Machine intelligence for chemical reaction space
Discovering new reactions, optimizing their performance, and extending the synthetically accessible chemical space are critical drivers for major technological advances and more sustainable processes. The current wave of machine intelligence is revolutionizing all data‐rich disciplines. Machine inte...
Uloženo v:
| Vydáno v: | Wiley interdisciplinary reviews. Computational molecular science Ročník 12; číslo 5; s. e1604 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
Wiley Periodicals, Inc
01.09.2022
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1759-0876, 1759-0884 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Discovering new reactions, optimizing their performance, and extending the synthetically accessible chemical space are critical drivers for major technological advances and more sustainable processes. The current wave of machine intelligence is revolutionizing all data‐rich disciplines. Machine intelligence has emerged as a potential game‐changer for chemical reaction space exploration and the synthesis of novel molecules and materials. Herein, we will address the recent development of data‐driven technologies for chemical reaction tasks, including forward reaction prediction, retrosynthesis, reaction optimization, catalysts design, inference of experimental procedures, and reaction classification. Accurate predictions of chemical reactivity are changing the R&D processes and, at the same time, promoting an accelerated discovery scheme both in academia and across chemical and pharmaceutical industries. This work will help to clarify the key contributions in the fields and the open challenges that remain to be addressed.
This article is categorized under:
Data Science > Artificial Intelligence/Machine Learning
Data Science > Computer Algorithms and Programming
Data Science > Chemoinformatics
Machine intelligence has emerged in the chemical reaction space and enables chemists to accelerate the synthesis and discovery of novel molecules. |
|---|---|
| AbstractList | Discovering new reactions, optimizing their performance, and extending the synthetically accessible chemical space are critical drivers for major technological advances and more sustainable processes. The current wave of machine intelligence is revolutionizing all data‐rich disciplines. Machine intelligence has emerged as a potential game‐changer for chemical reaction space exploration and the synthesis of novel molecules and materials. Herein, we will address the recent development of data‐driven technologies for chemical reaction tasks, including forward reaction prediction, retrosynthesis, reaction optimization, catalysts design, inference of experimental procedures, and reaction classification. Accurate predictions of chemical reactivity are changing the R&D processes and, at the same time, promoting an accelerated discovery scheme both in academia and across chemical and pharmaceutical industries. This work will help to clarify the key contributions in the fields and the open challenges that remain to be addressed.This article is categorized under:Data Science > Artificial Intelligence/Machine LearningData Science > Computer Algorithms and ProgrammingData Science > Chemoinformatics Discovering new reactions, optimizing their performance, and extending the synthetically accessible chemical space are critical drivers for major technological advances and more sustainable processes. The current wave of machine intelligence is revolutionizing all data‐rich disciplines. Machine intelligence has emerged as a potential game‐changer for chemical reaction space exploration and the synthesis of novel molecules and materials. Herein, we will address the recent development of data‐driven technologies for chemical reaction tasks, including forward reaction prediction, retrosynthesis, reaction optimization, catalysts design, inference of experimental procedures, and reaction classification. Accurate predictions of chemical reactivity are changing the R&D processes and, at the same time, promoting an accelerated discovery scheme both in academia and across chemical and pharmaceutical industries. This work will help to clarify the key contributions in the fields and the open challenges that remain to be addressed. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Data Science > Computer Algorithms and Programming Data Science > Chemoinformatics Machine intelligence has emerged in the chemical reaction space and enables chemists to accelerate the synthesis and discovery of novel molecules. Discovering new reactions, optimizing their performance, and extending the synthetically accessible chemical space are critical drivers for major technological advances and more sustainable processes. The current wave of machine intelligence is revolutionizing all data‐rich disciplines. Machine intelligence has emerged as a potential game‐changer for chemical reaction space exploration and the synthesis of novel molecules and materials. Herein, we will address the recent development of data‐driven technologies for chemical reaction tasks, including forward reaction prediction, retrosynthesis, reaction optimization, catalysts design, inference of experimental procedures, and reaction classification. Accurate predictions of chemical reactivity are changing the R&D processes and, at the same time, promoting an accelerated discovery scheme both in academia and across chemical and pharmaceutical industries. This work will help to clarify the key contributions in the fields and the open challenges that remain to be addressed. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Data Science > Computer Algorithms and Programming Data Science > Chemoinformatics |
| Author | Laino, Teodoro Vaucher, Alain C. Laplaza, Ruben Corminboeuf, Clemence Krause, Andreas Bunne, Charlotte Schwaller, Philippe |
| Author_xml | – sequence: 1 givenname: Philippe orcidid: 0000-0003-3046-6576 surname: Schwaller fullname: Schwaller, Philippe email: philippe.schwaller@epfl.ch organization: National Center for Competence in Research‐Catalysis (NCCR‐Catalysis) – sequence: 2 givenname: Alain C. orcidid: 0000-0001-7554-0288 surname: Vaucher fullname: Vaucher, Alain C. organization: National Center for Competence in Research‐Catalysis (NCCR‐Catalysis) – sequence: 3 givenname: Ruben orcidid: 0000-0001-6315-4398 surname: Laplaza fullname: Laplaza, Ruben organization: Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) – sequence: 4 givenname: Charlotte orcidid: 0000-0003-1431-103X surname: Bunne fullname: Bunne, Charlotte organization: ETH Zurich – sequence: 5 givenname: Andreas orcidid: 0000-0001-7260-9673 surname: Krause fullname: Krause, Andreas organization: ETH Zurich – sequence: 6 givenname: Clemence orcidid: 0000-0001-7993-2879 surname: Corminboeuf fullname: Corminboeuf, Clemence organization: Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) – sequence: 7 givenname: Teodoro orcidid: 0000-0001-8717-0456 surname: Laino fullname: Laino, Teodoro organization: National Center for Competence in Research‐Catalysis (NCCR‐Catalysis) |
| BookMark | eNp9kE9LAzEQxYNUsNYe_AYLnjxsm0my2-QoxX_Q4kHFY8hmZ23KNluTLaXf3l0rHgSdy8zA781j3jkZ-MYjIZdAJ0Apm-7tJk4gp-KEDGGWqZRKKQY_8yw_I-MY17QroYBxGBK6NHblPCbOt1jX7h29xaRqQmJXuHHW1ElAY1vX-CRujcULclqZOuL4u4_I693ty_whXTzdP85vFqnlnIm05LSkGVhpMoRSVUqhFKZUllnkpgDa7VXJCkYzkcvOweQFVTlHJoFnvOAjcnW8uw3Nxw5jq9fNLvjOUrMZQA5SiKyjro-UDU2MASu9DW5jwkED1X0mus9E95l07PQXa11r-s_aYFz9n2Lvajz8fVq_zZfPX4pPMOh0Yw |
| CitedBy_id | crossref_primary_10_1016_j_cdc_2023_101040 crossref_primary_10_1021_jacsau_5c00289 crossref_primary_10_1021_jacs_3c04783 crossref_primary_10_1038_s42256_024_00832_8 crossref_primary_10_1186_s13321_025_00954_0 crossref_primary_10_1021_acs_chemrev_4c00893 crossref_primary_10_1360_SSC_2025_0111 crossref_primary_10_1021_acs_jcim_4c02041 crossref_primary_10_1021_jacs_4c00338 crossref_primary_10_1038_s41586_025_09426_9 crossref_primary_10_1016_j_sbi_2023_102542 crossref_primary_10_1186_s13321_024_00944_8 crossref_primary_10_1021_jacs_5c09249 crossref_primary_10_1186_s13321_023_00732_w crossref_primary_10_1186_s13321_023_00714_y crossref_primary_10_1021_acscentsci_3c01403 crossref_primary_10_1038_s42004_024_01219_x crossref_primary_10_1186_s13321_024_00815_2 crossref_primary_10_1016_j_jocs_2023_102173 crossref_primary_10_1002_aic_18092 crossref_primary_10_1186_s13321_025_00987_5 crossref_primary_10_1039_D3SC01604H crossref_primary_10_1186_s13321_024_00910_4 crossref_primary_10_1021_acs_accounts_5c00155 crossref_primary_10_1186_s13321_024_00879_0 crossref_primary_10_1016_j_ailsci_2025_100130 crossref_primary_10_1186_s13321_023_00784_y crossref_primary_10_1016_j_mtcomm_2025_113525 crossref_primary_10_1021_acscentsci_3c01638 crossref_primary_10_1038_s44160_024_00497_6 crossref_primary_10_1002_chem_202202834 |
| Cites_doi | 10.1007/978-3-030-30493-5_78 10.1021/acs.jcim.1c01400 10.1016/j.chempr.2018.02.002 10.1038/s41557-020-0527-z 10.1007/BFb0051317 10.1126/science.197.4308.1041 10.1039/D0SC04823B 10.1038/s41467-021-22951-1 10.1039/C9ME00039A 10.1021/acscentsci.9b00055 10.33774/chemrxiv-2021-mc870 10.1126/science.3838594 10.1038/nature25978 10.1021/acscentsci.7b00572 10.1142/S0218213011000140 10.1039/C9SC03666K 10.1186/s13321-018-0323-6 10.1021/acs.jcim.0c00448 10.1039/C9SC05704H 10.1002/anie.201806920 10.1021/ci960109j 10.1126/science.aax1566 10.1021/acs.accounts.1c00153 10.1109/ACCESS.2021.3083838 10.1038/s41467-021-21895-w 10.1039/D0CP04670A 10.26434/chemrxiv.13286741.v1 10.1038/nchem.1243 10.1007/3-540-07165-2_55 10.1021/ci5006614 10.1016/j.cpc.2016.02.013 10.1039/D0RE00071J 10.1039/D1SC00482D 10.1002/9783527618279.ch12 10.1021/acs.accounts.0c00857 10.1039/D0SC04896H 10.1038/s41586-021-03213-y 10.1021/ci00023a005 10.1002/minf.201400052 10.1021/acs.accounts.0c00826 10.1021/acs.jcim.9b00313 10.1126/science.aau5631 10.1038/s41467-021-24525-7 10.1021/ci100050t 10.1038/s41467-020-17266-6 10.1093/mind/LIX.236.433 10.1126/science.aar5169 10.1351/pac199062101921 10.1016/j.apcatb.2019.118257 10.1088/2632-2153/abc81d 10.1063/1.5126701 10.1126/science.aat8763 10.1021/jacs.8b01523 10.1002/anie.201506101 10.1021/jacsau.1c00246 10.1021/bk-1977-0061.ch005 10.1021/ja00757a020 10.1021/ci00052a009 10.1038/s41586-020-2442-2 10.1140/epjb/s10051-021-00233-5 10.1002/aic.17190 10.1002/chem.201605499 10.1038/s41586-018-0307-8 10.1039/C8CP03141J 10.1023/A:1008306431147 10.1021/acscentsci.6b00219 10.1039/D0SC05078D 10.1021/ja00754a026 10.1021/acs.jcim.0c01074 10.1002/cmtd.202000051 10.1126/science.1259203 10.1016/j.drudis.2018.02.014 10.1126/science.aat8603 10.1109/TNN.1998.712192 10.1016/j.cej.2021.129845 10.1039/C9RA08535A 10.1021/acscentsci.8b00307 10.1039/D0RE00232A 10.1021/acscentsci.7b00303 10.1021/acs.jcim.9b00537 10.1021/acs.jcim.1c00537 10.1039/C9CC05122H 10.1073/pnas.1215251110 10.1351/pac196714010019 10.1021/acscentsci.8b00357 10.1021/ci00057a005 10.1002/ange.202000959 10.1021/ja00822a020 10.1021/acs.jcim.0c00320 10.1038/s42256-020-00284-w 10.1038/s42256-021-00319-w 10.1126/science.aap9112 10.1039/C9RE00348G 10.1039/b104620a 10.1039/C8SC04228D 10.1039/C7ME00107J 10.1021/acs.jcim.0c00833 10.1007/3-540-16904-0_14 10.1063/1.5035183 10.1039/D0CP04748A 10.1109/TIT.2011.2182033 10.1038/s41586-020-2855-y 10.1038/s41467-020-18671-7 10.1039/D0SC04074F 10.1021/acscentsci.7b00355 10.1021/ci00007a012 10.1021/acs.jcim.0c00174 10.1038/s41586-020-2242-8 10.1021/acscentsci.9b00576 10.1609/aaai.v35i1.16131 10.1021/acscatal.0c00774 10.1002/wcms.1140 10.1039/C8SC01949E 10.1038/s41597-020-0460-4 10.1002/9780470316887 10.1021/acs.jcim.0c01032 10.1126/sciadv.abe4166 10.1038/s42256-019-0067-7 10.1039/D0TA06203K 10.1021/acs.jcim.9b00237 10.1002/recl.19921110605 10.1021/acs.jcim.6b00564 10.1126/sciadv.abg3338 10.26434/chemrxiv.11869692 10.1021/acs.jcim.9b00949 10.1039/D0SC04184J 10.1088/2632-2153/aba822 10.1021/acs.jcim.0c01234 10.1038/s41467-020-19266-y 10.1039/D0SC00445F 10.1021/acs.jpclett.0c00500 10.1021/acs.jpclett.8b00759 10.1038/nature24270 10.1039/C8SC02339E 10.1021/ci3003039 10.1021/jacs.1c09820 10.1039/C9SC04944D 10.1088/2632-2153/aba947 10.1007/BFb0050147 10.26434/chemrxiv.11659563.v1 10.1016/j.chempr.2020.02.017 10.1021/ed060p192 10.1039/D0SC06222G 10.1021/acs.accounts.0c00714 10.1021/acscentsci.7b00064 10.1145/3292500.3330958 10.1021/acs.jcim.1c00699 10.1039/D1CC00586C 10.1039/D0CC02657C 10.1021/ci00062a008 10.1609/aaai.v26i1.8331 10.1063/5.0059742 10.1021/ci200207y 10.1021/acscentsci.7b00512 10.1021/acscatal.0c03472 10.1039/D1SC02362D 10.1002/anie.199526131 10.1021/ci00068a023 10.1021/acs.jcim.0c00403 10.1021/acs.jmedchem.9b01919 10.1039/C9RE00213H 10.1007/s10562-019-02705-x |
| ContentType | Journal Article |
| Copyright | 2022 IBM Research Europe. published by Wiley Periodicals LLC. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 IBM Research Europe. published by Wiley Periodicals LLC. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7QH 7TN 7UA C1K F1W H96 JQ2 L.G |
| DOI | 10.1002/wcms.1604 |
| DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Computer Science Collection Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1759-0884 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_wcms_1604 WCMS1604 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung funderid: 180544 |
| GroupedDBID | 05W 0R~ 1OC 1VH 24P 31~ 33P 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR WYJ ZZTAW ~S- AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION LH4 7QH 7TN 7UA C1K F1W H96 JQ2 L.G |
| ID | FETCH-LOGICAL-c3324-d30d051c8a5e1d9f99e84ad9c2ce3ab109e8fd2b205468eaca6b0963e281353b3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000765648800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1759-0876 |
| IngestDate | Fri Jul 25 10:30:19 EDT 2025 Sat Nov 29 02:23:39 EST 2025 Tue Nov 18 22:04:14 EST 2025 Wed Jan 22 16:22:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3324-d30d051c8a5e1d9f99e84ad9c2ce3ab109e8fd2b205468eaca6b0963e281353b3 |
| Notes | Funding information Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Number: 180544 Edited by Raghavan Sunoj, Associate Editor ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7260-9673 0000-0001-7993-2879 0000-0003-1431-103X 0000-0003-3046-6576 0000-0001-6315-4398 0000-0001-8717-0456 0000-0001-7554-0288 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1604 |
| PQID | 2711618445 |
| PQPubID | 2034594 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2711618445 crossref_primary_10_1002_wcms_1604 crossref_citationtrail_10_1002_wcms_1604 wiley_primary_10_1002_wcms_1604_WCMS1604 |
| PublicationCentury | 2000 |
| PublicationDate | September/October 2022 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September/October 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Wiley interdisciplinary reviews. Computational molecular science |
| PublicationYear | 2022 |
| Publisher | Wiley Periodicals, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Periodicals, Inc – name: Wiley Subscription Services, Inc |
| References | 2013; 3 2021; 67 2019; 11 2019; 10 1995; 35 2014; 27 1973 2020; 12 2020; 11 2020; 10 2017; 550 1978 1977 2018; 9 1971; 93 2018; 3 2018; 4 1992; 111 1950; LIX 1967; 14 2021; 155 2013; 110 1998; 13 1990; 30 2019; 4 2019; 5 2021; 420 2019; 32 2020; 263 2019; 1 2015; 55 1998 1994 2016; 203 2020; 33 2021; 143 2018; 23 1992; 32 2018; 20 2021; 57 2021; 54 2016; 2 2018; 359 2020; 152 1997; 37 1988; 28 1986; 26 2020; 22 2021; 61 2014; 33 1977; 197 2010; 50 2018; 362 2017; 3 2018; 360 1974; 96 2020; 63 2019; 55 2020; 61 2020; 60 2019; 59 2019; 58 2020; 56 2012; 58 2019; 365 1996; 34 2012; 52 2019; 363 2020; 8 2020; 7 2020; 6 2020; 5 2019; 60 2020; 1 2020; 132 1972; 94 2011; 20 2021; 590 1983; 60 2005; 34 2021; 9 2021; 7 2021; 3 2018; 140 2021; 2 2020; 581 2018; 149 2020; 583 2017; 23 2020; 588 2019; 149 2008 2006 1985; 228 2021; 1 2021; 94 2016; 56 2016; 55 1989; 29 1990; 62 2021; 13 2014; 347 2021; 12 2021 2018; 559 2020 2018; 555 2011; 51 2017 2014 2012; 4 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_158_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 Goodfellow I (e_1_2_10_185_1) 2014 e_1_2_10_147_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_41_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 Shibukawa R (e_1_2_10_121_1) 2020; 12 e_1_2_10_200_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 Lin A (e_1_2_10_38_1) 2020 e_1_2_10_26_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_91_1 Ucak UV (e_1_2_10_101_1) 2021; 13 e_1_2_10_4_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_30_1 e_1_2_10_201_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_164_1 e_1_2_10_43_1 Probst D (e_1_2_10_206_1) 2020; 12 e_1_2_10_20_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_31_1 e_1_2_10_202_1 e_1_2_10_188_1 Sutskever I (e_1_2_10_95_1) 2014 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_21_1 e_1_2_10_44_1 Rasmussen CE (e_1_2_10_175_1) 2006 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_32_1 e_1_2_10_203_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 Bradshaw J (e_1_2_10_193_1) 2020 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 Probst D (e_1_2_10_93_1) 2021; 13 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_204_1 Genheden S (e_1_2_10_111_1) 2020; 12 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_118_1 e_1_2_10_194_1 Jin W (e_1_2_10_23_1) 2017 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 Ree N (e_1_2_10_148_1) 2021; 13 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_205_1 Delannée V (e_1_2_10_51_1) 2020; 12 Dai H (e_1_2_10_53_1) 2019; 32 Yabo Dan Y (e_1_2_10_187_1) 2020; 6 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_108_1 e_1_2_10_157_1 e_1_2_10_73_1 e_1_2_10_172_1 Lee J (e_1_2_10_198_1) 2020; 5 e_1_2_10_96_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
| References_xml | – volume: 12 start-page: 1 year: 2020 end-page: 13 article-title: ReactionCode: format for reaction searching, analysis, classification, transform, and encoding/decoding publication-title: J Chem – volume: 62 start-page: 1921 year: 1990 end-page: 32 article-title: Cameo: a program for the logical prediction of the products of organic reactions publication-title: Pure Appl Chem – volume: 8 start-page: 17507 year: 2020 end-page: 15 article-title: A machine learning scheme for the catalytic activity of alloys with intrinsic descriptors publication-title: J Mater Chem A – start-page: 2607 year: 2017 end-page: 16 – volume: 55 start-page: 39 year: 2015 end-page: 53 article-title: Development of a novel fingerprint for chemical reactions and its application to large‐scale reaction classification and similarity publication-title: J Chem Inf Model – volume: 11 start-page: 3316 year: 2020 end-page: 25 article-title: Predicting retrosynthetic pathways using transformer‐based models and a hyper‐graph exploration strategy publication-title: Chem Sci – volume: 60 start-page: 4474 year: 2020 end-page: 86 article-title: Bayesian algorithm for retrosynthesis publication-title: J Chem Inf Model – start-page: 348 year: 2008 end-page: 90 – volume: 54 start-page: 1094 year: 2021 end-page: 106 article-title: Chemist ex machina: advanced synthesis planning by computers publication-title: Acc Chem Res – volume: 365 issue: 6453 year: 2019 article-title: A robotic platform for flow synthesis of organic compounds informed by AI planning publication-title: Science – volume: 9 start-page: 7069 year: 2018 end-page: 77 article-title: Machine learning meets volcano plots: computational discovery of cross‐coupling catalysts publication-title: Chem Sci – volume: 4 start-page: 1134 year: 2018 end-page: 45 article-title: Phoenics: a bayesian optimizer for chemistry publication-title: ACS Cent Sci – volume: 58 start-page: 4515 year: 2019 end-page: 9 article-title: Prediction of major regio‐, site‐, and diastereoisomers in diels–alder reactions by using machine‐learning: the importance of physically meaningful descriptors publication-title: Angew Chem Int Ed – volume: 12 start-page: 2198 year: 2021 end-page: 208 article-title: Regio‐selectivity prediction with a machine‐learned reaction representation and on‐the‐fly quantum mechanical descriptors publication-title: Chem Sci – volume: 581 start-page: 178 year: 2020 end-page: 83 article-title: Accelerated discovery of CO2 electrocatalysts using active machine learning publication-title: Nature – year: 2020 publication-title: Theor Comp Chem – volume: 35 start-page: 34 year: 1995 end-page: 44 article-title: Sophia, a knowledge base‐guided reaction prediction system‐utilization of a knowledge base derived from a reaction database publication-title: J Chem Inf Comput Sci – volume: 26 start-page: 205 year: 1986 end-page: 12 article-title: Description of organic reactions based on imaginary transition structures. 1. Introduction of new concepts publication-title: J Chem Inf Comput Sci – year: 1998 – volume: 12 start-page: 1163 year: 2021 end-page: 75 article-title: Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies publication-title: Chem Sci – volume: 9 start-page: 85071 year: 2021 end-page: 83 article-title: When SMILES smiles, practicality judgment and yield prediction of chemical reaction via deep chemical language processing publication-title: IEEE Access – volume: 13 start-page: 1 year: 2021 end-page: 15 article-title: Substructure‐based neural machine translation for retrosynthetic prediction publication-title: J Chem – volume: 60 start-page: 5658 year: 2020 end-page: 66 article-title: Optimol: optimization of binding affinities in chemical space for drug discovery publication-title: J Chem Inf Model – volume: 550 start-page: 354 year: 2017 end-page: 9 article-title: Mastering the game of go without human knowledge publication-title: Nature – volume: 13 start-page: 1 issue: 1 year: 2021 end-page: 11 article-title: Biocatalysed synthesis planning using data‐driven learning publication-title: Nat Commun – volume: 12 start-page: 6879 year: 2021 end-page: 89 article-title: Reaction‐based machine learning representations for predicting the enantioselectivity of organocatalysts publication-title: Chem Sci – volume: 61 start-page: 156 year: 2021 end-page: 66 article-title: Multilabel classification models for the prediction of cross‐coupling reaction conditions publication-title: J Chem Inf Model – volume: 13 start-page: 1 year: 2021 end-page: 9 article-title: RegioSQM20: improved prediction of the regioselectivity of electrophilic aromatic substitutions publication-title: J Chem – volume: 3 start-page: 1237 year: 2017 end-page: 45 article-title: Computer‐assisted retrosynthesis based on molecular similarity publication-title: ACS Cent Sci – volume: 363 year: 2019 article-title: Prediction of higher‐selectivity catalysts by computer‐driven workflow and machine learning publication-title: Science – volume: 152 year: 2020 article-title: FCHL revisited: faster and more accurate quantum machine learning publication-title: J Chem Phys – volume: 347 start-page: 49 year: 2014 end-page: 53 article-title: Nanomole‐scale high‐throughput chemistry for the synthesis of complex molecules publication-title: Science – volume: 23 start-page: 5966 year: 2017 end-page: 71 article-title: Neural‐symbolic machine learning for retrosynthesis and reaction prediction publication-title: Chem A Eur J – volume: 12 start-page: 2573 year: 2021 article-title: Inferring experimental procedures from text‐based representations of chemical reactions publication-title: Nat Commun – volume: 1 start-page: 1612 year: 2021 end-page: 20 article-title: Deep retrosynthetic reaction prediction using local reactivity and global attention publication-title: JACS Au – volume: 4 start-page: 90 issue: 2 year: 2012 end-page: 8 article-title: Quantifying the chemical beauty of drugs publication-title: Nat Chem – volume: 5 start-page: 970 year: 2019 end-page: 81 article-title: Learning retrosynthetic planning through simulated experience publication-title: ACS Cent Sci – volume: 96 start-page: 4825 year: 1974 end-page: 34 article-title: Simulation and evaluation of chemical synthesis. Computer representation and manipulation of stereochemistry publication-title: J Am Chem Soc – volume: 4 start-page: 1465 year: 2018 end-page: 76 article-title: Using machine learning to predict suitable conditions for organic reactions publication-title: ACS Cent Sci – volume: 55 start-page: 12152 year: 2019 end-page: 5 article-title: Molecular transformer unifies reaction prediction and retrosynthesis across pharma chemical space publication-title: Chem Commun – volume: 11 start-page: 1 year: 2020 end-page: 11 article-title: State‐of‐the‐art augmented NLP transformer models for direct and single‐step retrosynthesis publication-title: Nat Commun – volume: 12 start-page: 1469 year: 2021 end-page: 78 article-title: Evaluating and clustering retrosynthesis pathways with learned strategy publication-title: Chem Sci – volume: 54 start-page: 2041 year: 2021 end-page: 54 article-title: Dreams, false starts, dead ends, and redemption: a chronicle of the evolution of a chemoinformatic workflow for the optimization of enantioselective catalysts publication-title: Acc Chem Res – volume: 362 issue: 6416 year: 2018 article-title: Comment on “Predicting reaction performance in C–N cross‐coupling using machine learning publication-title: Science – volume: 6 start-page: 1 year: 2020 end-page: 7 article-title: Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials publication-title: npj Comput Mater – volume: 5 issue: 47 year: 2020 article-title: Learning quadrupedal locomotion over challenging terrain publication-title: Sci Rob – volume: 228 start-page: 408 year: 1985 end-page: 18 article-title: Computer‐assisted analysis in organic synthesis publication-title: Science – volume: 57 start-page: 4114 year: 2021 end-page: 7 article-title: A graph‐convolutional neural network for addressing small‐scale reaction prediction publication-title: Chem Commun – volume: 203 start-page: 212 year: 2016 end-page: 25 article-title: Reaction mechanism generator: automatic construction of chemical kinetic mechanisms publication-title: Comput Phys Commun – volume: 7 year: 2021 article-title: Combining generative artificial intelligence and on‐chip synthesis for de novo drug design publication-title: Sci Adv – volume: 30 start-page: 492 year: 1990 end-page: 504 article-title: Building and refining a knowledge base for synthetic organic chemistry via the methodology of inductive and deductive machine learning publication-title: J Chem Inf Comput Sci – volume: 94 start-page: 421 year: 1972 end-page: 30 article-title: Computer‐assisted synthetic analysis. Facile man‐machine communication of chemical structure by interactive computer graphics publication-title: J Am Chem Soc – volume: 29 start-page: 97 year: 1989 end-page: 101 article-title: SMILES. 2. Algorithm for generation of unique SMILES notation publication-title: J Chem Inf Comput Sci – volume: 359 start-page: 429 year: 2018 end-page: 34 article-title: A platform for automated nanomole‐scale reaction screening and micromole‐scale synthesis in flow publication-title: Science – volume: 33 start-page: 6852 year: 2020 end-page: 66 – volume: 60 start-page: 3336 year: 2020 end-page: 41 article-title: Adapting chmtrn (chemistry translator) for a new use publication-title: J Chem Inf Model – volume: 22 start-page: 23618 year: 2020 end-page: 26 article-title: Generating transition states of isomerization reactions with deep learning publication-title: Phys Chem Chem Phys – volume: 360 start-page: 186 year: 2018 end-page: 90 article-title: Predicting reaction performance in C–N cross‐coupling using machine learning publication-title: Science – year: 2021 publication-title: J Chem Inf Model – volume: 27 year: 2014 – volume: 1 year: 2020 article-title: Self‐referencing embedded strings (SELFIES): A 100% robust molecular string representation publication-title: Mach Learn: Sci Technol – volume: 94 start-page: 1 issue: 11 year: 2021 end-page: 9 article-title: Reaction coordinates in complex systems — a perspective publication-title: Eur Phys J B – volume: 63 start-page: 8791 year: 2020 end-page: 808 article-title: Ring breaker”: neural network driven synthesis prediction of the ring system chemical space publication-title: J Med Chem – volume: 6 start-page: 1379 year: 2020 end-page: 90 article-title: A structure‐based platform for predicting chemical reactivity publication-title: Chem – volume: 155 year: 2021 article-title: Toward the design of chemical reactions: machine learning barriers of competing mechanisms in reactant space publication-title: J Chem Phys – year: 2020 article-title: Data augmentation strategies to improve reaction yield predictions and estimate uncertainty publication-title: Theor Comp Chem – volume: 58 start-page: 3250 year: 2012 end-page: 65 article-title: Information‐theoretic regret bounds for gaussian process optimization in the bandit setting publication-title: IEEE Trans Inf Theory – volume: 11 start-page: 3355 year: 2020 end-page: 64 article-title: Automatic retrosynthetic route planning using template‐free models publication-title: Chem Sci – volume: 3 start-page: 560 year: 2013 end-page: 93 article-title: Automatic reaction mapping and reaction center detection publication-title: WIREs Comput Mol Sci – volume: 9 start-page: 2144 year: 2018 end-page: 50 article-title: Machine learning of biomolecular reaction coordinates publication-title: J Phys Chem Lett – volume: 9 start-page: 6091 year: 2018 end-page: 8 article-title: Found in translation”: predicting outcomes of complex organic chemistry reactions using neural sequence‐to‐sequence models publication-title: Chem Sci – volume: 11 start-page: 4584 year: 2020 end-page: 601 article-title: Machine learning dihydrogen activation in the chemical space surrounding Vaska's complex publication-title: Chem Sci – volume: LIX start-page: 433 year: 1950 end-page: 60 article-title: I.—Computing machinery and intelligence publication-title: Mind – volume: 3 start-page: 144 year: 2021 end-page: 52 article-title: Mapping the space of chemical reactions using attention‐based neural networks publication-title: Nat Mach Intell – volume: 149 start-page: 2347 year: 2019 end-page: 54 article-title: Predicting chemical reaction barriers with a machine learning model publication-title: Catal Lett – volume: 33 start-page: 469 year: 2014 end-page: 76 article-title: A short review of chemical reaction database systems, computer‐aided synthesis design, reaction prediction and synthetic feasibility publication-title: Mol Inform – volume: 1 year: 2020 article-title: Thousands of reactants and transition states for competing E2 and SN2 reactions publication-title: Mach Learn: Sci Technol – volume: 54 start-page: 1107 year: 2021 end-page: 17 article-title: The genesis of molecular volcano plots publication-title: Acc Chem Res – volume: 14 start-page: 19 year: 1967 end-page: 38 article-title: General methods for the construction of complex molecules publication-title: Pure Appl Chem – volume: 4 start-page: 1969 issue: 11 year: 2019 end-page: 81 article-title: Identification of strategic molecules for future circular supply chains using large reaction networks publication-title: React Chem Eng – start-page: 3104 year: 2014 end-page: 12 – volume: 10 start-page: 13213 year: 2020 end-page: 26 article-title: Machine learning for atomic simulation and activity prediction in heterogeneous catalysis: current status and future publication-title: ACS Catal – volume: 3 start-page: 434 year: 2017 end-page: 43 article-title: Prediction of organic reaction outcomes using machine learning publication-title: ACS Cent Sci – volume: 52 start-page: 2526 year: 2012 end-page: 40 article-title: ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning publication-title: J Chem Inf Model – volume: 111 start-page: 270 year: 1992 end-page: 90 article-title: A collection of computer methods for synthesis design and reaction prediction publication-title: Recl Trav Chim Pays‐Bas – volume: 23 start-page: 1203 year: 2018 end-page: 18 article-title: Computational prediction of chemical reactions: current status and outlook publication-title: Drug Discov Today – volume: 12 start-page: 945 year: 2020 end-page: 51 article-title: Quantum machine learning using atom‐in‐molecule‐based fragments selected on the fly publication-title: Nat Chem – volume: 56 start-page: 9368 year: 2020 end-page: 71 article-title: Heck reaction prediction using a transformer model based on a transfer learning strategy publication-title: Chem Commun – volume: 5 start-page: 1963 year: 2020 end-page: 72 article-title: Iterative experimental design based on active machine learning reduces the experimental burden associated with reaction screening publication-title: Reaction Chemistry & Engineering – volume: 11 start-page: 154 year: 2020 end-page: 68 article-title: Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain publication-title: Chem Sci – volume: 583 start-page: 237 year: 2020 end-page: 41 article-title: A mobile robotic chemist publication-title: Nature – volume: 143 start-page: 18820 year: 2021 end-page: 6 article-title: The open reaction database publication-title: J Am Chem Soc – volume: 12 start-page: 8648 year: 2021 end-page: 59 article-title: Predicting enzymatic reactions with a molecular transformer publication-title: Chem Sci – volume: 51 start-page: 2209 year: 2011 end-page: 22 article-title: Learning to predict chemical reactions publication-title: J Chem Inf Model – start-page: 93 year: 1978 end-page: 126 – volume: 2 start-page: 725 year: 2016 end-page: 32 article-title: Neural networks for the prediction of organic chemistry reactions publication-title: ACS Cent Sci – volume: 59 start-page: 4167 year: 2019 end-page: 87 article-title: Development and application of a data‐driven reaction classification model: comparison of an electronic lab notebook and medicinal chemistry literature publication-title: J Chem Inf Model – volume: 11 start-page: 3601 year: 2020 article-title: Automated extraction of chemical synthesis actions from experimental procedures publication-title: Nat Commun – volume: 362 issue: 6416 year: 2018 article-title: Response to Comment on “Predicting reaction performance in C–N cross‐coupling using machine learning publication-title: Science – volume: 588 start-page: 83 year: 2020 end-page: 8 article-title: Computational planning of the synthesis of complex natural products publication-title: Nature – volume: 12 start-page: 1 year: 2020 end-page: 13 article-title: Visualization of very large high‐dimensional data sets as minimum spanning trees publication-title: J Chem – volume: 59 start-page: 3370 year: 2019 end-page: 88 article-title: Analyzing learned molecular representations for property prediction publication-title: J Chem Inf Model – volume: 12 start-page: 1 year: 2021 end-page: 9 article-title: Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias publication-title: Nat Commun – volume: 1 start-page: 307 year: 2019 end-page: 15 article-title: Automated de novo molecular design by hybrid machine intelligence and rule‐driven chemical synthesis publication-title: Nat Mach Intell – volume: 5 start-page: 367 year: 2020 end-page: 76 article-title: Combining retrosynthesis and mixed‐integer optimization for minimizing the chemical inventory needed to realize a who essential medicines list publication-title: React Chem Eng – volume: 20 start-page: 18311 year: 2018 end-page: 8 article-title: Machine learning for predicting product distributions in catalytic regioselective reactions publication-title: Phys Chem Chem Phys – volume: 10 start-page: 370 year: 2019 end-page: 7 article-title: A graph‐convolutional neural network model for the prediction of chemical reactivity publication-title: Chem Sci – volume: 50 start-page: 742 year: 2010 end-page: 54 article-title: Extended‐connectivity fingerprints publication-title: J Chem Inf Model – volume: 1 start-page: 116 year: 2021 end-page: 22 article-title: Summit: benchmarking machine learning methods for reaction optimisation publication-title: Chem Methods – year: 1994 – volume: 3 start-page: 485 year: 2021 end-page: 94 article-title: Unassisted noise reduction of chemical reaction datasets publication-title: Nat Mach Intell – volume: 7 start-page: 1 issue: 1 year: 2020 end-page: 8 article-title: Reactants, products, and transition states of elementary chemical reactions based on quantum chemistry publication-title: Sci Data – volume: 22 start-page: 26478 year: 2020 end-page: 86 article-title: DRACON: disconnected graph neural network for atom mapping in chemical reactions publication-title: Phys Chem Chem Phys – volume: 12 start-page: 2931 year: 2021 end-page: 9 article-title: Predicting glycosylation stereoselectivity using machine learning publication-title: Chem Sci – volume: 4 start-page: 828 year: 2019 end-page: 49 article-title: Deep learning for molecular design—a review of the state of the art publication-title: Mol Syst Des Eng – volume: 140 start-page: 5004 year: 2018 end-page: 8 article-title: Deoxyfluorination with sulfonyl fluorides: navigating reaction space with machine learning publication-title: J Am Chem Soc – volume: 12 start-page: 1 year: 2020 end-page: 14 article-title: CompRet: a comprehensive recommendation framework for chemical synthesis planning with algorithmic enumeration publication-title: J Chem – volume: 37 start-page: 71 issue: 1 year: 1997 end-page: 9 article-title: Sybyl line notation (sln): A versatile language for chemical structure representation publication-title: J Chem Inf Comput Sci – volume: 60 start-page: 192 issue: 3 year: 1983 article-title: Wiswesser line notation: an introduction publication-title: J Chem Educ – volume: 60 start-page: 47 year: 2019 end-page: 55 article-title: Predicting retrosynthetic reactions using self‐corrected transformer neural networks publication-title: J Chem Inf Model – volume: 3 start-page: 1103 year: 2017 end-page: 13 article-title: Retrosynthetic reaction prediction using neural sequence‐to‐sequence models publication-title: ACS Cent Sci – volume: 34 start-page: 247 year: 2005 end-page: 66 article-title: Computer‐aided organic synthesis publication-title: Chem Soc Rev – volume: 559 start-page: 377 year: 2018 end-page: 81 article-title: Controlling an organic synthesis robot with machine learning to search for new reactivity publication-title: Nature – volume: 32 start-page: 244 issue: 3 year: 1992 end-page: 55 article-title: Description of several chemical structure file formats used by computer programs developed at molecular design limited publication-title: J Chem Inf Comput Sci – volume: 54 start-page: 2741 year: 2021 end-page: 9 article-title: Adsorption enthalpies for catalysis modeling through machine‐learned descriptors publication-title: Acc Chem Res – volume: 20 start-page: 253 year: 2011 end-page: 70 article-title: Condensed graph of reaction: considering a chemical reaction as one single pseudo molecule publication-title: Int J Artif Intell Tools – volume: 60 start-page: 3398 year: 2020 end-page: 407 article-title: Data augmentation and pretraining for template‐based retrosynthetic prediction in computer‐aided synthesis planning publication-title: J Chem Inf Model – volume: 11 start-page: 1 year: 2020 end-page: 8 article-title: Transfer learning enables the molecular transformer to predict regio‐and stereoselective reactions on carbohydrates publication-title: Nat Commun – volume: 4 start-page: 522 year: 2018 end-page: 32 article-title: Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory publication-title: Chem – volume: 61 start-page: 3273 year: 2021 end-page: 84 article-title: Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits publication-title: J Chem Inf Model – volume: 61 start-page: 493 year: 2020 end-page: 504 article-title: Direct optimization across computer‐generated reaction networks balances materials use and feasibility of synthesis plans for molecule libraries publication-title: J Chem Inf Model – volume: 56 start-page: 2336 year: 2016 end-page: 46 article-title: What's what: the (nearly) definitive guide to reaction role assignment publication-title: J Chem Inf Model – volume: 12 start-page: 1 year: 2020 end-page: 9 article-title: AiZynthFinder: a fast, robust and flexible open‐source software for retrosynthetic planning publication-title: J Chem – volume: 13 start-page: 455 year: 1998 end-page: 92 article-title: Efficient global optimization of expensive black‐box functions publication-title: J Glob Optim – volume: 132 start-page: 13355 year: 2020 end-page: 61 article-title: Predicting regioselectivity in radical C–H functionalization of heterocycles through machine learning publication-title: Angew Chem – volume: 67 year: 2021 article-title: Predicting chemical reaction outcomes: a grammar ontology‐based transformer framework publication-title: AIChE J – volume: 32 start-page: 8872 year: 2019 end-page: 82 article-title: Retrosynthesis prediction with conditional graph logic network publication-title: Adv Neur In – volume: 12 start-page: 4468 year: 2021 article-title: Machine learning based energy‐free structure predictions of molecules, transition states, and solids publication-title: Nat Commun – volume: 5 start-page: 896 year: 2020 end-page: 902 article-title: Multitask prediction of site selectivity in aromatic C–H functionalization reactions publication-title: React Chem Eng – volume: 420 year: 2021 article-title: Retroprime: A diverse, plausible and transformer‐based method for single‐step retrosynthesis predictions publication-title: Chem Eng J – volume: 10 start-page: 7021 year: 2020 end-page: 31 article-title: Data‐driven advancement of homogeneous nickel catalyst activity for aryl ether cleavage publication-title: ACS Catal – volume: 7 year: 2021 article-title: Extraction of organic chemistry grammar from unsupervised learning of chemical reactions publication-title: Sci Adv – year: 2020 article-title: Atom‐to‐atom mapping: a benchmarking study of popular mapping algorithms and consensus strategies publication-title: Molecular Informatics – start-page: 19 year: 1973 end-page: 64 – volume: 60 start-page: 5714 year: 2020 end-page: 23 article-title: The synthesizability of molecules proposed by generative models publication-title: J Chem Inf Model – volume: 555 start-page: 604 year: 2018 end-page: 10 article-title: Planning chemical syntheses with deep neural networks and symbolic ai publication-title: Nature – year: 1977 – volume: 34 start-page: 2613 year: 1996 end-page: 33 article-title: Computer‐assisted planning of organic syntheses: the second generation of programs publication-title: Angew Chem Int Ed – volume: 93 start-page: 6847 year: 1971 end-page: 54 article-title: Systematic characterization of structures and reactions for use in organic synthesis publication-title: J Am Chem Soc – volume: 59 start-page: 3645 year: 2019 end-page: 54 article-title: Learning to predict reaction conditions: relationships between solvent, molecular structure, and catalyst publication-title: J Chem Inf Model – volume: 197 start-page: 1041 year: 1977 end-page: 9 article-title: Empirical explorations of synchem publication-title: Science – volume: 28 start-page: 31 year: 1988 end-page: 6 article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules publication-title: J Chem Inf Comput Sci – volume: 4 start-page: 268 year: 2018 end-page: 76 article-title: Automatic chemical design using a data‐driven continuous representation of molecules publication-title: ACS Cent Sci – volume: 4 start-page: 120 year: 2018 end-page: 31 article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks publication-title: ACS Cent Sci – volume: 11 start-page: 10959 year: 2020 end-page: 72 article-title: Towards efficient discovery of green synthetic pathways with Monte Carlo tree search and reinforcement learning publication-title: Chem Sci – volume: 11 start-page: 2992 year: 2020 end-page: 7 article-title: Deep learning of activation energies publication-title: J Phys Chem Lett – volume: 61 start-page: 123 year: 2021 end-page: 33 article-title: Valid, plausible, and diverse retrosynthesis using tied two‐way transformers with latent variables publication-title: J Chem Inf Model – volume: 263 year: 2020 article-title: A machine learning framework for the analysis and prediction of catalytic activity from experimental data publication-title: Appl Catal B – volume: 5 start-page: 1572 year: 2019 end-page: 83 article-title: Molecular transformer: A model for uncertainty‐calibrated chemical reaction prediction publication-title: ACS Cent Sci – volume: 10 start-page: 1371 year: 2020 end-page: 8 article-title: Retrosynthesis with attention‐based nmt model and chemical analysis of “wrong” predictions publication-title: RSC Adv – volume: 11 start-page: 1 year: 2019 end-page: 12 article-title: A retrosynthetic analysis algorithm implementation publication-title: J Chem – volume: 2 year: 2021 article-title: Prediction of chemical reaction yields using deep learning publication-title: Mach Learn: Sci Technol – year: 2006 – volume: 110 start-page: E193 year: 2013 end-page: 201 article-title: Navigating the protein fitness landscape with gaussian processes publication-title: PNAS – volume: 149 year: 2018 article-title: Data‐driven computation of molecular reaction coordinates publication-title: J Chem Phys – volume: 55 start-page: 5904 year: 2016 end-page: 37 article-title: Computer‐assisted synthetic planning: the end of the beginning publication-title: Angew Chem Int Ed – volume: 11 start-page: 13085 year: 2020 end-page: 93 article-title: What can reaction databases teach us about Buchwald–Hartwig cross‐couplings publication-title: Chem Sci – volume: 590 start-page: 89 year: 2021 end-page: 96 article-title: Bayesian reaction optimization as a tool for chemical synthesis publication-title: Nature – volume: 3 start-page: 442 year: 2018 end-page: 52 article-title: Deep learning for chemical reaction prediction publication-title: Mol Syst Des Eng – ident: e_1_2_10_97_1 doi: 10.1007/978-3-030-30493-5_78 – ident: e_1_2_10_153_1 doi: 10.1021/acs.jcim.1c01400 – ident: e_1_2_10_18_1 doi: 10.1016/j.chempr.2018.02.002 – ident: e_1_2_10_157_1 doi: 10.1038/s41557-020-0527-z – ident: e_1_2_10_60_1 – ident: e_1_2_10_11_1 doi: 10.1007/BFb0051317 – ident: e_1_2_10_8_1 doi: 10.1126/science.197.4308.1041 – ident: e_1_2_10_150_1 doi: 10.1039/D0SC04823B – ident: e_1_2_10_26_1 – ident: e_1_2_10_130_1 doi: 10.1038/s41467-021-22951-1 – start-page: 2100138 year: 2020 ident: e_1_2_10_38_1 article-title: Atom‐to‐atom mapping: a benchmarking study of popular mapping algorithms and consensus strategies publication-title: Molecular Informatics – ident: e_1_2_10_117_1 – ident: e_1_2_10_182_1 doi: 10.1039/C9ME00039A – ident: e_1_2_10_115_1 doi: 10.1021/acscentsci.9b00055 – ident: e_1_2_10_205_1 doi: 10.33774/chemrxiv-2021-mc870 – ident: e_1_2_10_184_1 – ident: e_1_2_10_4_1 doi: 10.1126/science.3838594 – ident: e_1_2_10_24_1 doi: 10.1038/nature25978 – ident: e_1_2_10_188_1 doi: 10.1021/acscentsci.7b00572 – ident: e_1_2_10_59_1 – ident: e_1_2_10_47_1 doi: 10.1142/S0218213011000140 – ident: e_1_2_10_113_1 doi: 10.1039/C9SC03666K – ident: e_1_2_10_112_1 doi: 10.1186/s13321-018-0323-6 – ident: e_1_2_10_50_1 doi: 10.1021/acs.jcim.0c00448 – ident: e_1_2_10_103_1 – ident: e_1_2_10_29_1 doi: 10.1039/C9SC05704H – ident: e_1_2_10_109_1 doi: 10.1002/anie.201806920 – ident: e_1_2_10_194_1 – volume-title: Advances in neural information processing systems year: 2014 ident: e_1_2_10_185_1 – ident: e_1_2_10_42_1 doi: 10.1021/ci960109j – ident: e_1_2_10_110_1 doi: 10.1126/science.aax1566 – ident: e_1_2_10_147_1 doi: 10.1021/acs.accounts.1c00153 – ident: e_1_2_10_63_1 doi: 10.1109/ACCESS.2021.3083838 – ident: e_1_2_10_88_1 doi: 10.1038/s41467-021-21895-w – ident: e_1_2_10_169_1 doi: 10.1039/D0CP04670A – ident: e_1_2_10_135_1 doi: 10.26434/chemrxiv.13286741.v1 – ident: e_1_2_10_200_1 – ident: e_1_2_10_201_1 doi: 10.1038/nchem.1243 – ident: e_1_2_10_62_1 – ident: e_1_2_10_174_1 doi: 10.1007/3-540-07165-2_55 – ident: e_1_2_10_55_1 doi: 10.1021/ci5006614 – ident: e_1_2_10_159_1 doi: 10.1016/j.cpc.2016.02.013 – ident: e_1_2_10_149_1 doi: 10.1039/D0RE00071J – volume: 13 start-page: 1 year: 2021 ident: e_1_2_10_148_1 article-title: RegioSQM20: improved prediction of the regioselectivity of electrophilic aromatic substitutions publication-title: J Chem – ident: e_1_2_10_158_1 doi: 10.1039/D1SC00482D – start-page: 6852 volume-title: Advances in neural information processing systems year: 2020 ident: e_1_2_10_193_1 – ident: e_1_2_10_203_1 doi: 10.1002/9783527618279.ch12 – ident: e_1_2_10_141_1 doi: 10.1021/acs.accounts.0c00857 – ident: e_1_2_10_168_1 doi: 10.1039/D0SC04896H – ident: e_1_2_10_34_1 doi: 10.1038/s41586-021-03213-y – ident: e_1_2_10_16_1 doi: 10.1021/ci00023a005 – ident: e_1_2_10_73_1 doi: 10.1002/minf.201400052 – ident: e_1_2_10_21_1 – ident: e_1_2_10_156_1 doi: 10.1021/acs.accounts.0c00826 – ident: e_1_2_10_128_1 doi: 10.1021/acs.jcim.9b00313 – ident: e_1_2_10_155_1 doi: 10.1126/science.aau5631 – volume: 13 start-page: 1 issue: 1 year: 2021 ident: e_1_2_10_93_1 article-title: Biocatalysed synthesis planning using data‐driven learning publication-title: Nat Commun – ident: e_1_2_10_170_1 doi: 10.1038/s41467-021-24525-7 – ident: e_1_2_10_80_1 doi: 10.1021/ci100050t – ident: e_1_2_10_131_1 doi: 10.1038/s41467-020-17266-6 – ident: e_1_2_10_2_1 doi: 10.1093/mind/LIX.236.433 – ident: e_1_2_10_67_1 doi: 10.1126/science.aar5169 – ident: e_1_2_10_14_1 doi: 10.1351/pac199062101921 – ident: e_1_2_10_140_1 doi: 10.1016/j.apcatb.2019.118257 – ident: e_1_2_10_65_1 doi: 10.1088/2632-2153/abc81d – ident: e_1_2_10_162_1 doi: 10.1063/1.5126701 – ident: e_1_2_10_192_1 – ident: e_1_2_10_133_1 doi: 10.1126/science.aat8763 – ident: e_1_2_10_68_1 doi: 10.1021/jacs.8b01523 – ident: e_1_2_10_17_1 doi: 10.1002/anie.201506101 – ident: e_1_2_10_102_1 doi: 10.1021/jacsau.1c00246 – ident: e_1_2_10_7_1 doi: 10.1021/bk-1977-0061.ch005 – ident: e_1_2_10_48_1 – ident: e_1_2_10_5_1 doi: 10.1021/ja00757a020 – ident: e_1_2_10_46_1 doi: 10.1021/ci00052a009 – ident: e_1_2_10_116_1 – ident: e_1_2_10_180_1 doi: 10.1038/s41586-020-2442-2 – ident: e_1_2_10_173_1 doi: 10.1140/epjb/s10051-021-00233-5 – ident: e_1_2_10_86_1 doi: 10.1002/aic.17190 – ident: e_1_2_10_79_1 doi: 10.1002/chem.201605499 – ident: e_1_2_10_139_1 doi: 10.1038/s41586-018-0307-8 – start-page: 2607 volume-title: Advances in neural information processing systems year: 2017 ident: e_1_2_10_23_1 – ident: e_1_2_10_199_1 – ident: e_1_2_10_152_1 doi: 10.1039/C8CP03141J – ident: e_1_2_10_176_1 doi: 10.1023/A:1008306431147 – ident: e_1_2_10_78_1 doi: 10.1021/acscentsci.6b00219 – ident: e_1_2_10_126_1 doi: 10.1039/D0SC05078D – ident: e_1_2_10_10_1 doi: 10.1021/ja00754a026 – ident: e_1_2_10_100_1 doi: 10.1021/acs.jcim.0c01074 – ident: e_1_2_10_181_1 doi: 10.1002/cmtd.202000051 – ident: e_1_2_10_138_1 doi: 10.1126/science.1259203 – ident: e_1_2_10_74_1 doi: 10.1016/j.drudis.2018.02.014 – ident: e_1_2_10_132_1 doi: 10.1126/science.aat8603 – ident: e_1_2_10_183_1 – ident: e_1_2_10_195_1 doi: 10.1109/TNN.1998.712192 – ident: e_1_2_10_106_1 doi: 10.1016/j.cej.2021.129845 – ident: e_1_2_10_44_1 – volume: 12 start-page: 1 year: 2020 ident: e_1_2_10_206_1 article-title: Visualization of very large high‐dimensional data sets as minimum spanning trees publication-title: J Chem – ident: e_1_2_10_98_1 doi: 10.1039/C9RA08535A – ident: e_1_2_10_179_1 doi: 10.1021/acscentsci.8b00307 – ident: e_1_2_10_137_1 doi: 10.1039/D0RE00232A – ident: e_1_2_10_57_1 doi: 10.1021/acscentsci.7b00303 – ident: e_1_2_10_204_1 doi: 10.1021/acs.jcim.9b00537 – ident: e_1_2_10_31_1 doi: 10.1021/acs.jcim.1c00537 – ident: e_1_2_10_96_1 doi: 10.1039/C9CC05122H – ident: e_1_2_10_178_1 doi: 10.1073/pnas.1215251110 – ident: e_1_2_10_104_1 – ident: e_1_2_10_3_1 doi: 10.1351/pac196714010019 – ident: e_1_2_10_127_1 doi: 10.1021/acscentsci.8b00357 – ident: e_1_2_10_40_1 doi: 10.1021/ci00057a005 – volume: 13 start-page: 1 year: 2021 ident: e_1_2_10_101_1 article-title: Substructure‐based neural machine translation for retrosynthetic prediction publication-title: J Chem – ident: e_1_2_10_151_1 doi: 10.1002/ange.202000959 – ident: e_1_2_10_6_1 doi: 10.1021/ja00822a020 – ident: e_1_2_10_118_1 doi: 10.1021/acs.jcim.0c00320 – ident: e_1_2_10_58_1 doi: 10.1038/s42256-020-00284-w – ident: e_1_2_10_66_1 doi: 10.1038/s42256-021-00319-w – ident: e_1_2_10_69_1 doi: 10.1126/science.aap9112 – ident: e_1_2_10_123_1 doi: 10.1039/C9RE00348G – ident: e_1_2_10_72_1 doi: 10.1039/b104620a – ident: e_1_2_10_27_1 doi: 10.1039/C8SC04228D – ident: e_1_2_10_61_1 – ident: e_1_2_10_77_1 doi: 10.1039/C7ME00107J – ident: e_1_2_10_189_1 doi: 10.1021/acs.jcim.0c00833 – ident: e_1_2_10_13_1 doi: 10.1007/3-540-16904-0_14 – ident: e_1_2_10_171_1 doi: 10.1063/1.5035183 – ident: e_1_2_10_82_1 doi: 10.1039/D0CP04748A – ident: e_1_2_10_177_1 doi: 10.1109/TIT.2011.2182033 – ident: e_1_2_10_33_1 doi: 10.1038/s41586-020-2855-y – ident: e_1_2_10_32_1 doi: 10.1038/s41467-020-18671-7 – ident: e_1_2_10_64_1 doi: 10.1039/D0SC04074F – ident: e_1_2_10_94_1 doi: 10.1021/acscentsci.7b00355 – ident: e_1_2_10_43_1 doi: 10.1021/ci00007a012 – ident: e_1_2_10_190_1 doi: 10.1021/acs.jcim.0c00174 – ident: e_1_2_10_144_1 doi: 10.1038/s41586-020-2242-8 – ident: e_1_2_10_28_1 doi: 10.1021/acscentsci.9b00576 – ident: e_1_2_10_105_1 doi: 10.1609/aaai.v35i1.16131 – ident: e_1_2_10_142_1 doi: 10.1021/acscatal.0c00774 – ident: e_1_2_10_36_1 doi: 10.1002/wcms.1140 – ident: e_1_2_10_143_1 doi: 10.1039/C8SC01949E – ident: e_1_2_10_165_1 doi: 10.1038/s41597-020-0460-4 – ident: e_1_2_10_196_1 doi: 10.1002/9780470316887 – ident: e_1_2_10_124_1 doi: 10.1021/acs.jcim.0c01032 – ident: e_1_2_10_87_1 – ident: e_1_2_10_37_1 doi: 10.1126/sciadv.abe4166 – ident: e_1_2_10_191_1 doi: 10.1038/s42256-019-0067-7 – ident: e_1_2_10_145_1 doi: 10.1039/D0TA06203K – ident: e_1_2_10_83_1 – volume: 6 start-page: 1 year: 2020 ident: e_1_2_10_187_1 article-title: Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials publication-title: npj Comput Mater – ident: e_1_2_10_166_1 doi: 10.1021/acs.jcim.9b00237 – volume: 12 start-page: 1 year: 2020 ident: e_1_2_10_51_1 article-title: ReactionCode: format for reaction searching, analysis, classification, transform, and encoding/decoding publication-title: J Chem – ident: e_1_2_10_15_1 doi: 10.1002/recl.19921110605 – ident: e_1_2_10_49_1 – ident: e_1_2_10_56_1 doi: 10.1021/acs.jcim.6b00564 – ident: e_1_2_10_35_1 doi: 10.1126/sciadv.abg3338 – volume: 12 start-page: 1 year: 2020 ident: e_1_2_10_111_1 article-title: AiZynthFinder: a fast, robust and flexible open‐source software for retrosynthetic planning publication-title: J Chem – ident: e_1_2_10_119_1 doi: 10.26434/chemrxiv.11869692 – ident: e_1_2_10_99_1 doi: 10.1021/acs.jcim.9b00949 – ident: e_1_2_10_120_1 doi: 10.1039/D0SC04184J – ident: e_1_2_10_161_1 doi: 10.1088/2632-2153/aba822 – ident: e_1_2_10_20_1 – ident: e_1_2_10_129_1 doi: 10.1021/acs.jcim.0c01234 – ident: e_1_2_10_84_1 doi: 10.1038/s41467-020-19266-y – ident: e_1_2_10_163_1 doi: 10.1039/D0SC00445F – ident: e_1_2_10_167_1 doi: 10.1021/acs.jpclett.0c00500 – ident: e_1_2_10_172_1 doi: 10.1021/acs.jpclett.8b00759 – ident: e_1_2_10_197_1 doi: 10.1038/nature24270 – ident: e_1_2_10_25_1 doi: 10.1039/C8SC02339E – ident: e_1_2_10_76_1 doi: 10.1021/ci3003039 – volume-title: Gaussian processes for machine learning year: 2006 ident: e_1_2_10_175_1 – volume: 5 issue: 47 year: 2020 ident: e_1_2_10_198_1 article-title: Learning quadrupedal locomotion over challenging terrain publication-title: Sci Rob – ident: e_1_2_10_70_1 doi: 10.1021/jacs.1c09820 – ident: e_1_2_10_30_1 doi: 10.1039/C9SC04944D – ident: e_1_2_10_52_1 doi: 10.1088/2632-2153/aba947 – ident: e_1_2_10_12_1 doi: 10.1007/BFb0050147 – ident: e_1_2_10_85_1 doi: 10.26434/chemrxiv.11659563.v1 – ident: e_1_2_10_134_1 doi: 10.1016/j.chempr.2020.02.017 – ident: e_1_2_10_39_1 doi: 10.1021/ed060p192 – ident: e_1_2_10_114_1 – ident: e_1_2_10_154_1 doi: 10.1039/D0SC06222G – ident: e_1_2_10_19_1 doi: 10.1021/acs.accounts.0c00714 – ident: e_1_2_10_22_1 doi: 10.1021/acscentsci.7b00064 – ident: e_1_2_10_81_1 doi: 10.1145/3292500.3330958 – ident: e_1_2_10_202_1 – ident: e_1_2_10_136_1 doi: 10.1021/acs.jcim.1c00699 – ident: e_1_2_10_186_1 – ident: e_1_2_10_91_1 doi: 10.1039/D1CC00586C – ident: e_1_2_10_90_1 doi: 10.1039/D0CC02657C – ident: e_1_2_10_41_1 doi: 10.1021/ci00062a008 – volume: 12 start-page: 1 year: 2020 ident: e_1_2_10_121_1 article-title: CompRet: a comprehensive recommendation framework for chemical synthesis planning with algorithmic enumeration publication-title: J Chem – ident: e_1_2_10_122_1 doi: 10.1609/aaai.v26i1.8331 – ident: e_1_2_10_160_1 doi: 10.1063/5.0059742 – ident: e_1_2_10_75_1 doi: 10.1021/ci200207y – ident: e_1_2_10_45_1 doi: 10.1021/acscentsci.7b00512 – ident: e_1_2_10_146_1 doi: 10.1021/acscatal.0c03472 – ident: e_1_2_10_54_1 – ident: e_1_2_10_89_1 doi: 10.1039/D1SC02362D – ident: e_1_2_10_71_1 doi: 10.1002/anie.199526131 – ident: e_1_2_10_9_1 doi: 10.1021/ci00068a023 – ident: e_1_2_10_108_1 doi: 10.1021/acs.jcim.0c00403 – volume: 32 start-page: 8872 year: 2019 ident: e_1_2_10_53_1 article-title: Retrosynthesis prediction with conditional graph logic network publication-title: Adv Neur In – ident: e_1_2_10_92_1 – ident: e_1_2_10_107_1 doi: 10.1021/acs.jmedchem.9b01919 – ident: e_1_2_10_125_1 doi: 10.1039/C9RE00213H – start-page: 3104 volume-title: Advances in neural information processing systems year: 2014 ident: e_1_2_10_95_1 – ident: e_1_2_10_164_1 doi: 10.1007/s10562-019-02705-x |
| SSID | ssj0000491231 |
| Score | 2.5958278 |
| SecondaryResourceType | review_article |
| Snippet | Discovering new reactions, optimizing their performance, and extending the synthetically accessible chemical space are critical drivers for major technological... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e1604 |
| SubjectTerms | Algorithms Artificial intelligence Catalysts Chemical reactions Chemical synthesis computer‐assisted synthesis planning Data science data‐driven approaches Design optimization machine intelligence Machine learning Pharmaceutical industry Space exploration |
| Title | Machine intelligence for chemical reaction space |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1604 https://www.proquest.com/docview/2711618445 |
| Volume | 12 |
| WOSCitedRecordID | wos000765648800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1759-0884 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491231 issn: 1759-0876 databaseCode: DRFUL dateStart: 20110101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fS8MwEMePuQn64m9xOkcRH3wpa370R_BJpsMHN4Y63Ftp0hQGOmWd-u97SdttgoLgWwtpWq53ySdH8j2A84AjxAZIbkqhB3NEfleEJHUzdBCJRKBkVhSbCAeDaDwWwxpcVmdhCn2IRcLNRIYdr02AJzLvLEVDP9VLbnIjfA0ahLDI1G2gfLhIsCD64qhsF1yhL1wjvVYpC3m0s3j6-3y0hMxVVLVzTW_7X1-5A1slYjpXhU_sQk1P92CjW1V22wevb3dQameyosfpIL06qpQPcBAl7YEHBwccpQ9g1Lt57N66ZeUEVzEkJDdlXorRpqLE1yQVmRA64kkqFFWaJZJ4eJ-lVFIEtiDCHpNA4lqGaRqZOhiSHUJ9-jrVR-DgAkeSIKAp8z3OhUbe4z7VlLAwUZ7ImnBR2S9Wpay4qW7xHBeCyDQ2JoiNCZpwtmj6Vmhp_NSoVf2EuAynPKYhMcL-nPv4Omvu3zuIn7r9B3Nx_PemJ7BJzbEGu3esBfX57F2fwrr6mE_yWdv6VRsa1_e90d0XVgjQCw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fS8MwEMePOYX54m9xOrWID76UtUn6I-CLDMfEbQycuLfQpikMdMo69d_3kv7YBAXBtxbStFzvkk-O5HsAlz5DiPWR3KRED2aI_DYP3MRO0UFiJAIZp3mxiWA4DCcTPqrBdXkWJteHqBJuOjLMeK0DXCek20vV0E_5kunkCFuDdYazjPZywkZVhgXZF4dls-IKPG5r7bVSWsgh7erp7xPSkjJXWdVMNt3t_33mDmwVkGnd5F6xCzU124NGp6zttg_OwOyhVNZ0RZHTQn61ZCEgYCFMmiMPFg45Uh3AY_d23OnZRe0EW1JkJDuhToLxJsPIU27CU85VyKKESyIVjWLXwfs0ITFBZPND7DHyY1zNUEVCXQkjpodQn73O1BFYuMSJXd8nCfUcxrhC4mMeUcSlQSQdnjbhqjSgkIWwuK5v8SxySWQitAmENkETLqqmb7maxk-NWuVfEEVAZYIErpb2Z8zD1xl7_96BeOoMHvTF8d-bnkOjNx70Rf9ueH8Cm0QfcjA7yVpQX8zf1SlsyI_FNJufGSf7Aj3G0lY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fS8MwEMePuYn64m9xOrWID76UtWn6I-CLbBbFbQx1uLfQJikMdI5t6r_vpb82QUHwrYU0Lde75JMj-R7AhUcRYj0kNyHQgykiv8l8W5oJOkiMRCDiJCs24fd6wXDI-hW4Ks7CZPoQZcJNR0Y6XusAVxOZNBeqoZ_idaaTI3QFalQXkalCrf0QDjpljgXpFwfmdM3lu8zU6muFuJBFmuXz36ekBWcu02o63YRb__vQbdjMMdO4zvxiBypqvAvrraK62x5Y3XQXpTJGS5qcBhKsIXIJAQNxMj30YOCgI9Q-DMKbp9atmVdPMIWDlGRKx5IYcSKIXGVLljCmAhpJJohQThTbFt4nksQEoc0LsMfIi3E94ygS6FoYsXMA1fHbWB2CgYuc2PY8Ih3XopQpZD7qEkVsx4-ExZI6XBYG5CKXFtcVLl54JopMuDYB1yaow3nZdJLpafzUqFH8BZ6H1IwT39bi_pS6-LrU3r93wJ9b3Ud9cfT3pmew1m-HvHPXuz-GDaJPOaRbyRpQnU_f1Qmsio_5aDY9zb3sC-5102w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+intelligence+for+chemical+reaction+space&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Schwaller%2C+Philippe&rft.au=Vaucher%2C+Alain+C.&rft.au=Laplaza%2C+Ruben&rft.au=Bunne%2C+Charlotte&rft.date=2022-09-01&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=12&rft.issue=5&rft_id=info:doi/10.1002%2Fwcms.1604&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_wcms_1604 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon |