Machine intelligence for chemical reaction space

Discovering new reactions, optimizing their performance, and extending the synthetically accessible chemical space are critical drivers for major technological advances and more sustainable processes. The current wave of machine intelligence is revolutionizing all data‐rich disciplines. Machine inte...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wiley interdisciplinary reviews. Computational molecular science Ročník 12; číslo 5; s. e1604 - n/a
Hlavní autoři: Schwaller, Philippe, Vaucher, Alain C., Laplaza, Ruben, Bunne, Charlotte, Krause, Andreas, Corminboeuf, Clemence, Laino, Teodoro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA Wiley Periodicals, Inc 01.09.2022
Wiley Subscription Services, Inc
Témata:
ISSN:1759-0876, 1759-0884
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Discovering new reactions, optimizing their performance, and extending the synthetically accessible chemical space are critical drivers for major technological advances and more sustainable processes. The current wave of machine intelligence is revolutionizing all data‐rich disciplines. Machine intelligence has emerged as a potential game‐changer for chemical reaction space exploration and the synthesis of novel molecules and materials. Herein, we will address the recent development of data‐driven technologies for chemical reaction tasks, including forward reaction prediction, retrosynthesis, reaction optimization, catalysts design, inference of experimental procedures, and reaction classification. Accurate predictions of chemical reactivity are changing the R&D processes and, at the same time, promoting an accelerated discovery scheme both in academia and across chemical and pharmaceutical industries. This work will help to clarify the key contributions in the fields and the open challenges that remain to be addressed. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Data Science > Computer Algorithms and Programming Data Science > Chemoinformatics Machine intelligence has emerged in the chemical reaction space and enables chemists to accelerate the synthesis and discovery of novel molecules.
AbstractList Discovering new reactions, optimizing their performance, and extending the synthetically accessible chemical space are critical drivers for major technological advances and more sustainable processes. The current wave of machine intelligence is revolutionizing all data‐rich disciplines. Machine intelligence has emerged as a potential game‐changer for chemical reaction space exploration and the synthesis of novel molecules and materials. Herein, we will address the recent development of data‐driven technologies for chemical reaction tasks, including forward reaction prediction, retrosynthesis, reaction optimization, catalysts design, inference of experimental procedures, and reaction classification. Accurate predictions of chemical reactivity are changing the R&D processes and, at the same time, promoting an accelerated discovery scheme both in academia and across chemical and pharmaceutical industries. This work will help to clarify the key contributions in the fields and the open challenges that remain to be addressed.This article is categorized under:Data Science > Artificial Intelligence/Machine LearningData Science > Computer Algorithms and ProgrammingData Science > Chemoinformatics
Discovering new reactions, optimizing their performance, and extending the synthetically accessible chemical space are critical drivers for major technological advances and more sustainable processes. The current wave of machine intelligence is revolutionizing all data‐rich disciplines. Machine intelligence has emerged as a potential game‐changer for chemical reaction space exploration and the synthesis of novel molecules and materials. Herein, we will address the recent development of data‐driven technologies for chemical reaction tasks, including forward reaction prediction, retrosynthesis, reaction optimization, catalysts design, inference of experimental procedures, and reaction classification. Accurate predictions of chemical reactivity are changing the R&D processes and, at the same time, promoting an accelerated discovery scheme both in academia and across chemical and pharmaceutical industries. This work will help to clarify the key contributions in the fields and the open challenges that remain to be addressed. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Data Science > Computer Algorithms and Programming Data Science > Chemoinformatics Machine intelligence has emerged in the chemical reaction space and enables chemists to accelerate the synthesis and discovery of novel molecules.
Discovering new reactions, optimizing their performance, and extending the synthetically accessible chemical space are critical drivers for major technological advances and more sustainable processes. The current wave of machine intelligence is revolutionizing all data‐rich disciplines. Machine intelligence has emerged as a potential game‐changer for chemical reaction space exploration and the synthesis of novel molecules and materials. Herein, we will address the recent development of data‐driven technologies for chemical reaction tasks, including forward reaction prediction, retrosynthesis, reaction optimization, catalysts design, inference of experimental procedures, and reaction classification. Accurate predictions of chemical reactivity are changing the R&D processes and, at the same time, promoting an accelerated discovery scheme both in academia and across chemical and pharmaceutical industries. This work will help to clarify the key contributions in the fields and the open challenges that remain to be addressed. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Data Science > Computer Algorithms and Programming Data Science > Chemoinformatics
Author Laino, Teodoro
Vaucher, Alain C.
Laplaza, Ruben
Corminboeuf, Clemence
Krause, Andreas
Bunne, Charlotte
Schwaller, Philippe
Author_xml – sequence: 1
  givenname: Philippe
  orcidid: 0000-0003-3046-6576
  surname: Schwaller
  fullname: Schwaller, Philippe
  email: philippe.schwaller@epfl.ch
  organization: National Center for Competence in Research‐Catalysis (NCCR‐Catalysis)
– sequence: 2
  givenname: Alain C.
  orcidid: 0000-0001-7554-0288
  surname: Vaucher
  fullname: Vaucher, Alain C.
  organization: National Center for Competence in Research‐Catalysis (NCCR‐Catalysis)
– sequence: 3
  givenname: Ruben
  orcidid: 0000-0001-6315-4398
  surname: Laplaza
  fullname: Laplaza, Ruben
  organization: Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 4
  givenname: Charlotte
  orcidid: 0000-0003-1431-103X
  surname: Bunne
  fullname: Bunne, Charlotte
  organization: ETH Zurich
– sequence: 5
  givenname: Andreas
  orcidid: 0000-0001-7260-9673
  surname: Krause
  fullname: Krause, Andreas
  organization: ETH Zurich
– sequence: 6
  givenname: Clemence
  orcidid: 0000-0001-7993-2879
  surname: Corminboeuf
  fullname: Corminboeuf, Clemence
  organization: Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 7
  givenname: Teodoro
  orcidid: 0000-0001-8717-0456
  surname: Laino
  fullname: Laino, Teodoro
  organization: National Center for Competence in Research‐Catalysis (NCCR‐Catalysis)
BookMark eNp9kE9LAzEQxYNUsNYe_AYLnjxsm0my2-QoxX_Q4kHFY8hmZ23KNluTLaXf3l0rHgSdy8zA781j3jkZ-MYjIZdAJ0Apm-7tJk4gp-KEDGGWqZRKKQY_8yw_I-MY17QroYBxGBK6NHblPCbOt1jX7h29xaRqQmJXuHHW1ElAY1vX-CRujcULclqZOuL4u4_I693ty_whXTzdP85vFqnlnIm05LSkGVhpMoRSVUqhFKZUllnkpgDa7VXJCkYzkcvOweQFVTlHJoFnvOAjcnW8uw3Nxw5jq9fNLvjOUrMZQA5SiKyjro-UDU2MASu9DW5jwkED1X0mus9E95l07PQXa11r-s_aYFz9n2Lvajz8fVq_zZfPX4pPMOh0Yw
CitedBy_id crossref_primary_10_1016_j_cdc_2023_101040
crossref_primary_10_1021_jacsau_5c00289
crossref_primary_10_1021_jacs_3c04783
crossref_primary_10_1038_s42256_024_00832_8
crossref_primary_10_1186_s13321_025_00954_0
crossref_primary_10_1021_acs_chemrev_4c00893
crossref_primary_10_1360_SSC_2025_0111
crossref_primary_10_1021_acs_jcim_4c02041
crossref_primary_10_1021_jacs_4c00338
crossref_primary_10_1038_s41586_025_09426_9
crossref_primary_10_1016_j_sbi_2023_102542
crossref_primary_10_1186_s13321_024_00944_8
crossref_primary_10_1021_jacs_5c09249
crossref_primary_10_1186_s13321_023_00732_w
crossref_primary_10_1186_s13321_023_00714_y
crossref_primary_10_1021_acscentsci_3c01403
crossref_primary_10_1038_s42004_024_01219_x
crossref_primary_10_1186_s13321_024_00815_2
crossref_primary_10_1016_j_jocs_2023_102173
crossref_primary_10_1002_aic_18092
crossref_primary_10_1186_s13321_025_00987_5
crossref_primary_10_1039_D3SC01604H
crossref_primary_10_1186_s13321_024_00910_4
crossref_primary_10_1021_acs_accounts_5c00155
crossref_primary_10_1186_s13321_024_00879_0
crossref_primary_10_1016_j_ailsci_2025_100130
crossref_primary_10_1186_s13321_023_00784_y
crossref_primary_10_1016_j_mtcomm_2025_113525
crossref_primary_10_1021_acscentsci_3c01638
crossref_primary_10_1038_s44160_024_00497_6
crossref_primary_10_1002_chem_202202834
Cites_doi 10.1007/978-3-030-30493-5_78
10.1021/acs.jcim.1c01400
10.1016/j.chempr.2018.02.002
10.1038/s41557-020-0527-z
10.1007/BFb0051317
10.1126/science.197.4308.1041
10.1039/D0SC04823B
10.1038/s41467-021-22951-1
10.1039/C9ME00039A
10.1021/acscentsci.9b00055
10.33774/chemrxiv-2021-mc870
10.1126/science.3838594
10.1038/nature25978
10.1021/acscentsci.7b00572
10.1142/S0218213011000140
10.1039/C9SC03666K
10.1186/s13321-018-0323-6
10.1021/acs.jcim.0c00448
10.1039/C9SC05704H
10.1002/anie.201806920
10.1021/ci960109j
10.1126/science.aax1566
10.1021/acs.accounts.1c00153
10.1109/ACCESS.2021.3083838
10.1038/s41467-021-21895-w
10.1039/D0CP04670A
10.26434/chemrxiv.13286741.v1
10.1038/nchem.1243
10.1007/3-540-07165-2_55
10.1021/ci5006614
10.1016/j.cpc.2016.02.013
10.1039/D0RE00071J
10.1039/D1SC00482D
10.1002/9783527618279.ch12
10.1021/acs.accounts.0c00857
10.1039/D0SC04896H
10.1038/s41586-021-03213-y
10.1021/ci00023a005
10.1002/minf.201400052
10.1021/acs.accounts.0c00826
10.1021/acs.jcim.9b00313
10.1126/science.aau5631
10.1038/s41467-021-24525-7
10.1021/ci100050t
10.1038/s41467-020-17266-6
10.1093/mind/LIX.236.433
10.1126/science.aar5169
10.1351/pac199062101921
10.1016/j.apcatb.2019.118257
10.1088/2632-2153/abc81d
10.1063/1.5126701
10.1126/science.aat8763
10.1021/jacs.8b01523
10.1002/anie.201506101
10.1021/jacsau.1c00246
10.1021/bk-1977-0061.ch005
10.1021/ja00757a020
10.1021/ci00052a009
10.1038/s41586-020-2442-2
10.1140/epjb/s10051-021-00233-5
10.1002/aic.17190
10.1002/chem.201605499
10.1038/s41586-018-0307-8
10.1039/C8CP03141J
10.1023/A:1008306431147
10.1021/acscentsci.6b00219
10.1039/D0SC05078D
10.1021/ja00754a026
10.1021/acs.jcim.0c01074
10.1002/cmtd.202000051
10.1126/science.1259203
10.1016/j.drudis.2018.02.014
10.1126/science.aat8603
10.1109/TNN.1998.712192
10.1016/j.cej.2021.129845
10.1039/C9RA08535A
10.1021/acscentsci.8b00307
10.1039/D0RE00232A
10.1021/acscentsci.7b00303
10.1021/acs.jcim.9b00537
10.1021/acs.jcim.1c00537
10.1039/C9CC05122H
10.1073/pnas.1215251110
10.1351/pac196714010019
10.1021/acscentsci.8b00357
10.1021/ci00057a005
10.1002/ange.202000959
10.1021/ja00822a020
10.1021/acs.jcim.0c00320
10.1038/s42256-020-00284-w
10.1038/s42256-021-00319-w
10.1126/science.aap9112
10.1039/C9RE00348G
10.1039/b104620a
10.1039/C8SC04228D
10.1039/C7ME00107J
10.1021/acs.jcim.0c00833
10.1007/3-540-16904-0_14
10.1063/1.5035183
10.1039/D0CP04748A
10.1109/TIT.2011.2182033
10.1038/s41586-020-2855-y
10.1038/s41467-020-18671-7
10.1039/D0SC04074F
10.1021/acscentsci.7b00355
10.1021/ci00007a012
10.1021/acs.jcim.0c00174
10.1038/s41586-020-2242-8
10.1021/acscentsci.9b00576
10.1609/aaai.v35i1.16131
10.1021/acscatal.0c00774
10.1002/wcms.1140
10.1039/C8SC01949E
10.1038/s41597-020-0460-4
10.1002/9780470316887
10.1021/acs.jcim.0c01032
10.1126/sciadv.abe4166
10.1038/s42256-019-0067-7
10.1039/D0TA06203K
10.1021/acs.jcim.9b00237
10.1002/recl.19921110605
10.1021/acs.jcim.6b00564
10.1126/sciadv.abg3338
10.26434/chemrxiv.11869692
10.1021/acs.jcim.9b00949
10.1039/D0SC04184J
10.1088/2632-2153/aba822
10.1021/acs.jcim.0c01234
10.1038/s41467-020-19266-y
10.1039/D0SC00445F
10.1021/acs.jpclett.0c00500
10.1021/acs.jpclett.8b00759
10.1038/nature24270
10.1039/C8SC02339E
10.1021/ci3003039
10.1021/jacs.1c09820
10.1039/C9SC04944D
10.1088/2632-2153/aba947
10.1007/BFb0050147
10.26434/chemrxiv.11659563.v1
10.1016/j.chempr.2020.02.017
10.1021/ed060p192
10.1039/D0SC06222G
10.1021/acs.accounts.0c00714
10.1021/acscentsci.7b00064
10.1145/3292500.3330958
10.1021/acs.jcim.1c00699
10.1039/D1CC00586C
10.1039/D0CC02657C
10.1021/ci00062a008
10.1609/aaai.v26i1.8331
10.1063/5.0059742
10.1021/ci200207y
10.1021/acscentsci.7b00512
10.1021/acscatal.0c03472
10.1039/D1SC02362D
10.1002/anie.199526131
10.1021/ci00068a023
10.1021/acs.jcim.0c00403
10.1021/acs.jmedchem.9b01919
10.1039/C9RE00213H
10.1007/s10562-019-02705-x
ContentType Journal Article
Copyright 2022 IBM Research Europe. published by Wiley Periodicals LLC.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 IBM Research Europe. published by Wiley Periodicals LLC.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7TN
7UA
C1K
F1W
H96
JQ2
L.G
DOI 10.1002/wcms.1604
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Oceanic Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-0884
EndPage n/a
ExternalDocumentID 10_1002_wcms_1604
WCMS1604
Genre reviewArticle
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  funderid: 180544
GroupedDBID 05W
0R~
1OC
1VH
24P
31~
33P
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-A
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
WYJ
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
LH4
7QH
7TN
7UA
C1K
F1W
H96
JQ2
L.G
ID FETCH-LOGICAL-c3324-d30d051c8a5e1d9f99e84ad9c2ce3ab109e8fd2b205468eaca6b0963e281353b3
IEDL.DBID 24P
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000765648800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1759-0876
IngestDate Fri Jul 25 10:30:19 EDT 2025
Sat Nov 29 02:23:39 EST 2025
Tue Nov 18 22:04:14 EST 2025
Wed Jan 22 16:22:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3324-d30d051c8a5e1d9f99e84ad9c2ce3ab109e8fd2b205468eaca6b0963e281353b3
Notes Funding information
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Number: 180544
Edited by
Raghavan Sunoj, Associate Editor
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7260-9673
0000-0001-7993-2879
0000-0003-1431-103X
0000-0003-3046-6576
0000-0001-6315-4398
0000-0001-8717-0456
0000-0001-7554-0288
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1604
PQID 2711618445
PQPubID 2034594
PageCount 25
ParticipantIDs proquest_journals_2711618445
crossref_primary_10_1002_wcms_1604
crossref_citationtrail_10_1002_wcms_1604
wiley_primary_10_1002_wcms_1604_WCMS1604
PublicationCentury 2000
PublicationDate September/October 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September/October 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Wiley interdisciplinary reviews. Computational molecular science
PublicationYear 2022
Publisher Wiley Periodicals, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Periodicals, Inc
– name: Wiley Subscription Services, Inc
References 2013; 3
2021; 67
2019; 11
2019; 10
1995; 35
2014; 27
1973
2020; 12
2020; 11
2020; 10
2017; 550
1978
1977
2018; 9
1971; 93
2018; 3
2018; 4
1992; 111
1950; LIX
1967; 14
2021; 155
2013; 110
1998; 13
1990; 30
2019; 4
2019; 5
2021; 420
2019; 32
2020; 263
2019; 1
2015; 55
1998
1994
2016; 203
2020; 33
2021; 143
2018; 23
1992; 32
2018; 20
2021; 57
2021; 54
2016; 2
2018; 359
2020; 152
1997; 37
1988; 28
1986; 26
2020; 22
2021; 61
2014; 33
1977; 197
2010; 50
2018; 362
2017; 3
2018; 360
1974; 96
2020; 63
2019; 55
2020; 61
2020; 60
2019; 59
2019; 58
2020; 56
2012; 58
2019; 365
1996; 34
2012; 52
2019; 363
2020; 8
2020; 7
2020; 6
2020; 5
2019; 60
2020; 1
2020; 132
1972; 94
2011; 20
2021; 590
1983; 60
2005; 34
2021; 9
2021; 7
2021; 3
2018; 140
2021; 2
2020; 581
2018; 149
2020; 583
2017; 23
2020; 588
2019; 149
2008
2006
1985; 228
2021; 1
2021; 94
2016; 56
2016; 55
1989; 29
1990; 62
2021; 13
2014; 347
2021; 12
2021
2018; 559
2020
2018; 555
2011; 51
2017
2014
2012; 4
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_158_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
Goodfellow I (e_1_2_10_185_1) 2014
e_1_2_10_147_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_41_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
Shibukawa R (e_1_2_10_121_1) 2020; 12
e_1_2_10_200_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
Lin A (e_1_2_10_38_1) 2020
e_1_2_10_26_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_91_1
Ucak UV (e_1_2_10_101_1) 2021; 13
e_1_2_10_4_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_30_1
e_1_2_10_201_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_164_1
e_1_2_10_43_1
Probst D (e_1_2_10_206_1) 2020; 12
e_1_2_10_20_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_31_1
e_1_2_10_202_1
e_1_2_10_188_1
Sutskever I (e_1_2_10_95_1) 2014
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_21_1
e_1_2_10_44_1
Rasmussen CE (e_1_2_10_175_1) 2006
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_32_1
e_1_2_10_203_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
Bradshaw J (e_1_2_10_193_1) 2020
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
Probst D (e_1_2_10_93_1) 2021; 13
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_204_1
Genheden S (e_1_2_10_111_1) 2020; 12
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_68_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_118_1
e_1_2_10_194_1
Jin W (e_1_2_10_23_1) 2017
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
Ree N (e_1_2_10_148_1) 2021; 13
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_205_1
Delannée V (e_1_2_10_51_1) 2020; 12
Dai H (e_1_2_10_53_1) 2019; 32
Yabo Dan Y (e_1_2_10_187_1) 2020; 6
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_108_1
e_1_2_10_157_1
e_1_2_10_73_1
e_1_2_10_172_1
Lee J (e_1_2_10_198_1) 2020; 5
e_1_2_10_96_1
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 12
  start-page: 1
  year: 2020
  end-page: 13
  article-title: ReactionCode: format for reaction searching, analysis, classification, transform, and encoding/decoding
  publication-title: J Chem
– volume: 62
  start-page: 1921
  year: 1990
  end-page: 32
  article-title: Cameo: a program for the logical prediction of the products of organic reactions
  publication-title: Pure Appl Chem
– volume: 8
  start-page: 17507
  year: 2020
  end-page: 15
  article-title: A machine learning scheme for the catalytic activity of alloys with intrinsic descriptors
  publication-title: J Mater Chem A
– start-page: 2607
  year: 2017
  end-page: 16
– volume: 55
  start-page: 39
  year: 2015
  end-page: 53
  article-title: Development of a novel fingerprint for chemical reactions and its application to large‐scale reaction classification and similarity
  publication-title: J Chem Inf Model
– volume: 11
  start-page: 3316
  year: 2020
  end-page: 25
  article-title: Predicting retrosynthetic pathways using transformer‐based models and a hyper‐graph exploration strategy
  publication-title: Chem Sci
– volume: 60
  start-page: 4474
  year: 2020
  end-page: 86
  article-title: Bayesian algorithm for retrosynthesis
  publication-title: J Chem Inf Model
– start-page: 348
  year: 2008
  end-page: 90
– volume: 54
  start-page: 1094
  year: 2021
  end-page: 106
  article-title: Chemist ex machina: advanced synthesis planning by computers
  publication-title: Acc Chem Res
– volume: 365
  issue: 6453
  year: 2019
  article-title: A robotic platform for flow synthesis of organic compounds informed by AI planning
  publication-title: Science
– volume: 9
  start-page: 7069
  year: 2018
  end-page: 77
  article-title: Machine learning meets volcano plots: computational discovery of cross‐coupling catalysts
  publication-title: Chem Sci
– volume: 4
  start-page: 1134
  year: 2018
  end-page: 45
  article-title: Phoenics: a bayesian optimizer for chemistry
  publication-title: ACS Cent Sci
– volume: 58
  start-page: 4515
  year: 2019
  end-page: 9
  article-title: Prediction of major regio‐, site‐, and diastereoisomers in diels–alder reactions by using machine‐learning: the importance of physically meaningful descriptors
  publication-title: Angew Chem Int Ed
– volume: 12
  start-page: 2198
  year: 2021
  end-page: 208
  article-title: Regio‐selectivity prediction with a machine‐learned reaction representation and on‐the‐fly quantum mechanical descriptors
  publication-title: Chem Sci
– volume: 581
  start-page: 178
  year: 2020
  end-page: 83
  article-title: Accelerated discovery of CO2 electrocatalysts using active machine learning
  publication-title: Nature
– year: 2020
  publication-title: Theor Comp Chem
– volume: 35
  start-page: 34
  year: 1995
  end-page: 44
  article-title: Sophia, a knowledge base‐guided reaction prediction system‐utilization of a knowledge base derived from a reaction database
  publication-title: J Chem Inf Comput Sci
– volume: 26
  start-page: 205
  year: 1986
  end-page: 12
  article-title: Description of organic reactions based on imaginary transition structures. 1. Introduction of new concepts
  publication-title: J Chem Inf Comput Sci
– year: 1998
– volume: 12
  start-page: 1163
  year: 2021
  end-page: 75
  article-title: Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies
  publication-title: Chem Sci
– volume: 9
  start-page: 85071
  year: 2021
  end-page: 83
  article-title: When SMILES smiles, practicality judgment and yield prediction of chemical reaction via deep chemical language processing
  publication-title: IEEE Access
– volume: 13
  start-page: 1
  year: 2021
  end-page: 15
  article-title: Substructure‐based neural machine translation for retrosynthetic prediction
  publication-title: J Chem
– volume: 60
  start-page: 5658
  year: 2020
  end-page: 66
  article-title: Optimol: optimization of binding affinities in chemical space for drug discovery
  publication-title: J Chem Inf Model
– volume: 550
  start-page: 354
  year: 2017
  end-page: 9
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
– volume: 13
  start-page: 1
  issue: 1
  year: 2021
  end-page: 11
  article-title: Biocatalysed synthesis planning using data‐driven learning
  publication-title: Nat Commun
– volume: 12
  start-page: 6879
  year: 2021
  end-page: 89
  article-title: Reaction‐based machine learning representations for predicting the enantioselectivity of organocatalysts
  publication-title: Chem Sci
– volume: 61
  start-page: 156
  year: 2021
  end-page: 66
  article-title: Multilabel classification models for the prediction of cross‐coupling reaction conditions
  publication-title: J Chem Inf Model
– volume: 13
  start-page: 1
  year: 2021
  end-page: 9
  article-title: RegioSQM20: improved prediction of the regioselectivity of electrophilic aromatic substitutions
  publication-title: J Chem
– volume: 3
  start-page: 1237
  year: 2017
  end-page: 45
  article-title: Computer‐assisted retrosynthesis based on molecular similarity
  publication-title: ACS Cent Sci
– volume: 363
  year: 2019
  article-title: Prediction of higher‐selectivity catalysts by computer‐driven workflow and machine learning
  publication-title: Science
– volume: 152
  year: 2020
  article-title: FCHL revisited: faster and more accurate quantum machine learning
  publication-title: J Chem Phys
– volume: 347
  start-page: 49
  year: 2014
  end-page: 53
  article-title: Nanomole‐scale high‐throughput chemistry for the synthesis of complex molecules
  publication-title: Science
– volume: 23
  start-page: 5966
  year: 2017
  end-page: 71
  article-title: Neural‐symbolic machine learning for retrosynthesis and reaction prediction
  publication-title: Chem A Eur J
– volume: 12
  start-page: 2573
  year: 2021
  article-title: Inferring experimental procedures from text‐based representations of chemical reactions
  publication-title: Nat Commun
– volume: 1
  start-page: 1612
  year: 2021
  end-page: 20
  article-title: Deep retrosynthetic reaction prediction using local reactivity and global attention
  publication-title: JACS Au
– volume: 4
  start-page: 90
  issue: 2
  year: 2012
  end-page: 8
  article-title: Quantifying the chemical beauty of drugs
  publication-title: Nat Chem
– volume: 5
  start-page: 970
  year: 2019
  end-page: 81
  article-title: Learning retrosynthetic planning through simulated experience
  publication-title: ACS Cent Sci
– volume: 96
  start-page: 4825
  year: 1974
  end-page: 34
  article-title: Simulation and evaluation of chemical synthesis. Computer representation and manipulation of stereochemistry
  publication-title: J Am Chem Soc
– volume: 4
  start-page: 1465
  year: 2018
  end-page: 76
  article-title: Using machine learning to predict suitable conditions for organic reactions
  publication-title: ACS Cent Sci
– volume: 55
  start-page: 12152
  year: 2019
  end-page: 5
  article-title: Molecular transformer unifies reaction prediction and retrosynthesis across pharma chemical space
  publication-title: Chem Commun
– volume: 11
  start-page: 1
  year: 2020
  end-page: 11
  article-title: State‐of‐the‐art augmented NLP transformer models for direct and single‐step retrosynthesis
  publication-title: Nat Commun
– volume: 12
  start-page: 1469
  year: 2021
  end-page: 78
  article-title: Evaluating and clustering retrosynthesis pathways with learned strategy
  publication-title: Chem Sci
– volume: 54
  start-page: 2041
  year: 2021
  end-page: 54
  article-title: Dreams, false starts, dead ends, and redemption: a chronicle of the evolution of a chemoinformatic workflow for the optimization of enantioselective catalysts
  publication-title: Acc Chem Res
– volume: 362
  issue: 6416
  year: 2018
  article-title: Comment on “Predicting reaction performance in C–N cross‐coupling using machine learning
  publication-title: Science
– volume: 6
  start-page: 1
  year: 2020
  end-page: 7
  article-title: Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials
  publication-title: npj Comput Mater
– volume: 5
  issue: 47
  year: 2020
  article-title: Learning quadrupedal locomotion over challenging terrain
  publication-title: Sci Rob
– volume: 228
  start-page: 408
  year: 1985
  end-page: 18
  article-title: Computer‐assisted analysis in organic synthesis
  publication-title: Science
– volume: 57
  start-page: 4114
  year: 2021
  end-page: 7
  article-title: A graph‐convolutional neural network for addressing small‐scale reaction prediction
  publication-title: Chem Commun
– volume: 203
  start-page: 212
  year: 2016
  end-page: 25
  article-title: Reaction mechanism generator: automatic construction of chemical kinetic mechanisms
  publication-title: Comput Phys Commun
– volume: 7
  year: 2021
  article-title: Combining generative artificial intelligence and on‐chip synthesis for de novo drug design
  publication-title: Sci Adv
– volume: 30
  start-page: 492
  year: 1990
  end-page: 504
  article-title: Building and refining a knowledge base for synthetic organic chemistry via the methodology of inductive and deductive machine learning
  publication-title: J Chem Inf Comput Sci
– volume: 94
  start-page: 421
  year: 1972
  end-page: 30
  article-title: Computer‐assisted synthetic analysis. Facile man‐machine communication of chemical structure by interactive computer graphics
  publication-title: J Am Chem Soc
– volume: 29
  start-page: 97
  year: 1989
  end-page: 101
  article-title: SMILES. 2. Algorithm for generation of unique SMILES notation
  publication-title: J Chem Inf Comput Sci
– volume: 359
  start-page: 429
  year: 2018
  end-page: 34
  article-title: A platform for automated nanomole‐scale reaction screening and micromole‐scale synthesis in flow
  publication-title: Science
– volume: 33
  start-page: 6852
  year: 2020
  end-page: 66
– volume: 60
  start-page: 3336
  year: 2020
  end-page: 41
  article-title: Adapting chmtrn (chemistry translator) for a new use
  publication-title: J Chem Inf Model
– volume: 22
  start-page: 23618
  year: 2020
  end-page: 26
  article-title: Generating transition states of isomerization reactions with deep learning
  publication-title: Phys Chem Chem Phys
– volume: 360
  start-page: 186
  year: 2018
  end-page: 90
  article-title: Predicting reaction performance in C–N cross‐coupling using machine learning
  publication-title: Science
– year: 2021
  publication-title: J Chem Inf Model
– volume: 27
  year: 2014
– volume: 1
  year: 2020
  article-title: Self‐referencing embedded strings (SELFIES): A 100% robust molecular string representation
  publication-title: Mach Learn: Sci Technol
– volume: 94
  start-page: 1
  issue: 11
  year: 2021
  end-page: 9
  article-title: Reaction coordinates in complex systems — a perspective
  publication-title: Eur Phys J B
– volume: 63
  start-page: 8791
  year: 2020
  end-page: 808
  article-title: Ring breaker”: neural network driven synthesis prediction of the ring system chemical space
  publication-title: J Med Chem
– volume: 6
  start-page: 1379
  year: 2020
  end-page: 90
  article-title: A structure‐based platform for predicting chemical reactivity
  publication-title: Chem
– volume: 155
  year: 2021
  article-title: Toward the design of chemical reactions: machine learning barriers of competing mechanisms in reactant space
  publication-title: J Chem Phys
– year: 2020
  article-title: Data augmentation strategies to improve reaction yield predictions and estimate uncertainty
  publication-title: Theor Comp Chem
– volume: 58
  start-page: 3250
  year: 2012
  end-page: 65
  article-title: Information‐theoretic regret bounds for gaussian process optimization in the bandit setting
  publication-title: IEEE Trans Inf Theory
– volume: 11
  start-page: 3355
  year: 2020
  end-page: 64
  article-title: Automatic retrosynthetic route planning using template‐free models
  publication-title: Chem Sci
– volume: 3
  start-page: 560
  year: 2013
  end-page: 93
  article-title: Automatic reaction mapping and reaction center detection
  publication-title: WIREs Comput Mol Sci
– volume: 9
  start-page: 2144
  year: 2018
  end-page: 50
  article-title: Machine learning of biomolecular reaction coordinates
  publication-title: J Phys Chem Lett
– volume: 9
  start-page: 6091
  year: 2018
  end-page: 8
  article-title: Found in translation”: predicting outcomes of complex organic chemistry reactions using neural sequence‐to‐sequence models
  publication-title: Chem Sci
– volume: 11
  start-page: 4584
  year: 2020
  end-page: 601
  article-title: Machine learning dihydrogen activation in the chemical space surrounding Vaska's complex
  publication-title: Chem Sci
– volume: LIX
  start-page: 433
  year: 1950
  end-page: 60
  article-title: I.—Computing machinery and intelligence
  publication-title: Mind
– volume: 3
  start-page: 144
  year: 2021
  end-page: 52
  article-title: Mapping the space of chemical reactions using attention‐based neural networks
  publication-title: Nat Mach Intell
– volume: 149
  start-page: 2347
  year: 2019
  end-page: 54
  article-title: Predicting chemical reaction barriers with a machine learning model
  publication-title: Catal Lett
– volume: 33
  start-page: 469
  year: 2014
  end-page: 76
  article-title: A short review of chemical reaction database systems, computer‐aided synthesis design, reaction prediction and synthetic feasibility
  publication-title: Mol Inform
– volume: 1
  year: 2020
  article-title: Thousands of reactants and transition states for competing E2 and SN2 reactions
  publication-title: Mach Learn: Sci Technol
– volume: 54
  start-page: 1107
  year: 2021
  end-page: 17
  article-title: The genesis of molecular volcano plots
  publication-title: Acc Chem Res
– volume: 14
  start-page: 19
  year: 1967
  end-page: 38
  article-title: General methods for the construction of complex molecules
  publication-title: Pure Appl Chem
– volume: 4
  start-page: 1969
  issue: 11
  year: 2019
  end-page: 81
  article-title: Identification of strategic molecules for future circular supply chains using large reaction networks
  publication-title: React Chem Eng
– start-page: 3104
  year: 2014
  end-page: 12
– volume: 10
  start-page: 13213
  year: 2020
  end-page: 26
  article-title: Machine learning for atomic simulation and activity prediction in heterogeneous catalysis: current status and future
  publication-title: ACS Catal
– volume: 3
  start-page: 434
  year: 2017
  end-page: 43
  article-title: Prediction of organic reaction outcomes using machine learning
  publication-title: ACS Cent Sci
– volume: 52
  start-page: 2526
  year: 2012
  end-page: 40
  article-title: ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning
  publication-title: J Chem Inf Model
– volume: 111
  start-page: 270
  year: 1992
  end-page: 90
  article-title: A collection of computer methods for synthesis design and reaction prediction
  publication-title: Recl Trav Chim Pays‐Bas
– volume: 23
  start-page: 1203
  year: 2018
  end-page: 18
  article-title: Computational prediction of chemical reactions: current status and outlook
  publication-title: Drug Discov Today
– volume: 12
  start-page: 945
  year: 2020
  end-page: 51
  article-title: Quantum machine learning using atom‐in‐molecule‐based fragments selected on the fly
  publication-title: Nat Chem
– volume: 56
  start-page: 9368
  year: 2020
  end-page: 71
  article-title: Heck reaction prediction using a transformer model based on a transfer learning strategy
  publication-title: Chem Commun
– volume: 5
  start-page: 1963
  year: 2020
  end-page: 72
  article-title: Iterative experimental design based on active machine learning reduces the experimental burden associated with reaction screening
  publication-title: Reaction Chemistry & Engineering
– volume: 11
  start-page: 154
  year: 2020
  end-page: 68
  article-title: Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain
  publication-title: Chem Sci
– volume: 583
  start-page: 237
  year: 2020
  end-page: 41
  article-title: A mobile robotic chemist
  publication-title: Nature
– volume: 143
  start-page: 18820
  year: 2021
  end-page: 6
  article-title: The open reaction database
  publication-title: J Am Chem Soc
– volume: 12
  start-page: 8648
  year: 2021
  end-page: 59
  article-title: Predicting enzymatic reactions with a molecular transformer
  publication-title: Chem Sci
– volume: 51
  start-page: 2209
  year: 2011
  end-page: 22
  article-title: Learning to predict chemical reactions
  publication-title: J Chem Inf Model
– start-page: 93
  year: 1978
  end-page: 126
– volume: 2
  start-page: 725
  year: 2016
  end-page: 32
  article-title: Neural networks for the prediction of organic chemistry reactions
  publication-title: ACS Cent Sci
– volume: 59
  start-page: 4167
  year: 2019
  end-page: 87
  article-title: Development and application of a data‐driven reaction classification model: comparison of an electronic lab notebook and medicinal chemistry literature
  publication-title: J Chem Inf Model
– volume: 11
  start-page: 3601
  year: 2020
  article-title: Automated extraction of chemical synthesis actions from experimental procedures
  publication-title: Nat Commun
– volume: 362
  issue: 6416
  year: 2018
  article-title: Response to Comment on “Predicting reaction performance in C–N cross‐coupling using machine learning
  publication-title: Science
– volume: 588
  start-page: 83
  year: 2020
  end-page: 8
  article-title: Computational planning of the synthesis of complex natural products
  publication-title: Nature
– volume: 12
  start-page: 1
  year: 2020
  end-page: 13
  article-title: Visualization of very large high‐dimensional data sets as minimum spanning trees
  publication-title: J Chem
– volume: 59
  start-page: 3370
  year: 2019
  end-page: 88
  article-title: Analyzing learned molecular representations for property prediction
  publication-title: J Chem Inf Model
– volume: 12
  start-page: 1
  year: 2021
  end-page: 9
  article-title: Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias
  publication-title: Nat Commun
– volume: 1
  start-page: 307
  year: 2019
  end-page: 15
  article-title: Automated de novo molecular design by hybrid machine intelligence and rule‐driven chemical synthesis
  publication-title: Nat Mach Intell
– volume: 5
  start-page: 367
  year: 2020
  end-page: 76
  article-title: Combining retrosynthesis and mixed‐integer optimization for minimizing the chemical inventory needed to realize a who essential medicines list
  publication-title: React Chem Eng
– volume: 20
  start-page: 18311
  year: 2018
  end-page: 8
  article-title: Machine learning for predicting product distributions in catalytic regioselective reactions
  publication-title: Phys Chem Chem Phys
– volume: 10
  start-page: 370
  year: 2019
  end-page: 7
  article-title: A graph‐convolutional neural network model for the prediction of chemical reactivity
  publication-title: Chem Sci
– volume: 50
  start-page: 742
  year: 2010
  end-page: 54
  article-title: Extended‐connectivity fingerprints
  publication-title: J Chem Inf Model
– volume: 1
  start-page: 116
  year: 2021
  end-page: 22
  article-title: Summit: benchmarking machine learning methods for reaction optimisation
  publication-title: Chem Methods
– year: 1994
– volume: 3
  start-page: 485
  year: 2021
  end-page: 94
  article-title: Unassisted noise reduction of chemical reaction datasets
  publication-title: Nat Mach Intell
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  end-page: 8
  article-title: Reactants, products, and transition states of elementary chemical reactions based on quantum chemistry
  publication-title: Sci Data
– volume: 22
  start-page: 26478
  year: 2020
  end-page: 86
  article-title: DRACON: disconnected graph neural network for atom mapping in chemical reactions
  publication-title: Phys Chem Chem Phys
– volume: 12
  start-page: 2931
  year: 2021
  end-page: 9
  article-title: Predicting glycosylation stereoselectivity using machine learning
  publication-title: Chem Sci
– volume: 4
  start-page: 828
  year: 2019
  end-page: 49
  article-title: Deep learning for molecular design—a review of the state of the art
  publication-title: Mol Syst Des Eng
– volume: 140
  start-page: 5004
  year: 2018
  end-page: 8
  article-title: Deoxyfluorination with sulfonyl fluorides: navigating reaction space with machine learning
  publication-title: J Am Chem Soc
– volume: 12
  start-page: 1
  year: 2020
  end-page: 14
  article-title: CompRet: a comprehensive recommendation framework for chemical synthesis planning with algorithmic enumeration
  publication-title: J Chem
– volume: 37
  start-page: 71
  issue: 1
  year: 1997
  end-page: 9
  article-title: Sybyl line notation (sln): A versatile language for chemical structure representation
  publication-title: J Chem Inf Comput Sci
– volume: 60
  start-page: 192
  issue: 3
  year: 1983
  article-title: Wiswesser line notation: an introduction
  publication-title: J Chem Educ
– volume: 60
  start-page: 47
  year: 2019
  end-page: 55
  article-title: Predicting retrosynthetic reactions using self‐corrected transformer neural networks
  publication-title: J Chem Inf Model
– volume: 3
  start-page: 1103
  year: 2017
  end-page: 13
  article-title: Retrosynthetic reaction prediction using neural sequence‐to‐sequence models
  publication-title: ACS Cent Sci
– volume: 34
  start-page: 247
  year: 2005
  end-page: 66
  article-title: Computer‐aided organic synthesis
  publication-title: Chem Soc Rev
– volume: 559
  start-page: 377
  year: 2018
  end-page: 81
  article-title: Controlling an organic synthesis robot with machine learning to search for new reactivity
  publication-title: Nature
– volume: 32
  start-page: 244
  issue: 3
  year: 1992
  end-page: 55
  article-title: Description of several chemical structure file formats used by computer programs developed at molecular design limited
  publication-title: J Chem Inf Comput Sci
– volume: 54
  start-page: 2741
  year: 2021
  end-page: 9
  article-title: Adsorption enthalpies for catalysis modeling through machine‐learned descriptors
  publication-title: Acc Chem Res
– volume: 20
  start-page: 253
  year: 2011
  end-page: 70
  article-title: Condensed graph of reaction: considering a chemical reaction as one single pseudo molecule
  publication-title: Int J Artif Intell Tools
– volume: 60
  start-page: 3398
  year: 2020
  end-page: 407
  article-title: Data augmentation and pretraining for template‐based retrosynthetic prediction in computer‐aided synthesis planning
  publication-title: J Chem Inf Model
– volume: 11
  start-page: 1
  year: 2020
  end-page: 8
  article-title: Transfer learning enables the molecular transformer to predict regio‐and stereoselective reactions on carbohydrates
  publication-title: Nat Commun
– volume: 4
  start-page: 522
  year: 2018
  end-page: 32
  article-title: Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory
  publication-title: Chem
– volume: 61
  start-page: 3273
  year: 2021
  end-page: 84
  article-title: Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits
  publication-title: J Chem Inf Model
– volume: 61
  start-page: 493
  year: 2020
  end-page: 504
  article-title: Direct optimization across computer‐generated reaction networks balances materials use and feasibility of synthesis plans for molecule libraries
  publication-title: J Chem Inf Model
– volume: 56
  start-page: 2336
  year: 2016
  end-page: 46
  article-title: What's what: the (nearly) definitive guide to reaction role assignment
  publication-title: J Chem Inf Model
– volume: 12
  start-page: 1
  year: 2020
  end-page: 9
  article-title: AiZynthFinder: a fast, robust and flexible open‐source software for retrosynthetic planning
  publication-title: J Chem
– volume: 13
  start-page: 455
  year: 1998
  end-page: 92
  article-title: Efficient global optimization of expensive black‐box functions
  publication-title: J Glob Optim
– volume: 132
  start-page: 13355
  year: 2020
  end-page: 61
  article-title: Predicting regioselectivity in radical C–H functionalization of heterocycles through machine learning
  publication-title: Angew Chem
– volume: 67
  year: 2021
  article-title: Predicting chemical reaction outcomes: a grammar ontology‐based transformer framework
  publication-title: AIChE J
– volume: 32
  start-page: 8872
  year: 2019
  end-page: 82
  article-title: Retrosynthesis prediction with conditional graph logic network
  publication-title: Adv Neur In
– volume: 12
  start-page: 4468
  year: 2021
  article-title: Machine learning based energy‐free structure predictions of molecules, transition states, and solids
  publication-title: Nat Commun
– volume: 5
  start-page: 896
  year: 2020
  end-page: 902
  article-title: Multitask prediction of site selectivity in aromatic C–H functionalization reactions
  publication-title: React Chem Eng
– volume: 420
  year: 2021
  article-title: Retroprime: A diverse, plausible and transformer‐based method for single‐step retrosynthesis predictions
  publication-title: Chem Eng J
– volume: 10
  start-page: 7021
  year: 2020
  end-page: 31
  article-title: Data‐driven advancement of homogeneous nickel catalyst activity for aryl ether cleavage
  publication-title: ACS Catal
– volume: 7
  year: 2021
  article-title: Extraction of organic chemistry grammar from unsupervised learning of chemical reactions
  publication-title: Sci Adv
– year: 2020
  article-title: Atom‐to‐atom mapping: a benchmarking study of popular mapping algorithms and consensus strategies
  publication-title: Molecular Informatics
– start-page: 19
  year: 1973
  end-page: 64
– volume: 60
  start-page: 5714
  year: 2020
  end-page: 23
  article-title: The synthesizability of molecules proposed by generative models
  publication-title: J Chem Inf Model
– volume: 555
  start-page: 604
  year: 2018
  end-page: 10
  article-title: Planning chemical syntheses with deep neural networks and symbolic ai
  publication-title: Nature
– year: 1977
– volume: 34
  start-page: 2613
  year: 1996
  end-page: 33
  article-title: Computer‐assisted planning of organic syntheses: the second generation of programs
  publication-title: Angew Chem Int Ed
– volume: 93
  start-page: 6847
  year: 1971
  end-page: 54
  article-title: Systematic characterization of structures and reactions for use in organic synthesis
  publication-title: J Am Chem Soc
– volume: 59
  start-page: 3645
  year: 2019
  end-page: 54
  article-title: Learning to predict reaction conditions: relationships between solvent, molecular structure, and catalyst
  publication-title: J Chem Inf Model
– volume: 197
  start-page: 1041
  year: 1977
  end-page: 9
  article-title: Empirical explorations of synchem
  publication-title: Science
– volume: 28
  start-page: 31
  year: 1988
  end-page: 6
  article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
  publication-title: J Chem Inf Comput Sci
– volume: 4
  start-page: 268
  year: 2018
  end-page: 76
  article-title: Automatic chemical design using a data‐driven continuous representation of molecules
  publication-title: ACS Cent Sci
– volume: 4
  start-page: 120
  year: 2018
  end-page: 31
  article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks
  publication-title: ACS Cent Sci
– volume: 11
  start-page: 10959
  year: 2020
  end-page: 72
  article-title: Towards efficient discovery of green synthetic pathways with Monte Carlo tree search and reinforcement learning
  publication-title: Chem Sci
– volume: 11
  start-page: 2992
  year: 2020
  end-page: 7
  article-title: Deep learning of activation energies
  publication-title: J Phys Chem Lett
– volume: 61
  start-page: 123
  year: 2021
  end-page: 33
  article-title: Valid, plausible, and diverse retrosynthesis using tied two‐way transformers with latent variables
  publication-title: J Chem Inf Model
– volume: 263
  year: 2020
  article-title: A machine learning framework for the analysis and prediction of catalytic activity from experimental data
  publication-title: Appl Catal B
– volume: 5
  start-page: 1572
  year: 2019
  end-page: 83
  article-title: Molecular transformer: A model for uncertainty‐calibrated chemical reaction prediction
  publication-title: ACS Cent Sci
– volume: 10
  start-page: 1371
  year: 2020
  end-page: 8
  article-title: Retrosynthesis with attention‐based nmt model and chemical analysis of “wrong” predictions
  publication-title: RSC Adv
– volume: 11
  start-page: 1
  year: 2019
  end-page: 12
  article-title: A retrosynthetic analysis algorithm implementation
  publication-title: J Chem
– volume: 2
  year: 2021
  article-title: Prediction of chemical reaction yields using deep learning
  publication-title: Mach Learn: Sci Technol
– year: 2006
– volume: 110
  start-page: E193
  year: 2013
  end-page: 201
  article-title: Navigating the protein fitness landscape with gaussian processes
  publication-title: PNAS
– volume: 149
  year: 2018
  article-title: Data‐driven computation of molecular reaction coordinates
  publication-title: J Chem Phys
– volume: 55
  start-page: 5904
  year: 2016
  end-page: 37
  article-title: Computer‐assisted synthetic planning: the end of the beginning
  publication-title: Angew Chem Int Ed
– volume: 11
  start-page: 13085
  year: 2020
  end-page: 93
  article-title: What can reaction databases teach us about Buchwald–Hartwig cross‐couplings
  publication-title: Chem Sci
– volume: 590
  start-page: 89
  year: 2021
  end-page: 96
  article-title: Bayesian reaction optimization as a tool for chemical synthesis
  publication-title: Nature
– volume: 3
  start-page: 442
  year: 2018
  end-page: 52
  article-title: Deep learning for chemical reaction prediction
  publication-title: Mol Syst Des Eng
– ident: e_1_2_10_97_1
  doi: 10.1007/978-3-030-30493-5_78
– ident: e_1_2_10_153_1
  doi: 10.1021/acs.jcim.1c01400
– ident: e_1_2_10_18_1
  doi: 10.1016/j.chempr.2018.02.002
– ident: e_1_2_10_157_1
  doi: 10.1038/s41557-020-0527-z
– ident: e_1_2_10_60_1
– ident: e_1_2_10_11_1
  doi: 10.1007/BFb0051317
– ident: e_1_2_10_8_1
  doi: 10.1126/science.197.4308.1041
– ident: e_1_2_10_150_1
  doi: 10.1039/D0SC04823B
– ident: e_1_2_10_26_1
– ident: e_1_2_10_130_1
  doi: 10.1038/s41467-021-22951-1
– start-page: 2100138
  year: 2020
  ident: e_1_2_10_38_1
  article-title: Atom‐to‐atom mapping: a benchmarking study of popular mapping algorithms and consensus strategies
  publication-title: Molecular Informatics
– ident: e_1_2_10_117_1
– ident: e_1_2_10_182_1
  doi: 10.1039/C9ME00039A
– ident: e_1_2_10_115_1
  doi: 10.1021/acscentsci.9b00055
– ident: e_1_2_10_205_1
  doi: 10.33774/chemrxiv-2021-mc870
– ident: e_1_2_10_184_1
– ident: e_1_2_10_4_1
  doi: 10.1126/science.3838594
– ident: e_1_2_10_24_1
  doi: 10.1038/nature25978
– ident: e_1_2_10_188_1
  doi: 10.1021/acscentsci.7b00572
– ident: e_1_2_10_59_1
– ident: e_1_2_10_47_1
  doi: 10.1142/S0218213011000140
– ident: e_1_2_10_113_1
  doi: 10.1039/C9SC03666K
– ident: e_1_2_10_112_1
  doi: 10.1186/s13321-018-0323-6
– ident: e_1_2_10_50_1
  doi: 10.1021/acs.jcim.0c00448
– ident: e_1_2_10_103_1
– ident: e_1_2_10_29_1
  doi: 10.1039/C9SC05704H
– ident: e_1_2_10_109_1
  doi: 10.1002/anie.201806920
– ident: e_1_2_10_194_1
– volume-title: Advances in neural information processing systems
  year: 2014
  ident: e_1_2_10_185_1
– ident: e_1_2_10_42_1
  doi: 10.1021/ci960109j
– ident: e_1_2_10_110_1
  doi: 10.1126/science.aax1566
– ident: e_1_2_10_147_1
  doi: 10.1021/acs.accounts.1c00153
– ident: e_1_2_10_63_1
  doi: 10.1109/ACCESS.2021.3083838
– ident: e_1_2_10_88_1
  doi: 10.1038/s41467-021-21895-w
– ident: e_1_2_10_169_1
  doi: 10.1039/D0CP04670A
– ident: e_1_2_10_135_1
  doi: 10.26434/chemrxiv.13286741.v1
– ident: e_1_2_10_200_1
– ident: e_1_2_10_201_1
  doi: 10.1038/nchem.1243
– ident: e_1_2_10_62_1
– ident: e_1_2_10_174_1
  doi: 10.1007/3-540-07165-2_55
– ident: e_1_2_10_55_1
  doi: 10.1021/ci5006614
– ident: e_1_2_10_159_1
  doi: 10.1016/j.cpc.2016.02.013
– ident: e_1_2_10_149_1
  doi: 10.1039/D0RE00071J
– volume: 13
  start-page: 1
  year: 2021
  ident: e_1_2_10_148_1
  article-title: RegioSQM20: improved prediction of the regioselectivity of electrophilic aromatic substitutions
  publication-title: J Chem
– ident: e_1_2_10_158_1
  doi: 10.1039/D1SC00482D
– start-page: 6852
  volume-title: Advances in neural information processing systems
  year: 2020
  ident: e_1_2_10_193_1
– ident: e_1_2_10_203_1
  doi: 10.1002/9783527618279.ch12
– ident: e_1_2_10_141_1
  doi: 10.1021/acs.accounts.0c00857
– ident: e_1_2_10_168_1
  doi: 10.1039/D0SC04896H
– ident: e_1_2_10_34_1
  doi: 10.1038/s41586-021-03213-y
– ident: e_1_2_10_16_1
  doi: 10.1021/ci00023a005
– ident: e_1_2_10_73_1
  doi: 10.1002/minf.201400052
– ident: e_1_2_10_21_1
– ident: e_1_2_10_156_1
  doi: 10.1021/acs.accounts.0c00826
– ident: e_1_2_10_128_1
  doi: 10.1021/acs.jcim.9b00313
– ident: e_1_2_10_155_1
  doi: 10.1126/science.aau5631
– volume: 13
  start-page: 1
  issue: 1
  year: 2021
  ident: e_1_2_10_93_1
  article-title: Biocatalysed synthesis planning using data‐driven learning
  publication-title: Nat Commun
– ident: e_1_2_10_170_1
  doi: 10.1038/s41467-021-24525-7
– ident: e_1_2_10_80_1
  doi: 10.1021/ci100050t
– ident: e_1_2_10_131_1
  doi: 10.1038/s41467-020-17266-6
– ident: e_1_2_10_2_1
  doi: 10.1093/mind/LIX.236.433
– ident: e_1_2_10_67_1
  doi: 10.1126/science.aar5169
– ident: e_1_2_10_14_1
  doi: 10.1351/pac199062101921
– ident: e_1_2_10_140_1
  doi: 10.1016/j.apcatb.2019.118257
– ident: e_1_2_10_65_1
  doi: 10.1088/2632-2153/abc81d
– ident: e_1_2_10_162_1
  doi: 10.1063/1.5126701
– ident: e_1_2_10_192_1
– ident: e_1_2_10_133_1
  doi: 10.1126/science.aat8763
– ident: e_1_2_10_68_1
  doi: 10.1021/jacs.8b01523
– ident: e_1_2_10_17_1
  doi: 10.1002/anie.201506101
– ident: e_1_2_10_102_1
  doi: 10.1021/jacsau.1c00246
– ident: e_1_2_10_7_1
  doi: 10.1021/bk-1977-0061.ch005
– ident: e_1_2_10_48_1
– ident: e_1_2_10_5_1
  doi: 10.1021/ja00757a020
– ident: e_1_2_10_46_1
  doi: 10.1021/ci00052a009
– ident: e_1_2_10_116_1
– ident: e_1_2_10_180_1
  doi: 10.1038/s41586-020-2442-2
– ident: e_1_2_10_173_1
  doi: 10.1140/epjb/s10051-021-00233-5
– ident: e_1_2_10_86_1
  doi: 10.1002/aic.17190
– ident: e_1_2_10_79_1
  doi: 10.1002/chem.201605499
– ident: e_1_2_10_139_1
  doi: 10.1038/s41586-018-0307-8
– start-page: 2607
  volume-title: Advances in neural information processing systems
  year: 2017
  ident: e_1_2_10_23_1
– ident: e_1_2_10_199_1
– ident: e_1_2_10_152_1
  doi: 10.1039/C8CP03141J
– ident: e_1_2_10_176_1
  doi: 10.1023/A:1008306431147
– ident: e_1_2_10_78_1
  doi: 10.1021/acscentsci.6b00219
– ident: e_1_2_10_126_1
  doi: 10.1039/D0SC05078D
– ident: e_1_2_10_10_1
  doi: 10.1021/ja00754a026
– ident: e_1_2_10_100_1
  doi: 10.1021/acs.jcim.0c01074
– ident: e_1_2_10_181_1
  doi: 10.1002/cmtd.202000051
– ident: e_1_2_10_138_1
  doi: 10.1126/science.1259203
– ident: e_1_2_10_74_1
  doi: 10.1016/j.drudis.2018.02.014
– ident: e_1_2_10_132_1
  doi: 10.1126/science.aat8603
– ident: e_1_2_10_183_1
– ident: e_1_2_10_195_1
  doi: 10.1109/TNN.1998.712192
– ident: e_1_2_10_106_1
  doi: 10.1016/j.cej.2021.129845
– ident: e_1_2_10_44_1
– volume: 12
  start-page: 1
  year: 2020
  ident: e_1_2_10_206_1
  article-title: Visualization of very large high‐dimensional data sets as minimum spanning trees
  publication-title: J Chem
– ident: e_1_2_10_98_1
  doi: 10.1039/C9RA08535A
– ident: e_1_2_10_179_1
  doi: 10.1021/acscentsci.8b00307
– ident: e_1_2_10_137_1
  doi: 10.1039/D0RE00232A
– ident: e_1_2_10_57_1
  doi: 10.1021/acscentsci.7b00303
– ident: e_1_2_10_204_1
  doi: 10.1021/acs.jcim.9b00537
– ident: e_1_2_10_31_1
  doi: 10.1021/acs.jcim.1c00537
– ident: e_1_2_10_96_1
  doi: 10.1039/C9CC05122H
– ident: e_1_2_10_178_1
  doi: 10.1073/pnas.1215251110
– ident: e_1_2_10_104_1
– ident: e_1_2_10_3_1
  doi: 10.1351/pac196714010019
– ident: e_1_2_10_127_1
  doi: 10.1021/acscentsci.8b00357
– ident: e_1_2_10_40_1
  doi: 10.1021/ci00057a005
– volume: 13
  start-page: 1
  year: 2021
  ident: e_1_2_10_101_1
  article-title: Substructure‐based neural machine translation for retrosynthetic prediction
  publication-title: J Chem
– ident: e_1_2_10_151_1
  doi: 10.1002/ange.202000959
– ident: e_1_2_10_6_1
  doi: 10.1021/ja00822a020
– ident: e_1_2_10_118_1
  doi: 10.1021/acs.jcim.0c00320
– ident: e_1_2_10_58_1
  doi: 10.1038/s42256-020-00284-w
– ident: e_1_2_10_66_1
  doi: 10.1038/s42256-021-00319-w
– ident: e_1_2_10_69_1
  doi: 10.1126/science.aap9112
– ident: e_1_2_10_123_1
  doi: 10.1039/C9RE00348G
– ident: e_1_2_10_72_1
  doi: 10.1039/b104620a
– ident: e_1_2_10_27_1
  doi: 10.1039/C8SC04228D
– ident: e_1_2_10_61_1
– ident: e_1_2_10_77_1
  doi: 10.1039/C7ME00107J
– ident: e_1_2_10_189_1
  doi: 10.1021/acs.jcim.0c00833
– ident: e_1_2_10_13_1
  doi: 10.1007/3-540-16904-0_14
– ident: e_1_2_10_171_1
  doi: 10.1063/1.5035183
– ident: e_1_2_10_82_1
  doi: 10.1039/D0CP04748A
– ident: e_1_2_10_177_1
  doi: 10.1109/TIT.2011.2182033
– ident: e_1_2_10_33_1
  doi: 10.1038/s41586-020-2855-y
– ident: e_1_2_10_32_1
  doi: 10.1038/s41467-020-18671-7
– ident: e_1_2_10_64_1
  doi: 10.1039/D0SC04074F
– ident: e_1_2_10_94_1
  doi: 10.1021/acscentsci.7b00355
– ident: e_1_2_10_43_1
  doi: 10.1021/ci00007a012
– ident: e_1_2_10_190_1
  doi: 10.1021/acs.jcim.0c00174
– ident: e_1_2_10_144_1
  doi: 10.1038/s41586-020-2242-8
– ident: e_1_2_10_28_1
  doi: 10.1021/acscentsci.9b00576
– ident: e_1_2_10_105_1
  doi: 10.1609/aaai.v35i1.16131
– ident: e_1_2_10_142_1
  doi: 10.1021/acscatal.0c00774
– ident: e_1_2_10_36_1
  doi: 10.1002/wcms.1140
– ident: e_1_2_10_143_1
  doi: 10.1039/C8SC01949E
– ident: e_1_2_10_165_1
  doi: 10.1038/s41597-020-0460-4
– ident: e_1_2_10_196_1
  doi: 10.1002/9780470316887
– ident: e_1_2_10_124_1
  doi: 10.1021/acs.jcim.0c01032
– ident: e_1_2_10_87_1
– ident: e_1_2_10_37_1
  doi: 10.1126/sciadv.abe4166
– ident: e_1_2_10_191_1
  doi: 10.1038/s42256-019-0067-7
– ident: e_1_2_10_145_1
  doi: 10.1039/D0TA06203K
– ident: e_1_2_10_83_1
– volume: 6
  start-page: 1
  year: 2020
  ident: e_1_2_10_187_1
  article-title: Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials
  publication-title: npj Comput Mater
– ident: e_1_2_10_166_1
  doi: 10.1021/acs.jcim.9b00237
– volume: 12
  start-page: 1
  year: 2020
  ident: e_1_2_10_51_1
  article-title: ReactionCode: format for reaction searching, analysis, classification, transform, and encoding/decoding
  publication-title: J Chem
– ident: e_1_2_10_15_1
  doi: 10.1002/recl.19921110605
– ident: e_1_2_10_49_1
– ident: e_1_2_10_56_1
  doi: 10.1021/acs.jcim.6b00564
– ident: e_1_2_10_35_1
  doi: 10.1126/sciadv.abg3338
– volume: 12
  start-page: 1
  year: 2020
  ident: e_1_2_10_111_1
  article-title: AiZynthFinder: a fast, robust and flexible open‐source software for retrosynthetic planning
  publication-title: J Chem
– ident: e_1_2_10_119_1
  doi: 10.26434/chemrxiv.11869692
– ident: e_1_2_10_99_1
  doi: 10.1021/acs.jcim.9b00949
– ident: e_1_2_10_120_1
  doi: 10.1039/D0SC04184J
– ident: e_1_2_10_161_1
  doi: 10.1088/2632-2153/aba822
– ident: e_1_2_10_20_1
– ident: e_1_2_10_129_1
  doi: 10.1021/acs.jcim.0c01234
– ident: e_1_2_10_84_1
  doi: 10.1038/s41467-020-19266-y
– ident: e_1_2_10_163_1
  doi: 10.1039/D0SC00445F
– ident: e_1_2_10_167_1
  doi: 10.1021/acs.jpclett.0c00500
– ident: e_1_2_10_172_1
  doi: 10.1021/acs.jpclett.8b00759
– ident: e_1_2_10_197_1
  doi: 10.1038/nature24270
– ident: e_1_2_10_25_1
  doi: 10.1039/C8SC02339E
– ident: e_1_2_10_76_1
  doi: 10.1021/ci3003039
– volume-title: Gaussian processes for machine learning
  year: 2006
  ident: e_1_2_10_175_1
– volume: 5
  issue: 47
  year: 2020
  ident: e_1_2_10_198_1
  article-title: Learning quadrupedal locomotion over challenging terrain
  publication-title: Sci Rob
– ident: e_1_2_10_70_1
  doi: 10.1021/jacs.1c09820
– ident: e_1_2_10_30_1
  doi: 10.1039/C9SC04944D
– ident: e_1_2_10_52_1
  doi: 10.1088/2632-2153/aba947
– ident: e_1_2_10_12_1
  doi: 10.1007/BFb0050147
– ident: e_1_2_10_85_1
  doi: 10.26434/chemrxiv.11659563.v1
– ident: e_1_2_10_134_1
  doi: 10.1016/j.chempr.2020.02.017
– ident: e_1_2_10_39_1
  doi: 10.1021/ed060p192
– ident: e_1_2_10_114_1
– ident: e_1_2_10_154_1
  doi: 10.1039/D0SC06222G
– ident: e_1_2_10_19_1
  doi: 10.1021/acs.accounts.0c00714
– ident: e_1_2_10_22_1
  doi: 10.1021/acscentsci.7b00064
– ident: e_1_2_10_81_1
  doi: 10.1145/3292500.3330958
– ident: e_1_2_10_202_1
– ident: e_1_2_10_136_1
  doi: 10.1021/acs.jcim.1c00699
– ident: e_1_2_10_186_1
– ident: e_1_2_10_91_1
  doi: 10.1039/D1CC00586C
– ident: e_1_2_10_90_1
  doi: 10.1039/D0CC02657C
– ident: e_1_2_10_41_1
  doi: 10.1021/ci00062a008
– volume: 12
  start-page: 1
  year: 2020
  ident: e_1_2_10_121_1
  article-title: CompRet: a comprehensive recommendation framework for chemical synthesis planning with algorithmic enumeration
  publication-title: J Chem
– ident: e_1_2_10_122_1
  doi: 10.1609/aaai.v26i1.8331
– ident: e_1_2_10_160_1
  doi: 10.1063/5.0059742
– ident: e_1_2_10_75_1
  doi: 10.1021/ci200207y
– ident: e_1_2_10_45_1
  doi: 10.1021/acscentsci.7b00512
– ident: e_1_2_10_146_1
  doi: 10.1021/acscatal.0c03472
– ident: e_1_2_10_54_1
– ident: e_1_2_10_89_1
  doi: 10.1039/D1SC02362D
– ident: e_1_2_10_71_1
  doi: 10.1002/anie.199526131
– ident: e_1_2_10_9_1
  doi: 10.1021/ci00068a023
– ident: e_1_2_10_108_1
  doi: 10.1021/acs.jcim.0c00403
– volume: 32
  start-page: 8872
  year: 2019
  ident: e_1_2_10_53_1
  article-title: Retrosynthesis prediction with conditional graph logic network
  publication-title: Adv Neur In
– ident: e_1_2_10_92_1
– ident: e_1_2_10_107_1
  doi: 10.1021/acs.jmedchem.9b01919
– ident: e_1_2_10_125_1
  doi: 10.1039/C9RE00213H
– start-page: 3104
  volume-title: Advances in neural information processing systems
  year: 2014
  ident: e_1_2_10_95_1
– ident: e_1_2_10_164_1
  doi: 10.1007/s10562-019-02705-x
SSID ssj0000491231
Score 2.5958278
SecondaryResourceType review_article
Snippet Discovering new reactions, optimizing their performance, and extending the synthetically accessible chemical space are critical drivers for major technological...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e1604
SubjectTerms Algorithms
Artificial intelligence
Catalysts
Chemical reactions
Chemical synthesis
computer‐assisted synthesis planning
Data science
data‐driven approaches
Design optimization
machine intelligence
Machine learning
Pharmaceutical industry
Space exploration
Title Machine intelligence for chemical reaction space
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1604
https://www.proquest.com/docview/2711618445
Volume 12
WOSCitedRecordID wos000765648800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1759-0884
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491231
  issn: 1759-0876
  databaseCode: DRFUL
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fS8MwEMePuQn64m9xOkcRH3wpa370R_BJpsMHN4Y63Ftp0hQGOmWd-u97SdttgoLgWwtpWq53ySdH8j2A84AjxAZIbkqhB3NEfleEJHUzdBCJRKBkVhSbCAeDaDwWwxpcVmdhCn2IRcLNRIYdr02AJzLvLEVDP9VLbnIjfA0ahLDI1G2gfLhIsCD64qhsF1yhL1wjvVYpC3m0s3j6-3y0hMxVVLVzTW_7X1-5A1slYjpXhU_sQk1P92CjW1V22wevb3dQameyosfpIL06qpQPcBAl7YEHBwccpQ9g1Lt57N66ZeUEVzEkJDdlXorRpqLE1yQVmRA64kkqFFWaJZJ4eJ-lVFIEtiDCHpNA4lqGaRqZOhiSHUJ9-jrVR-DgAkeSIKAp8z3OhUbe4z7VlLAwUZ7ImnBR2S9Wpay4qW7xHBeCyDQ2JoiNCZpwtmj6Vmhp_NSoVf2EuAynPKYhMcL-nPv4Omvu3zuIn7r9B3Nx_PemJ7BJzbEGu3esBfX57F2fwrr6mE_yWdv6VRsa1_e90d0XVgjQCw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fS8MwEMePOYX54m9xOrWID76UtUn6I-CLDMfEbQycuLfQpikMdMo69d_3kv7YBAXBtxbStFzvkk-O5HsAlz5DiPWR3KRED2aI_DYP3MRO0UFiJAIZp3mxiWA4DCcTPqrBdXkWJteHqBJuOjLMeK0DXCek20vV0E_5kunkCFuDdYazjPZywkZVhgXZF4dls-IKPG5r7bVSWsgh7erp7xPSkjJXWdVMNt3t_33mDmwVkGnd5F6xCzU124NGp6zttg_OwOyhVNZ0RZHTQn61ZCEgYCFMmiMPFg45Uh3AY_d23OnZRe0EW1JkJDuhToLxJsPIU27CU85VyKKESyIVjWLXwfs0ITFBZPND7DHyY1zNUEVCXQkjpodQn73O1BFYuMSJXd8nCfUcxrhC4mMeUcSlQSQdnjbhqjSgkIWwuK5v8SxySWQitAmENkETLqqmb7maxk-NWuVfEEVAZYIErpb2Z8zD1xl7_96BeOoMHvTF8d-bnkOjNx70Rf9ueH8Cm0QfcjA7yVpQX8zf1SlsyI_FNJufGSf7Aj3G0lY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fS8MwEMePuYn64m9xOrWID76UtWn6I-CLbBbFbQx1uLfQJikMdI5t6r_vpb82QUHwrYU0Lde75JMj-R7AhUcRYj0kNyHQgykiv8l8W5oJOkiMRCDiJCs24fd6wXDI-hW4Ks7CZPoQZcJNR0Y6XusAVxOZNBeqoZ_idaaTI3QFalQXkalCrf0QDjpljgXpFwfmdM3lu8zU6muFuJBFmuXz36ekBWcu02o63YRb__vQbdjMMdO4zvxiBypqvAvrraK62x5Y3XQXpTJGS5qcBhKsIXIJAQNxMj30YOCgI9Q-DMKbp9atmVdPMIWDlGRKx5IYcSKIXGVLljCmAhpJJohQThTbFt4nksQEoc0LsMfIi3E94ygS6FoYsXMA1fHbWB2CgYuc2PY8Ih3XopQpZD7qEkVsx4-ExZI6XBYG5CKXFtcVLl54JopMuDYB1yaow3nZdJLpafzUqFH8BZ6H1IwT39bi_pS6-LrU3r93wJ9b3Ud9cfT3pmew1m-HvHPXuz-GDaJPOaRbyRpQnU_f1Qmsio_5aDY9zb3sC-5102w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+intelligence+for+chemical+reaction+space&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Schwaller%2C+Philippe&rft.au=Vaucher%2C+Alain+C.&rft.au=Laplaza%2C+Ruben&rft.au=Bunne%2C+Charlotte&rft.date=2022-09-01&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=12&rft.issue=5&rft_id=info:doi/10.1002%2Fwcms.1604&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_wcms_1604
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon