Evaluation of Orange data mining software and examples for lecturing machine learning tasks in geoinformatics
The study presents the advantages of, and possible uses for, Orange software for data mining in combination with processing spatial data by ArcGIS Pro software in education. To present suitability of Orange software in education, the scientific method of Physics of Notation by D. Moody is used to ev...
Uložené v:
| Vydané v: | Computer applications in engineering education Ročník 32; číslo 4 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc
01.07.2024
|
| Predmet: | |
| ISSN: | 1061-3773, 1099-0542 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The study presents the advantages of, and possible uses for, Orange software for data mining in combination with processing spatial data by ArcGIS Pro software in education. To present suitability of Orange software in education, the scientific method of Physics of Notation by D. Moody is used to evaluate the Orange software's visual vocabulary. All nine principles are applied in the presented evaluation. As a result, a high level of effective cognition of the Orange visual vocabulary is proven by this method. Namely, the semantic transparency of visual vocabulary, thanks the explicit inner icons, is semantically immediate. Also, principle of dual coding is used properly by automatic text labels of graphical symbols with the opportunity to rename labels. Renaming is also a way to ensure the partial overloading of symbols found by the first principle of semiotic clarity. The principle of cognitive interaction is partially fulfilled by automatically reorganizing connector lines between symbols to reduce the crossing of lines. A high level of effective cognition is beneficial for students. The evaluation of the visual notation of Orange software is presented to inform teachers and the geoinformatics community of the highly effective cognitive aspects of Orange software. The two practical lectures of processing in Orange and ArcGIS Pro software are shown to the teachers and students of geoinformatics community as examples of machine learning tasks. They are cluster analyses carried out with the density‐based spatial clustering of applications with noise method, first for the location of cafés in Olomouc town and the second example concerns finding similar European towns based on their land use arrangement, using the neural network and following hierarchical clustering. Both examples could provide inspiration for the geoinformatics community to adopt Orange data mining software. |
|---|---|
| AbstractList | The study presents the advantages of, and possible uses for, Orange software for data mining in combination with processing spatial data by ArcGIS Pro software in education. To present suitability of Orange software in education, the scientific method of Physics of Notation by D. Moody is used to evaluate the Orange software's visual vocabulary. All nine principles are applied in the presented evaluation. As a result, a high level of effective cognition of the Orange visual vocabulary is proven by this method. Namely, the semantic transparency of visual vocabulary, thanks the explicit inner icons, is semantically immediate. Also, principle of dual coding is used properly by automatic text labels of graphical symbols with the opportunity to rename labels. Renaming is also a way to ensure the partial overloading of symbols found by the first principle of semiotic clarity. The principle of cognitive interaction is partially fulfilled by automatically reorganizing connector lines between symbols to reduce the crossing of lines. A high level of effective cognition is beneficial for students. The evaluation of the visual notation of Orange software is presented to inform teachers and the geoinformatics community of the highly effective cognitive aspects of Orange software. The two practical lectures of processing in Orange and ArcGIS Pro software are shown to the teachers and students of geoinformatics community as examples of machine learning tasks. They are cluster analyses carried out with the density‐based spatial clustering of applications with noise method, first for the location of cafés in Olomouc town and the second example concerns finding similar European towns based on their land use arrangement, using the neural network and following hierarchical clustering. Both examples could provide inspiration for the geoinformatics community to adopt Orange data mining software. |
| Author | Dobesova, Zdena |
| Author_xml | – sequence: 1 givenname: Zdena orcidid: 0000-0002-3989-5951 surname: Dobesova fullname: Dobesova, Zdena email: zdena.dobesova@upol.cz organization: Palacký University Olomouc |
| BookMark | eNp9kMtOwzAQRS1UJNrCgj-wxIpFWj8Sx15WVXlIlbqBdeQ4k-KS2MVOKf170pYVEqxmNDr3jnRGaOC8A4RuKZlQQtjUaJgwlvPsAg0pUSohWcoGx13QhOc5v0KjGDeEECW4GqJ28ambne6sd9jXeBW0WwOudKdxa511axx93e11AKxdheFLt9sGIq59wA2YbheOTKvNm3XQX3Q4hTod3yO2Dq_BW9fDbf_CxGt0Wesmws3PHKPXh8XL_ClZrh6f57NlYjhnWcJUmpPKsFwakUmh05IIxiSUqZKkJFmpVCmFKDOVZ6koQaSmZIKlQKkBTis-Rnfn3m3wHzuIXbHxu-D6lwUnkkhJFRM9dX-mTPAxBqiLbbCtDoeCkuJos-htFiebPTv9xRrbnbR1Qdvmv8TeNnD4u7qYzxbnxDdfx4gy |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3429241 crossref_primary_10_1021_acs_jafc_5c05585 crossref_primary_10_3390_foods14152585 crossref_primary_10_1080_10548408_2025_2502420 crossref_primary_10_1016_j_applthermaleng_2024_125135 crossref_primary_10_3389_fbuil_2025_1566784 crossref_primary_10_1002_cae_22808 crossref_primary_10_1007_s40497_025_00437_4 crossref_primary_10_1007_s11356_025_36033_y crossref_primary_10_1016_j_foodres_2025_116788 crossref_primary_10_1016_j_scitotenv_2025_178411 crossref_primary_10_1007_s10706_025_03096_0 crossref_primary_10_1007_s40098_025_01289_1 |
| Cites_doi | 10.3390/s19061407 10.1007/978-3-030-30329-7_31 10.1371/journal.pcbi.1008671 10.1145/1150402.1150531 10.1038/s41467-019-12397-x 10.1109/VLHCC.2009.5295275 10.3390/ijgi9060406 10.1080/01621459.1963.10500845 10.1109/TSE.2009.67 10.1145/1810295.1810442 10.1007/978-0-387-21606-5 10.1037/h0043158 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by Wiley Periodicals LLC. 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. published by Wiley Periodicals LLC. – notice: 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/cae.22735 |
| DatabaseName | Wiley Online Library Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Education |
| EISSN | 1099-0542 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cae_22735 CAE22735 |
| Genre | researchArticle |
| GroupedDBID | .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAHSB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 UCJ W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3325-29470dc278c6586a4b06228eb4980b05b99b866b597546be64cb2624e11ce31d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001187621600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1061-3773 |
| IngestDate | Fri Sep 26 22:12:50 EDT 2025 Sat Nov 29 07:27:04 EST 2025 Tue Nov 18 22:06:12 EST 2025 Wed Jan 22 17:18:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3325-29470dc278c6586a4b06228eb4980b05b99b866b597546be64cb2624e11ce31d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3989-5951 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcae.22735 |
| PQID | 3080881926 |
| PQPubID | 2045172 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_3080881926 crossref_primary_10_1002_cae_22735 crossref_citationtrail_10_1002_cae_22735 wiley_primary_10_1002_cae_22735_CAE22735 |
| PublicationCentury | 2000 |
| PublicationDate | July 2024 2024-07-00 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computer applications in engineering education |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1963; 58 2009; 35 2013; 14 2023 2012 2001 2022 1956; 63 2010 2021 2019; 10 2020 2021; 17 2020; 9 2009 2019 2008 1996 2019; 19 2006 2016 2013 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 Šarmanová J. (e_1_2_7_28_1) 2012 Avison D. E. (e_1_2_7_2_1) 2006 e_1_2_7_29_1 Dobešová Z. (e_1_2_7_10_1) 2022 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 Ilenič N. (e_1_2_7_16_1) 2016 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 Pretnar A. (e_1_2_7_27_1) 2022 Paivio A. (e_1_2_7_26_1) 2008 Demšar J. (e_1_2_7_4_1) 2013; 14 |
| References_xml | – year: 2001 – volume: 63 start-page: 81 year: 1956 end-page: 97 article-title: The magical number seven, plus or minus two: some limits on our capacity for processing information publication-title: Psychol. Rev. – year: 2022 article-title: Orange in classroom, pt. 2 publication-title: Blog Orange – start-page: 935 year: 2006 end-page: 940 – year: 2021 – volume: 58 start-page: 236 year: 1963 end-page: 244 article-title: Hierarchical grouping to optimize an objective function publication-title: J. Am. Stat. Assoc. – start-page: 485 year: 2010 end-page: 486 – year: 2016 – volume: 14 start-page: 2349 year: 2013 end-page: 2353 article-title: Orange: data mining toolbox in Python publication-title: J. Mach. Learn. Res. – volume: 17 year: 2021 article-title: Hands‐on training about overfitting publication-title: PLoS Comput. Biol. – start-page: 151 year: 2009 end-page: 154 – year: 2012 – start-page: 58 year: 2006 end-page: 61 – volume: 10 start-page: 4551 year: 2019 article-title: Democratized image analytics by visual programming through integration of deep models and small‐scale machine learning publication-title: Nat. Commun. – start-page: 226 year: 1996 end-page: 231 – year: 2008 – year: 2006 – volume: 9 year: 2020 article-title: Experiment in finding look‐alike European cities using urban Atlas data publication-title: ISPRS International Journal of Geo‐Information – year: 2022 – start-page: 341 year: 2019 end-page: 348 – year: 2020 – year: 2023 – volume: 35 start-page: 756 year: 2009 end-page: 779 article-title: The physics of notations: toward a scientific basis for constructing visual notations in software engineering publication-title: IEEE Transact. Softw. Eng. – volume: 19 start-page: 1407 year: 2019 article-title: Using the IBM SPSS SW tool with wavelet transformation for CO prediction within IoT in smart home care publication-title: Sensors – year: 2019 – year: 2013 – ident: e_1_2_7_30_1 doi: 10.3390/s19061407 – ident: e_1_2_7_8_1 doi: 10.1007/978-3-030-30329-7_31 – ident: e_1_2_7_29_1 – ident: e_1_2_7_14_1 – volume: 14 start-page: 2349 year: 2013 ident: e_1_2_7_4_1 article-title: Orange: data mining toolbox in Python publication-title: J. Mach. Learn. Res. – ident: e_1_2_7_3_1 – ident: e_1_2_7_5_1 doi: 10.1371/journal.pcbi.1008671 – ident: e_1_2_7_11_1 – ident: e_1_2_7_25_1 – ident: e_1_2_7_19_1 doi: 10.1145/1150402.1150531 – ident: e_1_2_7_13_1 doi: 10.1038/s41467-019-12397-x – ident: e_1_2_7_17_1 – ident: e_1_2_7_21_1 doi: 10.1109/VLHCC.2009.5295275 – volume-title: Methods of data analysis year: 2012 ident: e_1_2_7_28_1 – ident: e_1_2_7_7_1 – ident: e_1_2_7_9_1 doi: 10.3390/ijgi9060406 – year: 2022 ident: e_1_2_7_27_1 article-title: Orange in classroom, pt. 2 publication-title: Blog Orange – ident: e_1_2_7_31_1 doi: 10.1080/01621459.1963.10500845 – volume-title: ORANGE, Manual for Data Mining course practise year: 2022 ident: e_1_2_7_10_1 – ident: e_1_2_7_22_1 doi: 10.1109/TSE.2009.67 – ident: e_1_2_7_23_1 doi: 10.1145/1810295.1810442 – ident: e_1_2_7_24_1 – ident: e_1_2_7_32_1 – volume-title: Mental representations: a dual coding approach year: 2008 ident: e_1_2_7_26_1 – volume-title: Painter by numbers competition. 1st Place Winner's Interview year: 2016 ident: e_1_2_7_16_1 – ident: e_1_2_7_15_1 doi: 10.1007/978-0-387-21606-5 – ident: e_1_2_7_18_1 – ident: e_1_2_7_6_1 – volume-title: Information Systems Development: Methodologies, Techniques and Tools year: 2006 ident: e_1_2_7_2_1 – ident: e_1_2_7_20_1 doi: 10.1037/h0043158 – ident: e_1_2_7_12_1 |
| SSID | ssj0009639 |
| Score | 2.4072955 |
| Snippet | The study presents the advantages of, and possible uses for, Orange software for data mining in combination with processing spatial data by ArcGIS Pro software... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Cluster analysis Clustering Cognition Cognition & reasoning Cognitive tasks Data mining Education First principles Geographic information systems Icons Labels Land use lecturing Machine learning Neural networks Software Spatial data Students Symbols Teachers Visual aspects visual notation visual programming language Visual tasks |
| Title | Evaluation of Orange data mining software and examples for lecturing machine learning tasks in geoinformatics |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcae.22735 https://www.proquest.com/docview/3080881926 |
| Volume | 32 |
| WOSCitedRecordID | wos001187621600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1099-0542 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009639 issn: 1061-3773 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LT9wwEIdHvA7tgWdRecpCHHoJJBPbScQJwa44IEAIKm6RH7MIwWarzRb487Gd7C6VioTELYeJE9kez8-J5xuA_cRqLo3gkRBo_W9G63wuo0jGqHNNbpaELP7f59nFRX53V1zNwNE4F6bhQ0w-uHnPCOu1d3Cl68MpNNQoOkAXfMUszPukKrfzmj-97t6eT5m7MhQS85se50dZOgYLxXg4ufnfcDTVmO-Vagg13aUvveQyLLYKkx03U2IFZqhahe_vuINr0O9MGN9s0GOXQ59hwPxhUdYPBSNY7VbnFzUkpirL6FV5hnDNnMBlIeXEN8P64RwmsbbwxD0bqfqxZg8Vu6dBC2T1EOgfcNvt3JycRW3dhcikKYoIC57F1mCWG6dPpOI6log5aV7ksY6FLgqdS6ndXkRwqUlyo1EipyQxlCY2XYe5alDRT2BW9NAqJHLKgBeKcm4FUtqT1nPvk2IDfo27vzQtlNzXxngqG5wylq4Hy9CDG7A3Mf3TkDj-Z7Q9HsOydca6TJ0qzj34TbrHhdH6uIHy5LgTLjY_b7oF39BJneYQ7zbMjYZ_aQcWzPPooR7uwizyq912br4BSsXlYQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9swEMdPjCGNPWxjMI2NgTXxsJfQ5GI7ibQXhFoV0XV9KIi3KLavCLGmKOl-_PmznaQFaZMm7S0PjhPZPt_Xyd3nAI4jo7jUggdCoHG_GY21uYQCGaJKFdlV4rP4r0bJeJxeX2eTDfjc5cI0fIjVBzdnGX6_dgbuPkj31tRQXdAJWu8rnsBTbr2SC-hDPlkjd6WvI-bOPNaMkrjjCoXYW9362ButJeZDoeo9zeDl_73jK3jRKkx22iyJHdig8jU8f8Ad3IV5f8X4ZosZ-1q5DAPmgkXZ3BeMYLXdnX8WFbGiNIx-FY4hXDMrcJlPOXHdsLmPwyTWFp64YcuivqvZbcluaNECWR0Eeg8uB_3p2TBo6y4EOo5RBJjxJDQak1RbfSILrkKJmJLiWRqqUKgsU6mUyp5FBJeKJNcKJXKKIk1xZOI3sFkuSnoLzIgZmgKJrDLgWUEpNwIpnknjuPdRtg-fuvHPdQsld7UxvuUNThlzO4K5H8F9-Lhqet-QOP7U6KCbxLw1xjqPrSpOHfhN2sf56fp7B_nZad9fvPv3pkfwbDj9MspH5-OL97CNVvY0Ab0HsLmsvtMH2NI_lrd1degX6G9l3ubf |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPY0MIHtiAITa6zUI88BKaXGwnkXipSqshqtIHmPYWxfa1qramVVN-_PmznbQd0iZN2lseLk5k-3xfJ77PAXyMjOJSCx4Igcb9ZjTW5xIKZIgqVWRnic_ivxgkw2F6eZmNduDLOhem5kNsPrg5z_DrtXNwWphxe0sN1QV9Rht9xRPY4yLxbol8tEXuSl9HzO15rBsl8ZorFGJ7c-v_0WgrMW8LVR9p-vuPe8cDeNkoTNapp8Qr2KHyNby4xR18A7PehvHN5mP2Y-kyDJg7LMpmvmAEq-zq_LdYEitKw-hf4RjCFbMCl_mUE9cMm_lzmMSawhMTtiqqq4pNSzaheQNkdRDoQ_jV7_3sngdN3YVAxzGKADOehEZjkmqrT2TBVSgRU1I8S0MVCpVlKpVS2b2I4FKR5FqhRE5RpCmOTPwWdst5Se-AGTFGUyCRVQY8KyjlRiDFY2kc9z7KjuDTuv9z3UDJXW2M67zGKWNuezD3PXgEHzami5rEcZdRaz2IeeOMVR5bVZw68Ju0j_PDdX8DebfT8xfHDzc9g2ejr_188G34_T08R6t66vO8LdhdLX_TCTzVf1bTannq5-cNFRzmWg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Orange+data+mining+software+and+examples+for+lecturing+machine+learning+tasks+in+geoinformatics&rft.jtitle=Computer+applications+in+engineering+education&rft.au=Dobesova%2C+Zdena&rft.date=2024-07-01&rft.issn=1061-3773&rft.eissn=1099-0542&rft.volume=32&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcae.22735&rft.externalDBID=10.1002%252Fcae.22735&rft.externalDocID=CAE22735 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-3773&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-3773&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-3773&client=summon |