Evaluation of Orange data mining software and examples for lecturing machine learning tasks in geoinformatics

The study presents the advantages of, and possible uses for, Orange software for data mining in combination with processing spatial data by ArcGIS Pro software in education. To present suitability of Orange software in education, the scientific method of Physics of Notation by D. Moody is used to ev...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer applications in engineering education Ročník 32; číslo 4
Hlavný autor: Dobesova, Zdena
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.07.2024
Predmet:
ISSN:1061-3773, 1099-0542
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The study presents the advantages of, and possible uses for, Orange software for data mining in combination with processing spatial data by ArcGIS Pro software in education. To present suitability of Orange software in education, the scientific method of Physics of Notation by D. Moody is used to evaluate the Orange software's visual vocabulary. All nine principles are applied in the presented evaluation. As a result, a high level of effective cognition of the Orange visual vocabulary is proven by this method. Namely, the semantic transparency of visual vocabulary, thanks the explicit inner icons, is semantically immediate. Also, principle of dual coding is used properly by automatic text labels of graphical symbols with the opportunity to rename labels. Renaming is also a way to ensure the partial overloading of symbols found by the first principle of semiotic clarity. The principle of cognitive interaction is partially fulfilled by automatically reorganizing connector lines between symbols to reduce the crossing of lines. A high level of effective cognition is beneficial for students. The evaluation of the visual notation of Orange software is presented to inform teachers and the geoinformatics community of the highly effective cognitive aspects of Orange software. The two practical lectures of processing in Orange and ArcGIS Pro software are shown to the teachers and students of geoinformatics community as examples of machine learning tasks. They are cluster analyses carried out with the density‐based spatial clustering of applications with noise method, first for the location of cafés in Olomouc town and the second example concerns finding similar European towns based on their land use arrangement, using the neural network and following hierarchical clustering. Both examples could provide inspiration for the geoinformatics community to adopt Orange data mining software.
AbstractList The study presents the advantages of, and possible uses for, Orange software for data mining in combination with processing spatial data by ArcGIS Pro software in education. To present suitability of Orange software in education, the scientific method of Physics of Notation by D. Moody is used to evaluate the Orange software's visual vocabulary. All nine principles are applied in the presented evaluation. As a result, a high level of effective cognition of the Orange visual vocabulary is proven by this method. Namely, the semantic transparency of visual vocabulary, thanks the explicit inner icons, is semantically immediate. Also, principle of dual coding is used properly by automatic text labels of graphical symbols with the opportunity to rename labels. Renaming is also a way to ensure the partial overloading of symbols found by the first principle of semiotic clarity. The principle of cognitive interaction is partially fulfilled by automatically reorganizing connector lines between symbols to reduce the crossing of lines. A high level of effective cognition is beneficial for students. The evaluation of the visual notation of Orange software is presented to inform teachers and the geoinformatics community of the highly effective cognitive aspects of Orange software. The two practical lectures of processing in Orange and ArcGIS Pro software are shown to the teachers and students of geoinformatics community as examples of machine learning tasks. They are cluster analyses carried out with the density‐based spatial clustering of applications with noise method, first for the location of cafés in Olomouc town and the second example concerns finding similar European towns based on their land use arrangement, using the neural network and following hierarchical clustering. Both examples could provide inspiration for the geoinformatics community to adopt Orange data mining software.
Author Dobesova, Zdena
Author_xml – sequence: 1
  givenname: Zdena
  orcidid: 0000-0002-3989-5951
  surname: Dobesova
  fullname: Dobesova, Zdena
  email: zdena.dobesova@upol.cz
  organization: Palacký University Olomouc
BookMark eNp9kMtOwzAQRS1UJNrCgj-wxIpFWj8Sx15WVXlIlbqBdeQ4k-KS2MVOKf170pYVEqxmNDr3jnRGaOC8A4RuKZlQQtjUaJgwlvPsAg0pUSohWcoGx13QhOc5v0KjGDeEECW4GqJ28ambne6sd9jXeBW0WwOudKdxa511axx93e11AKxdheFLt9sGIq59wA2YbheOTKvNm3XQX3Q4hTod3yO2Dq_BW9fDbf_CxGt0Wesmws3PHKPXh8XL_ClZrh6f57NlYjhnWcJUmpPKsFwakUmh05IIxiSUqZKkJFmpVCmFKDOVZ6koQaSmZIKlQKkBTis-Rnfn3m3wHzuIXbHxu-D6lwUnkkhJFRM9dX-mTPAxBqiLbbCtDoeCkuJos-htFiebPTv9xRrbnbR1Qdvmv8TeNnD4u7qYzxbnxDdfx4gy
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3429241
crossref_primary_10_1021_acs_jafc_5c05585
crossref_primary_10_3390_foods14152585
crossref_primary_10_1080_10548408_2025_2502420
crossref_primary_10_1016_j_applthermaleng_2024_125135
crossref_primary_10_3389_fbuil_2025_1566784
crossref_primary_10_1002_cae_22808
crossref_primary_10_1007_s40497_025_00437_4
crossref_primary_10_1007_s11356_025_36033_y
crossref_primary_10_1016_j_foodres_2025_116788
crossref_primary_10_1016_j_scitotenv_2025_178411
crossref_primary_10_1007_s10706_025_03096_0
crossref_primary_10_1007_s40098_025_01289_1
Cites_doi 10.3390/s19061407
10.1007/978-3-030-30329-7_31
10.1371/journal.pcbi.1008671
10.1145/1150402.1150531
10.1038/s41467-019-12397-x
10.1109/VLHCC.2009.5295275
10.3390/ijgi9060406
10.1080/01621459.1963.10500845
10.1109/TSE.2009.67
10.1145/1810295.1810442
10.1007/978-0-387-21606-5
10.1037/h0043158
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC.
2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC.
– notice: 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/cae.22735
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
EISSN 1099-0542
EndPage n/a
ExternalDocumentID 10_1002_cae_22735
CAE22735
Genre researchArticle
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAHSB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UCJ
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3325-29470dc278c6586a4b06228eb4980b05b99b866b597546be64cb2624e11ce31d3
IEDL.DBID DRFUL
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001187621600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-3773
IngestDate Fri Sep 26 22:12:50 EDT 2025
Sat Nov 29 07:27:04 EST 2025
Tue Nov 18 22:06:12 EST 2025
Wed Jan 22 17:18:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3325-29470dc278c6586a4b06228eb4980b05b99b866b597546be64cb2624e11ce31d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3989-5951
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcae.22735
PQID 3080881926
PQPubID 2045172
PageCount 18
ParticipantIDs proquest_journals_3080881926
crossref_primary_10_1002_cae_22735
crossref_citationtrail_10_1002_cae_22735
wiley_primary_10_1002_cae_22735_CAE22735
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer applications in engineering education
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1963; 58
2009; 35
2013; 14
2023
2012
2001
2022
1956; 63
2010
2021
2019; 10
2020
2021; 17
2020; 9
2009
2019
2008
1996
2019; 19
2006
2016
2013
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
Šarmanová J. (e_1_2_7_28_1) 2012
Avison D. E. (e_1_2_7_2_1) 2006
e_1_2_7_29_1
Dobešová Z. (e_1_2_7_10_1) 2022
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
Ilenič N. (e_1_2_7_16_1) 2016
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Pretnar A. (e_1_2_7_27_1) 2022
Paivio A. (e_1_2_7_26_1) 2008
Demšar J. (e_1_2_7_4_1) 2013; 14
References_xml – year: 2001
– volume: 63
  start-page: 81
  year: 1956
  end-page: 97
  article-title: The magical number seven, plus or minus two: some limits on our capacity for processing information
  publication-title: Psychol. Rev.
– year: 2022
  article-title: Orange in classroom, pt. 2
  publication-title: Blog Orange
– start-page: 935
  year: 2006
  end-page: 940
– year: 2021
– volume: 58
  start-page: 236
  year: 1963
  end-page: 244
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Am. Stat. Assoc.
– start-page: 485
  year: 2010
  end-page: 486
– year: 2016
– volume: 14
  start-page: 2349
  year: 2013
  end-page: 2353
  article-title: Orange: data mining toolbox in Python
  publication-title: J. Mach. Learn. Res.
– volume: 17
  year: 2021
  article-title: Hands‐on training about overfitting
  publication-title: PLoS Comput. Biol.
– start-page: 151
  year: 2009
  end-page: 154
– year: 2012
– start-page: 58
  year: 2006
  end-page: 61
– volume: 10
  start-page: 4551
  year: 2019
  article-title: Democratized image analytics by visual programming through integration of deep models and small‐scale machine learning
  publication-title: Nat. Commun.
– start-page: 226
  year: 1996
  end-page: 231
– year: 2008
– year: 2006
– volume: 9
  year: 2020
  article-title: Experiment in finding look‐alike European cities using urban Atlas data
  publication-title: ISPRS International Journal of Geo‐Information
– year: 2022
– start-page: 341
  year: 2019
  end-page: 348
– year: 2020
– year: 2023
– volume: 35
  start-page: 756
  year: 2009
  end-page: 779
  article-title: The physics of notations: toward a scientific basis for constructing visual notations in software engineering
  publication-title: IEEE Transact. Softw. Eng.
– volume: 19
  start-page: 1407
  year: 2019
  article-title: Using the IBM SPSS SW tool with wavelet transformation for CO prediction within IoT in smart home care
  publication-title: Sensors
– year: 2019
– year: 2013
– ident: e_1_2_7_30_1
  doi: 10.3390/s19061407
– ident: e_1_2_7_8_1
  doi: 10.1007/978-3-030-30329-7_31
– ident: e_1_2_7_29_1
– ident: e_1_2_7_14_1
– volume: 14
  start-page: 2349
  year: 2013
  ident: e_1_2_7_4_1
  article-title: Orange: data mining toolbox in Python
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_7_3_1
– ident: e_1_2_7_5_1
  doi: 10.1371/journal.pcbi.1008671
– ident: e_1_2_7_11_1
– ident: e_1_2_7_25_1
– ident: e_1_2_7_19_1
  doi: 10.1145/1150402.1150531
– ident: e_1_2_7_13_1
  doi: 10.1038/s41467-019-12397-x
– ident: e_1_2_7_17_1
– ident: e_1_2_7_21_1
  doi: 10.1109/VLHCC.2009.5295275
– volume-title: Methods of data analysis
  year: 2012
  ident: e_1_2_7_28_1
– ident: e_1_2_7_7_1
– ident: e_1_2_7_9_1
  doi: 10.3390/ijgi9060406
– year: 2022
  ident: e_1_2_7_27_1
  article-title: Orange in classroom, pt. 2
  publication-title: Blog Orange
– ident: e_1_2_7_31_1
  doi: 10.1080/01621459.1963.10500845
– volume-title: ORANGE, Manual for Data Mining course practise
  year: 2022
  ident: e_1_2_7_10_1
– ident: e_1_2_7_22_1
  doi: 10.1109/TSE.2009.67
– ident: e_1_2_7_23_1
  doi: 10.1145/1810295.1810442
– ident: e_1_2_7_24_1
– ident: e_1_2_7_32_1
– volume-title: Mental representations: a dual coding approach
  year: 2008
  ident: e_1_2_7_26_1
– volume-title: Painter by numbers competition. 1st Place Winner's Interview
  year: 2016
  ident: e_1_2_7_16_1
– ident: e_1_2_7_15_1
  doi: 10.1007/978-0-387-21606-5
– ident: e_1_2_7_18_1
– ident: e_1_2_7_6_1
– volume-title: Information Systems Development: Methodologies, Techniques and Tools
  year: 2006
  ident: e_1_2_7_2_1
– ident: e_1_2_7_20_1
  doi: 10.1037/h0043158
– ident: e_1_2_7_12_1
SSID ssj0009639
Score 2.4072955
Snippet The study presents the advantages of, and possible uses for, Orange software for data mining in combination with processing spatial data by ArcGIS Pro software...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Cluster analysis
Clustering
Cognition
Cognition & reasoning
Cognitive tasks
Data mining
Education
First principles
Geographic information systems
Icons
Labels
Land use
lecturing
Machine learning
Neural networks
Software
Spatial data
Students
Symbols
Teachers
Visual aspects
visual notation
visual programming language
Visual tasks
Title Evaluation of Orange data mining software and examples for lecturing machine learning tasks in geoinformatics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcae.22735
https://www.proquest.com/docview/3080881926
Volume 32
WOSCitedRecordID wos001187621600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-0542
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009639
  issn: 1061-3773
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LT9wwEIdHvA7tgWdRecpCHHoJJBPbScQJwa44IEAIKm6RH7MIwWarzRb487Gd7C6VioTELYeJE9kez8-J5xuA_cRqLo3gkRBo_W9G63wuo0jGqHNNbpaELP7f59nFRX53V1zNwNE4F6bhQ0w-uHnPCOu1d3Cl68MpNNQoOkAXfMUszPukKrfzmj-97t6eT5m7MhQS85se50dZOgYLxXg4ufnfcDTVmO-Vagg13aUvveQyLLYKkx03U2IFZqhahe_vuINr0O9MGN9s0GOXQ59hwPxhUdYPBSNY7VbnFzUkpirL6FV5hnDNnMBlIeXEN8P64RwmsbbwxD0bqfqxZg8Vu6dBC2T1EOgfcNvt3JycRW3dhcikKYoIC57F1mCWG6dPpOI6log5aV7ksY6FLgqdS6ndXkRwqUlyo1EipyQxlCY2XYe5alDRT2BW9NAqJHLKgBeKcm4FUtqT1nPvk2IDfo27vzQtlNzXxngqG5wylq4Hy9CDG7A3Mf3TkDj-Z7Q9HsOydca6TJ0qzj34TbrHhdH6uIHy5LgTLjY_b7oF39BJneYQ7zbMjYZ_aQcWzPPooR7uwizyq912br4BSsXlYQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9swEMdPjCGNPWxjMI2NgTXxsJfQ5GI7ibQXhFoV0XV9KIi3KLavCLGmKOl-_PmznaQFaZMm7S0PjhPZPt_Xyd3nAI4jo7jUggdCoHG_GY21uYQCGaJKFdlV4rP4r0bJeJxeX2eTDfjc5cI0fIjVBzdnGX6_dgbuPkj31tRQXdAJWu8rnsBTbr2SC-hDPlkjd6WvI-bOPNaMkrjjCoXYW9362ButJeZDoeo9zeDl_73jK3jRKkx22iyJHdig8jU8f8Ad3IV5f8X4ZosZ-1q5DAPmgkXZ3BeMYLXdnX8WFbGiNIx-FY4hXDMrcJlPOXHdsLmPwyTWFp64YcuivqvZbcluaNECWR0Eeg8uB_3p2TBo6y4EOo5RBJjxJDQak1RbfSILrkKJmJLiWRqqUKgsU6mUyp5FBJeKJNcKJXKKIk1xZOI3sFkuSnoLzIgZmgKJrDLgWUEpNwIpnknjuPdRtg-fuvHPdQsld7UxvuUNThlzO4K5H8F9-Lhqet-QOP7U6KCbxLw1xjqPrSpOHfhN2sf56fp7B_nZad9fvPv3pkfwbDj9MspH5-OL97CNVvY0Ab0HsLmsvtMH2NI_lrd1degX6G9l3ubf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPY0MIHtiAITa6zUI88BKaXGwnkXipSqshqtIHmPYWxfa1qramVVN-_PmznbQd0iZN2lseLk5k-3xfJ77PAXyMjOJSCx4Igcb9ZjTW5xIKZIgqVWRnic_ivxgkw2F6eZmNduDLOhem5kNsPrg5z_DrtXNwWphxe0sN1QV9Rht9xRPY4yLxbol8tEXuSl9HzO15rBsl8ZorFGJ7c-v_0WgrMW8LVR9p-vuPe8cDeNkoTNapp8Qr2KHyNby4xR18A7PehvHN5mP2Y-kyDJg7LMpmvmAEq-zq_LdYEitKw-hf4RjCFbMCl_mUE9cMm_lzmMSawhMTtiqqq4pNSzaheQNkdRDoQ_jV7_3sngdN3YVAxzGKADOehEZjkmqrT2TBVSgRU1I8S0MVCpVlKpVS2b2I4FKR5FqhRE5RpCmOTPwWdst5Se-AGTFGUyCRVQY8KyjlRiDFY2kc9z7KjuDTuv9z3UDJXW2M67zGKWNuezD3PXgEHzami5rEcZdRaz2IeeOMVR5bVZw68Ju0j_PDdX8DebfT8xfHDzc9g2ejr_188G34_T08R6t66vO8LdhdLX_TCTzVf1bTannq5-cNFRzmWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Orange+data+mining+software+and+examples+for+lecturing+machine+learning+tasks+in+geoinformatics&rft.jtitle=Computer+applications+in+engineering+education&rft.au=Dobesova%2C+Zdena&rft.date=2024-07-01&rft.issn=1061-3773&rft.eissn=1099-0542&rft.volume=32&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcae.22735&rft.externalDBID=10.1002%252Fcae.22735&rft.externalDocID=CAE22735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-3773&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-3773&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-3773&client=summon