Turning a Digital Camera into an Absolute 2D Tele‐Colorimeter

We present a simple and effective technique for absolute colorimetric camera characterization, invariant to changes in exposure/aperture and scene irradiance, suitable in a wide range of applications including image‐based reflectance measurements, spectral pre‐filtering and spectral upsampling for r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 38; číslo 1; s. 73 - 86
Hlavní autoři: Guarnera, G. C., Bianco, S., Schettini, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.02.2019
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a simple and effective technique for absolute colorimetric camera characterization, invariant to changes in exposure/aperture and scene irradiance, suitable in a wide range of applications including image‐based reflectance measurements, spectral pre‐filtering and spectral upsampling for rendering, to improve colour accuracy in high dynamic range imaging. Our method requires a limited number of acquisitions, an off‐the‐shelf target and a commonly available projector, used as a controllable light source, other than the reflected radiance to be known. The characterized camera can be effectively used as a 2D tele‐colorimeter, providing the user with an accurate estimate of the distribution of luminance and chromaticity in a scene, without requiring explicit knowledge of the incident lighting power spectra. We validate the approach by comparing our estimated absolute tristimulus values (XYZ data in cd/m2) with the measurements of a professional 2D tele‐colorimeter, for a set of scenes with complex geometry, spatially varying reflectance and light sources with very different spectral power distribution. We present a simple and effective technique for absolute colorimetric camera characterization, invariant to changes in exposure/aperture and scene irradiance, suitable in a wide range of applications including image‐based reflectance measurements, spectral pre‐filtering and spectral upsampling for rendering, to improve colour accuracy in high dynamic range imaging. Our method requires a limited number of acquisitions, an off‐the‐shelf target and a commonly available projector, used as a controllable light source, other than the reflected radiance to be known. The characterized camera can be effectively used as a 2D tele‐colorimeter, providing the user with an accurate estimate of the distribution of luminance and chromaticity in a scene, without requiring explicit knowledge of the incident lighting power spectra.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.13393