_9_115_2 e_1_2_9_49_2 e_1_2_9_26_2 e_1_2_9_68_2 e_1_2_9_30_2 e_1_2_9_72_2 e_1_2_9_99_2 e_1_2_9_34_2 e_1_2_9_76_2 e_1_2_9_11_2 e_1_2_9_53_2 e_1_2_9_91_2 e_1_2_9_129_2 Ioannou E. (e_1_2_9_44_2) 2022 e_1_2_9_102_2 e_1_2_9_125_2 Malpica S. (e_1_2_9_83_2) 2023 e_1_2_9_106_2 e_1_2_9_121_2 e_1_2_9_38_2 e_1_2_9_57_2 e_1_2_9_19_2 Chen H. (e_1_2_9_17_2) 2023 e_1_2_9_61_2 e_1_2_9_88_2 e_1_2_9_23_2 e_1_2_9_42_2 e_1_2_9_65_2 e_1_2_9_84_2 e_1_2_9_5_2 e_1_2_9_80_2 e_1_2_9_118_2 e_1_2_9_110_2 e_1_2_9_9_2 e_1_2_9_114_2 Heusel M. (e_1_2_9_41_2) 2017; 30 e_1_2_9_27_2 e_1_2_9_46_2 e_1_2_9_69_2 e_1_2_9_73_2 e_1_2_9_50_2 e_1_2_9_77_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_54_2 e_1_2_9_96_2 e_1_2_9_109_2 e_1_2_9_92_2 e_1_2_9_101_2 e_1_2_9_128_2 e_1_2_9_105_2 e_1_2_9_124_2 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_58_2 e_1_2_9_120_2 e_1_2_9_39_2 e_1_2_9_62_2 e_1_2_9_89_2 e_1_2_9_20_2 e_1_2_9_66_2 e_1_2_9_43_2 e_1_2_9_85_2 e_1_2_9_4_2 e_1_2_9_81_2 e_1_2_9_113_2 e_1_2_9_117_2 e_1_2_9_8_2 e_1_2_9_24_2 e_1_2_9_47_2 e_1_2_9_28_2 e_1_2_9_51_2 e_1_2_9_74_2 e_1_2_9_97_2 e_1_2_9_78_2 e_1_2_9_93_2 e_1_2_9_55_2 e_1_2_9_32_2 e_1_2_9_108_2 e_1_2_9_70_2 e_1_2_9_100_2 e_1_2_9_127_2 e_1_2_9_104_2 e_1_2_9_123_2 e_1_2_9_13_2 e_1_2_9_59_2 e_1_2_9_36_2 e_1_2_9_40_2 e_1_2_9_63_2 e_1_2_9_86_2 e_1_2_9_21_2 e_1_2_9_67_2 e_1_2_9_82_2 e_1_2_9_7_2 Ranftl R. (e_1_2_9_95_2) 2020 e_1_2_9_3_2 e_1_2_9_112_2 e_1_2_9_116_2 Cohen J. (e_1_2_9_15_2) 1988 e_1_2_9_25_2 e_1_2_9_48_2 e_1_2_9_29_2 |
| References_xml | – start-page: 14861 year: 2021 end-page: 14869 article-title: Manifold alignment for semantically aligned style transfer – year: 2018 article-title: Multi‐style generative network for real‐time transfer – start-page: 1716 year: 2017 end-page: 1724 article-title: Laplacian‐steered neural style transfer – volume: 1 start-page: 4 year: 2016 article-title: Texture networks: Feed‐forward synthesis of textures and stylized images – start-page: 3920 year: 2017 end-page: 3928 article-title: Diversified texture synthesis with feed‐forward networks – volume: 126 start-page: 1199 issue: 11 year: 2018 end-page: 1219 article-title: Artistic style transfer for videos and spherical images publication-title: International Journal of Computer Vision – start-page: 22388 year: 2023 end-page: 22397 article-title: Towards artistic image aesthetics assessment: A large‐scale dataset and a new method – start-page: 10083 year: 2023 end-page: 10092 article-title: Learning dynamic style kernels for artistic style transfer – start-page: 170 year: 2018 end-page: 185 article-title: Learning blind video temporal consistency – start-page: 1089 year: 2021 end-page: 1098 article-title: Real‐time localized photorealistic video style transfer – volume: 207 year: 2021 article-title: Evaluate and improve the quality of neural style transfer publication-title: Computer Vision and Image Understanding – start-page: 6924 year: 2017 end-page: 6932 article-title: Improved texture networks: Maximizing quality and diversity in feed‐forward stylization and texture synthesis – start-page: 586 year: 2018 end-page: 595 article-title: The unreasonable effectiveness of deep features as a perceptual metric – start-page: 23109 year: 2023 end-page: 23119 article-title: All‐to‐key attention for arbitrary style transfer – volume: 34 start-page: 10443 issue: 07 year: 2020 end-page: 10450 article-title: Ultrafast photorealistic style transfer via neural architecture search – start-page: 22758 year: 2023 end-page: 22767 article-title: AesPA‐Net: Aesthetic pattern‐aware style transfer networks – volume: 15 start-page: 201 issue: 3 year: 2023 end-page: 252 article-title: Towards better user studies in computer graphics and vision publication-title: Foundations and Trends® in Computer Graphics and Vision – start-page: 23545 year: 2024 end-page: 23554 – year: 2022 – start-page: 637 year: 2018 end-page: 653 – start-page: 3277 year: 2017 end-page: 3285 article-title: DSLR‐quality photos on mobile devices with deep convolutional networks – volume: 30 year: 2017 article-title: Universal style transfer via feature transforms publication-title: Advances in Neural Information Processing Systems – start-page: 2758 year: 2015 end-page: 2766 article-title: Flownet: Learning optical flow with convolutional networks – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Transactions on Image Processing – start-page: 3702 year: 2021 end-page: 3711 article-title: Learning to warp for style transfer – year: 2019 – start-page: 694 year: 2016 end-page: 711 article-title: Perceptual losses for real‐time style transfer and super‐resolution – start-page: 2230 year: 2017 end-page: 2236 article-title: Demystifying neural style transfer – start-page: 18329 year: 2023 end-page: 18338 article-title: Master: Meta style transformer for controllable zero‐shot and few‐shot artistic style transfer – volume: 26 start-page: 3365 year: 2020 end-page: 3385 article-title: Neural style transfer: A review publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 3320 year: 2020 end-page: 3329 article-title: Aesthetic‐aware image style transfer – volume: 380 start-page: 136 issue: 6641 year: 2023 end-page: 138 article-title: Rethink reporting of evaluation results in ai publication-title: Science – volume: 30 year: 2017 article-title: GANs trained by a two time‐scale update rule converge to a local nash equilibrium publication-title: Advances in Neural Information Processing Systems – start-page: 1 year: 2017 end-page: 10 article-title: Depth‐aware neural style transfer – start-page: 11326 year: 2022 end-page: 11336 article-title: Stytr2: Image style transfer with transformers – start-page: 4422 year: 2019 end-page: 4431 article-title: Content and style disentanglement for artistic style transfer – start-page: 11569 year: 2021 end-page: 11579 article-title: Artemis: Affective language for visual art – start-page: 740 year: 2014 end-page: 755 article-title: Microsoft coco: Common objects in context – start-page: 3809 year: 2019 end-page: 3817 article-title: Learning linear transformations for fast image and video style transfer – year: 2016 – start-page: 4990 year: 2017 end-page: 4998 article-title: Deep photo style transfer – start-page: 611 year: 2012 end-page: 625 article-title: A naturalistic open source movie for optical flow evaluation – year: 2010 – start-page: 862 year: 2021 end-page: 871 article-title: Artflow: Unbiased image style transfer via reversible neural flows – start-page: 2083 year: 2013 end-page: 2090 article-title: Salient object detection: A discriminative regional feature integration approach – volume: 42 issue: 5 year: 2023 article-title: A unified arbitrary style transfer framework via adaptive contrastive learning publication-title: ACM Transactions on Graphics – year: 2016 article-title: Combining Markov random fields and convolutional neural networks for image synthesis – year: 1995 – start-page: 5947 year: 2023 end-page: 5956 article-title: Quantart: Quantizing image style transfer towards high visual fidelity – start-page: 1 year: 2024 end-page: 10 – volume: 36 start-page: 4957 year: 2022 end-page: 4965 article-title: Universal video style transfer via crystallization, separation, and blending – volume: 29 start-page: 9125 year: 2020 end-page: 9139 article-title: Consistent video style transfer via relaxation and regularization publication-title: IEEE Transactions on Image Processing – volume: 38 issue: 4 year: 2019 article-title: Stylizing video by example publication-title: ACM Transactions on Graphics – start-page: 698 year: 2018 end-page: 714 article-title: A style‐aware content loss for real‐time hd style transfer – year: 2021 – year: 2024 – volume: 8 start-page: 310 issue: 11 year: 2022 article-title: A review of synthetic image data and its use in computer vision publication-title: Journal of Imaging – start-page: 1395 year: 2015 end-page: 1403 article-title: Holistically‐nested edge detection – year: 2018 – start-page: 3222 year: 2020 end-page: 3230 article-title: Fast video multi‐style transfer – volume: 34 start-page: 26561 year: 2021 end-page: 26573 article-title: Artistic style transfer with internal‐external learning and contrastive learning publication-title: Advances in Neural Information Processing Systems – start-page: 102 year: 2016 end-page: 118 article-title: Playing for data: Ground truth from computer games – volume: 44 issue: 3 year: 2020 – start-page: 8061 year: 2018 end-page: 8069 article-title: Neural style transfer via meta networks – start-page: 783 year: 2017 end-page: 791 article-title: Real‐time neural style transfer for videos – volume: 35 start-page: 1210 issue: 2 year: 2021 end-page: 1217 article-title: Arbitrary video style transfer via multi‐channel correlation – volume: 27 start-page: 3998 issue: 8 year: 2018 end-page: 4011 article-title: NIMA: Neural image assessment publication-title: IEEE Transactions on Image Processing – start-page: 1095 year: 2022 end-page: 1106 article-title: AesUST: towards aesthetic‐enhanced universal style transfer – volume: 18 start-page: 140 year: 2009 end-page: 181 article-title: Controlled experiments on the web: Survey and practical guide publication-title: Data Mining and Knowledge Discovery – year: 2023 article-title: GPT understands, too publication-title: AI Open – volume: 114 start-page: 494 issue: 3 year: 1993 article-title: Dominance statistics: Ordinal analyses to answer ordinal questions publication-title: Psychological Bulletin – start-page: 8222 year: 2018 end-page: 8231 article-title: Arbitrary style transfer with deep feature reshuffle – year: 2015 – start-page: 3985 year: 2017 end-page: 3993 article-title: Controlling perceptual factors in neural style transfer – start-page: 9036 year: 2019 end-page: 9045 article-title: Photorealistic style transfer via wavelet transforms – volume: 29 start-page: 909 year: 2019 end-page: 920 article-title: Structure‐preserving neural style transfer publication-title: IEEE Transactions on Image Processing – start-page: 1897 year: 2017 end-page: 1906 article-title: Stylebank: An explicit representation for neural image style transfer – start-page: 8748 year: 2021 end-page: 8763 article-title: Learning transferable visual models from natural language supervision – volume: 12 start-page: 69 issue: 4 year: 2023 article-title: Depth‐aware neural style transfer for videos publication-title: Computers – start-page: 8110 year: 2020 end-page: 8119 article-title: Analyzing and improving the image quality of stylegan – year: 2023 article-title: Collaborative learning and style‐adaptive pooling network for perceptual evaluation of arbitrary style transfer publication-title: IEEE Transactions on Neural Networks and Learning Systems. – year: 2018 article-title: WikiArt emotions: An annotated dataset of emotions evoked by art – start-page: 2408 year: 2012 end-page: 2415 article-title: AVA: A large‐scale database for aesthetic visual analysis – start-page: 4570 year: 2019 end-page: 4580 article-title: Singan: Learning a generative model from a single natural image – start-page: 2414 year: 2016 end-page: 2423 article-title: Image style transfer using convolutional neural networks – start-page: 1202 year: 2017 end-page: 1211 article-title: BAM! the behance artistic media dataset for recognition beyond photography – year: 2017 article-title: A learned representation for artistic style – start-page: 453 year: 2018 end-page: 468 article-title: A closed‐form solution to photorealistic image stylization – volume: 39 start-page: 755 issue: 4 year: 2023 end-page: 775 article-title: Measuring aesthetic preferences of neural style transfer: More precision with the two‐alternative‐forced‐choice task publication-title: International Journal of Human–Computer Interaction – start-page: 331 year: 2023 end-page: 340 article-title: RAST: Restorable arbitrary style transfer via multi‐restoration – start-page: 189 year: 2022 end-page: 206 article-title: CCPL: Contrastive coherence preserving loss for versatile style transfer – start-page: 560 year: 2022 end-page: 576 article-title: Artfid: Quantitative evaluation of neural style transfer – volume: 67 start-page: 58 year: 2017 end-page: 76 article-title: Developing and applying a benchmark for evaluating image stylization publication-title: Computers & Graphics – start-page: 5880 year: 2019 end-page: 5888 article-title: Arbitrary style transfer with style‐attentional networks – start-page: 196 year: 1992 end-page: 202 – start-page: 13816 year: 2020 end-page: 13825 article-title: Two‐stage peer‐regularized feature recombination for arbitrary image style transfer – volume: 32 start-page: 675 issue: 200 year: 1937 end-page: 701 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Journal of the American Statistical Association – start-page: 3000 year: 2017 end-page: 3009 article-title: Richer convolutional features for edge detection – year: 2014 article-title: Recognizing image style – year: 1988 – year: 2020 – year: 2023 – start-page: 702 year: 2016 end-page: 716 article-title: Precomputed real‐time texture synthesis with Markovian generative adversarial networks – volume: 12 start-page: 5444 issue: 1 year: 2022 article-title: A framework for rigorous evaluation of human performance in human and machine learning comparison studies publication-title: Scientific Reports – start-page: 1501 year: 2017 end-page: 1510 article-title: Arbitrary style transfer in real‐time with adaptive instance normalization – volume: 70 start-page: 151 issue: 3 year: 1968 end-page: 159 article-title: Statistical significance in psychological research publication-title: Psychological Bulletin – start-page: 14173 year: 2023 end-page: 14182 article-title: Neural preset for color style transfer – start-page: 6649 year: 2021 end-page: 6658 article-title: AdaAttN: Revisit attention mechanism in arbitrary neural style transfer – year: 2017 – volume: 37 start-page: 1287 year: 2023 end-page: 1295 article-title: Frequency domain disentanglement for arbitrary neural style transfer – volume: 24 start-page: 1299 year: 2022 end-page: 1312 article-title: Structure‐guided arbitrary style transfer for artistic image and video publication-title: IEEE Transactions on Multimedia – start-page: 26 year: 2016 end-page: 36 – volume: 9 start-page: 131583 year: 2021 end-page: 131613 article-title: Neural style transfer: A critical review publication-title: IEEE Access – ident: e_1_2_9_24_2 – volume-title: Eurographics 2023 ‐ Tutorials year: 2023 ident: e_1_2_9_83_2 – ident: e_1_2_9_2_2 – year: 2023 ident: e_1_2_9_17_2 article-title: Collaborative learning and style‐adaptive pooling network for perceptual evaluation of arbitrary style transfer publication-title: IEEE Transactions on Neural Networks and Learning Systems. – ident: e_1_2_9_51_2 doi: 10.1109/CVPR42600.2020.00813 – volume-title: Computer Graphics & Visual Computing (CGVC) year: 2022 ident: e_1_2_9_44_2 – ident: e_1_2_9_59_2 doi: 10.1109/CVPR.2017.36 – ident: e_1_2_9_84_2 doi: 10.5244/C.31.153 – ident: e_1_2_9_86_2 – ident: e_1_2_9_40_2 doi: 10.1109/ICCV51070.2023.02080 – ident: e_1_2_9_99_2 doi: 10.1109/ICCV.2019.00467 – ident: e_1_2_9_81_2 doi: 10.1109/CVPR.2012.6247954 – ident: e_1_2_9_119_2 doi: 10.1145/3503161.3547939 – ident: e_1_2_9_49_2 doi: 10.1109/TVCG.2019.2921336 – ident: e_1_2_9_34_2 doi: 10.5244/C.31.114 – ident: e_1_2_9_3_2 doi: 10.1109/CVPR46437.2021.00092 – ident: e_1_2_9_87_2 – ident: e_1_2_9_88_2 doi: 10.1109/CVPR.2019.00603 – ident: e_1_2_9_28_2 doi: 10.1109/CVPR.2018.00858 – ident: e_1_2_9_27_2 doi: 10.1080/01621459.1937.10503522 – ident: e_1_2_9_37_2 doi: 10.1109/ICCV.2017.167 – ident: e_1_2_9_14_2 doi: 10.1038/s41598-022-08078-3 – ident: e_1_2_9_115_2 doi: 10.1007/978-3-031-16788-1_34 – ident: e_1_2_9_117_2 doi: 10.1016/j.cviu.2021.103203 – ident: e_1_2_9_111_2 – volume-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) year: 2020 ident: e_1_2_9_95_2 – ident: e_1_2_9_70_2 doi: 10.1007/978-3-319-46487-9_43 – ident: e_1_2_9_68_2 doi: 10.1109/CVPR.2017.740 – ident: e_1_2_9_125_2 doi: 10.1109/ICCV.2019.00913 – ident: e_1_2_9_60_2 doi: 10.1007/978-3-319-70139-4 – ident: e_1_2_9_26_2 – ident: e_1_2_9_20_2 doi: 10.1109/ICCV.2015.316 – ident: e_1_2_9_4_2 doi: 10.1109/CVPR46437.2021.01140 – ident: e_1_2_9_106_2 doi: 10.1109/CVPR52729.2023.01758 – ident: e_1_2_9_74_2 doi: 10.1109/CVPR46437.2021.00370 – ident: e_1_2_9_9_2 – ident: e_1_2_9_11_2 – ident: e_1_2_9_72_2 doi: 10.24963/ijcai.2017/310 – ident: e_1_2_9_128_2 doi: 10.1109/CVPR.2018.00068 – ident: e_1_2_9_112_2 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_9_116_2 doi: 10.1109/TIP.2020.3024018 – ident: e_1_2_9_126_2 doi: 10.1007/978-3-030-11018-5_32 – ident: e_1_2_9_66_2 doi: 10.1609/aaai.v37i1.25212 – ident: e_1_2_9_90_2 – ident: e_1_2_9_124_2 doi: 10.1109/CVPR52729.2023.02144 – ident: e_1_2_9_10_2 doi: 10.1109/TMM.2024.3410672 – ident: e_1_2_9_93_2 – volume: 34 start-page: 26561 year: 2021 ident: e_1_2_9_18_2 article-title: Artistic style transfer with internal‐external learning and contrastive learning publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_9_30_2 doi: 10.1109/CVPR.2016.265 – ident: e_1_2_9_67_2 doi: 10.1007/978-3-319-10602-1_48 – ident: e_1_2_9_127_2 doi: 10.1109/ICCV51070.2023.02112 – ident: e_1_2_9_105_2 – ident: e_1_2_9_108_2 – ident: e_1_2_9_22_2 doi: 10.1609/aaai.v35i2.16208 – ident: e_1_2_9_73_2 doi: 10.1145/3123266.3123425 – ident: e_1_2_9_53_2 doi: 10.1109/CVPR52729.2023.01362 – ident: e_1_2_9_46_2 doi: 10.1007/978-3-319-46475-6_43 – ident: e_1_2_9_122_2 – ident: e_1_2_9_39_2 doi: 10.1109/ICCV48922.2021.01459 – ident: e_1_2_9_129_2 doi: 10.1145/3605548 – ident: e_1_2_9_12_2 doi: 10.1037/0033-2909.114.3.494 – ident: e_1_2_9_43_2 doi: 10.1109/ICCV.2017.355 – ident: e_1_2_9_65_2 doi: 10.1007/978-3-030-01219-9_28 – ident: e_1_2_9_100_2 doi: 10.1109/ACCESS.2021.3112996 – ident: e_1_2_9_121_2 doi: 10.1109/ICCV.2015.164 – ident: e_1_2_9_7_2 doi: 10.1126/science.adf6369 – ident: e_1_2_9_98_2 doi: 10.1109/CVPR42600.2020.01383 – ident: e_1_2_9_8_2 – ident: e_1_2_9_63_2 doi: 10.1109/ICCV48922.2021.00658 – ident: e_1_2_9_94_2 – ident: e_1_2_9_29_2 – ident: e_1_2_9_61_2 doi: 10.1007/978-3-030-01267-0_11 – ident: e_1_2_9_80_2 – ident: e_1_2_9_19_2 doi: 10.1109/CVPR.2017.296 – ident: e_1_2_9_118_2 doi: 10.1007/978-3-031-19787-1_11 – ident: e_1_2_9_114_2 doi: 10.1007/978-1-4612-4380-9_16 – ident: e_1_2_9_50_2 – ident: e_1_2_9_54_2 doi: 10.1109/ICCV.2019.00452 – ident: e_1_2_9_123_2 doi: 10.1109/WACV48630.2021.00113 – ident: e_1_2_9_47_2 doi: 10.1145/3306346.3323006 – ident: e_1_2_9_62_2 – ident: e_1_2_9_104_2 – ident: e_1_2_9_107_2 doi: 10.1109/TIP.2018.2831899 – ident: e_1_2_9_89_2 – ident: e_1_2_9_31_2 doi: 10.1109/CVPR.2017.397 – ident: e_1_2_9_75_2 doi: 10.1037/h0026141 – ident: e_1_2_9_76_2 doi: 10.1109/TMM.2021.3063605 – ident: e_1_2_9_92_2 doi: 10.1007/s11263-018-1089-z – ident: e_1_2_9_16_2 – ident: e_1_2_9_101_2 doi: 10.1007/978-3-030-01237-3_43 – ident: e_1_2_9_32_2 – volume: 30 year: 2017 ident: e_1_2_9_41_2 article-title: GANs trained by a two time‐scale update rule converge to a local nash equilibrium publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_9_120_2 doi: 10.1109/CVPR52729.2023.00972 – ident: e_1_2_9_57_2 doi: 10.1109/CVPR.2017.622 – ident: e_1_2_9_21_2 – ident: e_1_2_9_78_2 doi: 10.3390/jimaging8110310 – ident: e_1_2_9_33_2 doi: 10.1007/978-3-030-20876-9_40 – ident: e_1_2_9_82_2 doi: 10.1016/j.cag.2017.05.025 – ident: e_1_2_9_69_2 doi: 10.1109/CVPR.2016.272 – ident: e_1_2_9_102_2 doi: 10.1080/10447318.2022.2049081 – ident: e_1_2_9_56_2 doi: 10.1109/ICCVW.2019.00396 – ident: e_1_2_9_45_2 doi: 10.3390/computers12040069 – ident: e_1_2_9_58_2 doi: 10.1145/3092919.3092924 – volume-title: Statistical Power Analysis for the Behavioral Sciences year: 1988 ident: e_1_2_9_15_2 – ident: e_1_2_9_97_2 – ident: e_1_2_9_71_2 doi: 10.24963/ijcai.2022/687 – ident: e_1_2_9_23_2 doi: 10.1109/CVPR52688.2022.01104 – ident: e_1_2_9_42_2 doi: 10.1109/CVPR.2017.745 – ident: e_1_2_9_79_2 – ident: e_1_2_9_55_2 doi: 10.5244/C.28.122 – ident: e_1_2_9_103_2 doi: 10.1109/CVPR.2018.00841 – ident: e_1_2_9_35_2 doi: 10.1109/WACV45572.2020.9093420 – ident: e_1_2_9_25_2 doi: 10.1017/CBO9780511761676 – ident: e_1_2_9_48_2 doi: 10.1109/CVPR.2013.271 – ident: e_1_2_9_36_2 doi: 10.1109/CVPR52729.2023.00576 – ident: e_1_2_9_6_2 doi: 10.1561/0600000106 – ident: e_1_2_9_96_2 doi: 10.1007/978-3-319-46475-6_7 – ident: e_1_2_9_13_2 doi: 10.1109/TIP.2019.2936746 – ident: e_1_2_9_110_2 – ident: e_1_2_9_64_2 doi: 10.1109/CVPR.2019.00393 – ident: e_1_2_9_113_2 doi: 10.1109/ICCV.2017.136 – ident: e_1_2_9_5_2 doi: 10.1609/aaai.v34i07.6614 – ident: e_1_2_9_38_2 doi: 10.1145/3394171.3413853 – ident: e_1_2_9_85_2 doi: 10.1109/WACV56688.2023.00041 – ident: e_1_2_9_91_2 doi: 10.1007/978-3-319-45886-1_3 – ident: e_1_2_9_109_2 doi: 10.1109/CVPR.2017.437 – ident: e_1_2_9_52_2 doi: 10.1007/s10618-008-0114-1 – ident: e_1_2_9_77_2 doi: 10.1016/j.aiopen.2023.08.012 |
| SSID | ssj0004765 |
| Score | 2.4433184 |
| Snippet | The field of neural style transfer (NST) has witnessed remarkable progress in the past few years, with approaches being able to synthesize artistic and... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms image and video processing Image quality Performance evaluation rendering; non‐photorealistic rendering |
| Title | Evaluation in Neural Style Transfer: A Review |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.15165 https://www.proquest.com/docview/3108773700 |
| Volume | 43 |
| WOSCitedRecordID | wos001281438900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfc_OgB3-L0zmKePBSafOjSfU0ptWDjKEOditJmspgVNmm4H9v0l-boCB46yFpy-t7ed80yecBnHNBZZBawiU34UYk91zpB8iVRGkzaQmUL2VebIINBnw8DocNuK7OwhR8iPqHm42MfLy2AS7kfCXI1Ut6adJVQNeg5fuYWZdGZLg8FMkCWoG9LTKmxArZbTx11-_JaKkwV3Vqnmii7X-94g5slfrS6RUOsQsNne3B5gp1cB_c25rw7Uwyx-I5TI-nxedUO3nqSvXsyuk5xbLBAYyi2-f-vVtWTXAVxoi6qUgU1Vb5U44SDyMpiBAMm1RPlQVyJYmRFIpxFWDJEk6ZQp4mVFAmqBns8CE0s9dMH4HD0zT0lfaoIITgQEgRhAjxhKSpSvxQtuGiMl-sSqS4rWwxjauphbFAnFugDWd107eCo_FTo071DeIylOax0Z-cMcw8zzwut_bvN4j7d1F-cfz3piewgYxQKfaNdaC5mL3rU1hXH4vJfNbNfaoLrZvHaPTwBflJzTU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfcxPUg7_F6dQiHrxU2jRpUvEypnXiHKIb7FaSNJXBmLJNwf_epL82QUHw1sNLW17z8r5Jk88DOGOcCD8xhEumww0L5tjC9ZEtsFR60uJLV4i02ATtdtlgEDxW4Ko4C5PxIcoFNxMZ6XhtAtwsSC9EuXxJLnS-8skS1LDuRqQKteunsN-Zn4ukPinY3oYak5OFzE6esvH3fDQXmYtSNc014cb_3nIT1nONaTWzTrEFFTXehrUF8uAO2Dcl5dsaji2D6NAtnmefI2Wl6StRk0uraWW_DnahH970Wm07r5xgS89DxE54LIky6p8wFDseEhxzTj2d7ok0UK441rJCUiZ9T9CYESqRozDhhHKiBzxvD6rj17HaB4slSeBK5RCOMfZ8LrgfIMRinCQydgNRh_PCf5HMseKmusUoKqYX2gNR6oE6nJambxlL4yejRvERojycppHWoIxSjzqOflzq7t9vELVuw_Ti4O-mJ7DS7j10os5d9_4QVpEWLtk-sgZUZ5N3dQTL8mM2nE6O8y72BZmy0RI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPc4rog3dxOrWID75UekmaVHwZc1VRxkCFvZVcZTDq2KbgtzfpZZugIPjWh6Qtpznn_NMkvwNwThnmkbaES2rcDXHqudyPApcjocykJRI-53mxCdLt0n4_7tXgujoLU_AhZj_crGfk8do6uBpJveDl4lVfmnwV4SVYRtjEWMt1Rr35qUgS4YrsbZkxJVfI7uOZdf2ejeYSc1Go5pkm2fzfO27BRqkwnVYxJLahprIdWF_gDu6C25kxvp1B5lhAh-nxNP0cKidPXlqNr5yWUywc7MFL0nlu37ll3QRXhGGAXc2kwMpqf0wD6YUBZ4gxEppkj4VFcklpRIUgVEQhJ5JiIgJPIcwwYdiEu3Af6tlbpg7AoVrHvlAeZgihMGKcRXEQUIm0FtKPeQMuKvulooSK29oWw7SaXBgLpLkFGnA2azoqSBo_NWpWHyEtnWmSGgVKCQmJ55nH5eb-_QZp-zbJLw7_3vQUVns3Sfp43304grXAqJZiE1kT6tPxuzqGFfExHUzGJ_n4-gKjuc77 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+in+Neural+Style+Transfer%3A+A+Review&rft.jtitle=Computer+graphics+forum&rft.au=Ioannou%2C+Eleftherios&rft.au=Maddock%2C+Steve&rft.date=2024-09-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=43&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fcgf.15165&rft.externalDBID=10.1111%252Fcgf.15165&rft.externalDocID=CGF15165 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |