A review of molecular representation in the age of machine learning
Research in chemistry increasingly requires interdisciplinary work prompted by, among other things, advances in computing, machine learning, and artificial intelligence. Everyone working with molecules, whether chemist or not, needs an understanding of the representation of molecules in a machine‐re...
Uloženo v:
| Vydáno v: | Wiley interdisciplinary reviews. Computational molecular science Ročník 12; číslo 5; s. e1603 - n/a |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
Wiley Periodicals, Inc
01.09.2022
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1759-0876, 1759-0884 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Research in chemistry increasingly requires interdisciplinary work prompted by, among other things, advances in computing, machine learning, and artificial intelligence. Everyone working with molecules, whether chemist or not, needs an understanding of the representation of molecules in a machine‐readable format, as this is central to computational chemistry. Four classes of representations are introduced: string, connection table, feature‐based, and computer‐learned representations. Three of the most significant representations are simplified molecular‐input line‐entry system (SMILES), International Chemical Identifier (InChI), and the MDL molfile, of which SMILES was the first to successfully be used in conjunction with a variational autoencoder (VAE) to yield a continuous representation of molecules. This is noteworthy because a continuous representation allows for efficient navigation of the immensely large chemical space of possible molecules. Since 2018, when the first model of this type was published, considerable effort has been put into developing novel and improved methodologies. Most, if not all, researchers in the community make their work easily accessible on GitHub, though discussion of computation time and domain of applicability is often overlooked. Herein, we present questions for consideration in future work which we believe will make chemical VAEs even more accessible.
This article is categorized under:
Data Science > Chemoinformatics
Understanding how to best represent molecules in a machine‐readable format is a key challenge. |
|---|---|
| AbstractList | Research in chemistry increasingly requires interdisciplinary work prompted by, among other things, advances in computing, machine learning, and artificial intelligence. Everyone working with molecules, whether chemist or not, needs an understanding of the representation of molecules in a machine‐readable format, as this is central to computational chemistry. Four classes of representations are introduced: string, connection table, feature‐based, and computer‐learned representations. Three of the most significant representations are simplified molecular‐input line‐entry system (SMILES), International Chemical Identifier (InChI), and the MDL molfile, of which SMILES was the first to successfully be used in conjunction with a variational autoencoder (VAE) to yield a continuous representation of molecules. This is noteworthy because a continuous representation allows for efficient navigation of the immensely large chemical space of possible molecules. Since 2018, when the first model of this type was published, considerable effort has been put into developing novel and improved methodologies. Most, if not all, researchers in the community make their work easily accessible on GitHub, though discussion of computation time and domain of applicability is often overlooked. Herein, we present questions for consideration in future work which we believe will make chemical VAEs even more accessible.
This article is categorized under:
Data Science > Chemoinformatics
Understanding how to best represent molecules in a machine‐readable format is a key challenge. Research in chemistry increasingly requires interdisciplinary work prompted by, among other things, advances in computing, machine learning, and artificial intelligence. Everyone working with molecules, whether chemist or not, needs an understanding of the representation of molecules in a machine‐readable format, as this is central to computational chemistry. Four classes of representations are introduced: string, connection table, feature‐based, and computer‐learned representations. Three of the most significant representations are simplified molecular‐input line‐entry system (SMILES), International Chemical Identifier (InChI), and the MDL molfile, of which SMILES was the first to successfully be used in conjunction with a variational autoencoder (VAE) to yield a continuous representation of molecules. This is noteworthy because a continuous representation allows for efficient navigation of the immensely large chemical space of possible molecules. Since 2018, when the first model of this type was published, considerable effort has been put into developing novel and improved methodologies. Most, if not all, researchers in the community make their work easily accessible on GitHub, though discussion of computation time and domain of applicability is often overlooked. Herein, we present questions for consideration in future work which we believe will make chemical VAEs even more accessible. This article is categorized under: Data Science > Chemoinformatics Research in chemistry increasingly requires interdisciplinary work prompted by, among other things, advances in computing, machine learning, and artificial intelligence. Everyone working with molecules, whether chemist or not, needs an understanding of the representation of molecules in a machine‐readable format, as this is central to computational chemistry. Four classes of representations are introduced: string, connection table, feature‐based, and computer‐learned representations. Three of the most significant representations are simplified molecular‐input line‐entry system (SMILES), International Chemical Identifier (InChI), and the MDL molfile, of which SMILES was the first to successfully be used in conjunction with a variational autoencoder (VAE) to yield a continuous representation of molecules. This is noteworthy because a continuous representation allows for efficient navigation of the immensely large chemical space of possible molecules. Since 2018, when the first model of this type was published, considerable effort has been put into developing novel and improved methodologies. Most, if not all, researchers in the community make their work easily accessible on GitHub, though discussion of computation time and domain of applicability is often overlooked. Herein, we present questions for consideration in future work which we believe will make chemical VAEs even more accessible.This article is categorized under:Data Science > Chemoinformatics |
| Author | Goodman, Jonathan M. Wigh, Daniel S. Lapkin, Alexei A. |
| Author_xml | – sequence: 1 givenname: Daniel S. orcidid: 0000-0002-0494-643X surname: Wigh fullname: Wigh, Daniel S. organization: University of Cambridge – sequence: 2 givenname: Jonathan M. orcidid: 0000-0002-8693-9136 surname: Goodman fullname: Goodman, Jonathan M. organization: University of Cambridge – sequence: 3 givenname: Alexei A. orcidid: 0000-0001-7621-0889 surname: Lapkin fullname: Lapkin, Alexei A. email: aal35@cam.ac.uk organization: University of Cambridge |
| BookMark | eNp1kE1PAjEQhhuDiYgc_AebePKw0I_txx7Jxq8E40GNx6bUWShZWmwXCf_eBYwHo3OZyeR538m856jngweELgkeEYzpeGtXaUQEZieoTyQvc6xU0fuZpThDw5SWuKuiJJSRPqomWYRPB9ss1NkqNGA3jYndbh0hgW9N64LPnM_aBWRmDgfM2IXzkDVgond-foFOa9MkGH73AXq9vXmp7vPp091DNZnmljHKcqBAucKyLJkSlBacGyMLNqsxSDljxALIWtRUcA5ClcBY8c6NMmCgsGAJG6Cro-86ho8NpFYvwyb67qSmkhBBZKlkR42PlI0hpQi1tu74RhuNazTBeh-W3oel92F1iutfinV0KxN3f7Lf7lvXwO5_UL9Vj88HxRcSLHrt |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2025_110100 crossref_primary_10_1016_j_matt_2025_101958 crossref_primary_10_1021_acs_jcim_5c00555 crossref_primary_10_3390_molecules28010208 crossref_primary_10_3390_pharmaceutics17091186 crossref_primary_10_1088_2632_2153_acdb30 crossref_primary_10_3390_molecules28010322 crossref_primary_10_1002_mrc_5336 crossref_primary_10_3390_ma16206687 crossref_primary_10_3390_pr11123325 crossref_primary_10_1093_bib_bbad306 crossref_primary_10_3390_app13074356 crossref_primary_10_1016_j_ejmech_2025_118176 crossref_primary_10_1016_j_tifs_2024_104578 crossref_primary_10_1515_pac_2025_0462 crossref_primary_10_1007_s00894_025_06365_0 crossref_primary_10_1016_j_pmatsci_2025_101544 crossref_primary_10_1186_s13321_024_00905_1 crossref_primary_10_1186_s13321_023_00798_6 crossref_primary_10_1007_s40820_023_01192_5 crossref_primary_10_1038_s41929_024_01150_3 crossref_primary_10_3390_pharmaceutics14112257 crossref_primary_10_3389_fphar_2024_1441587 crossref_primary_10_1016_j_rpth_2025_102691 crossref_primary_10_1038_s41467_024_49620_3 crossref_primary_10_3389_fpubh_2023_1140353 crossref_primary_10_1093_bib_bbad422 crossref_primary_10_3389_fceng_2023_1144115 crossref_primary_10_1021_acs_jcim_4c02255 crossref_primary_10_1063_5_0151122 crossref_primary_10_1080_17425255_2025_2551724 crossref_primary_10_1080_10643389_2025_2469868 crossref_primary_10_1002_adfm_202410075 crossref_primary_10_1186_s13321_025_01003_6 crossref_primary_10_1016_j_drudis_2023_103763 crossref_primary_10_1002_adma_202413695 crossref_primary_10_1186_s13321_025_01064_7 crossref_primary_10_1016_j_medidd_2025_100223 crossref_primary_10_1002_cjce_25525 crossref_primary_10_1002_cphc_202400773 crossref_primary_10_1515_pac_2022_1001 crossref_primary_10_1021_acsomega_5c00042 crossref_primary_10_1002_mats_202400008 crossref_primary_10_1021_acs_jcim_4c02102 crossref_primary_10_1021_acscentsci_3c00050 crossref_primary_10_1002_qub2_23 crossref_primary_10_1016_j_heliyon_2024_e39038 crossref_primary_10_1002_cplu_202300702 crossref_primary_10_1016_j_isci_2025_111881 crossref_primary_10_1063_5_0155012 crossref_primary_10_1016_j_csbj_2025_08_031 crossref_primary_10_1039_D4SC03921A crossref_primary_10_1063_5_0282683 crossref_primary_10_1080_07391102_2023_2295974 crossref_primary_10_1007_s12293_024_00414_6 crossref_primary_10_1016_j_compchemeng_2025_109007 crossref_primary_10_3390_ijms26051860 crossref_primary_10_1038_s44386_025_00017_2 crossref_primary_10_1016_j_biopha_2024_117070 crossref_primary_10_1080_15376516_2025_2484318 crossref_primary_10_1038_s41598_024_61124_0 crossref_primary_10_3762_bjoc_20_196 crossref_primary_10_1002_cmdc_202400931 crossref_primary_10_1016_j_procs_2023_01_023 crossref_primary_10_1021_acscentsci_5c00785 crossref_primary_10_1016_j_clinthera_2024_06_011 crossref_primary_10_1016_j_jpha_2025_101313 crossref_primary_10_1038_s41467_024_54456_y crossref_primary_10_3390_molecules30163442 crossref_primary_10_1063_5_0210910 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_1186_s12859_024_05654_4 crossref_primary_10_1186_s13321_024_00933_x crossref_primary_10_1002_agt2_70089 crossref_primary_10_1016_j_compbiolchem_2025_108622 crossref_primary_10_3390_molecules29163902 crossref_primary_10_1007_s10967_022_08620_7 crossref_primary_10_1021_acs_jctc_5c00178 crossref_primary_10_1007_s40203_025_00384_8 crossref_primary_10_1016_j_ailsci_2022_100056 crossref_primary_10_1186_s13321_025_01081_6 crossref_primary_10_3390_app15073640 crossref_primary_10_3390_molecules28031342 crossref_primary_10_1016_j_cjche_2024_10_014 crossref_primary_10_3389_fchem_2025_1632046 crossref_primary_10_3390_ma17071664 crossref_primary_10_1021_acs_jcim_5c00354 crossref_primary_10_1016_j_comtox_2025_100369 crossref_primary_10_1016_j_cmpb_2024_108163 crossref_primary_10_1016_j_envres_2025_122811 crossref_primary_10_1021_acsnano_5c03690 crossref_primary_10_1186_s13321_023_00682_3 crossref_primary_10_1016_j_csbj_2024_07_003 crossref_primary_10_55225_sti_492 crossref_primary_10_1016_j_csbj_2024_04_030 crossref_primary_10_1002_chem_202401626 crossref_primary_10_1002_cptc_202500079 crossref_primary_10_1007_s12598_023_02358_1 crossref_primary_10_1038_s42004_025_01585_0 crossref_primary_10_1007_s11306_024_02090_6 crossref_primary_10_1186_s13321_023_00712_0 crossref_primary_10_3389_fddsv_2025_1674289 crossref_primary_10_1051_itmconf_20235602007 crossref_primary_10_1021_acs_jcim_5c00584 crossref_primary_10_1021_cbe_4c00170 crossref_primary_10_1016_j_drudis_2022_05_005 crossref_primary_10_3390_computation13090216 crossref_primary_10_1016_j_corsci_2022_110780 crossref_primary_10_1007_s11030_023_10752_1 crossref_primary_10_1007_s40242_025_5175_9 crossref_primary_10_1093_bib_bbad187 crossref_primary_10_1186_s13321_024_00937_7 crossref_primary_10_1016_j_tifs_2025_104887 crossref_primary_10_1038_s41598_024_75841_z crossref_primary_10_1016_j_compchemeng_2023_108523 crossref_primary_10_1016_j_swevo_2025_101967 crossref_primary_10_1021_acscentsci_5c00561 crossref_primary_10_1002_aisy_202400985 crossref_primary_10_3390_jmse12030495 crossref_primary_10_1002_chem_202202834 crossref_primary_10_1038_s41524_025_01774_4 crossref_primary_10_1093_bib_bbae340 crossref_primary_10_60084_hjas_v3i1_270 crossref_primary_10_1002_smll_202207106 crossref_primary_10_60084_ijds_v3i1_306 crossref_primary_10_1016_j_ecoenv_2025_119008 crossref_primary_10_1186_s13321_025_00954_0 crossref_primary_10_1021_acs_chemrev_4c00893 crossref_primary_10_1021_acs_jcim_4c02261 crossref_primary_10_1016_j_inffus_2023_102092 crossref_primary_10_1088_2632_2153_acee42 crossref_primary_10_1039_D4DD00353E crossref_primary_10_1021_acs_jpclett_5c01077 crossref_primary_10_1016_j_compbiomed_2024_107958 crossref_primary_10_1021_acs_jctc_5c00303 crossref_primary_10_1021_acs_jctc_5c00425 crossref_primary_10_1002_smtd_202301243 crossref_primary_10_1002_adem_202300104 crossref_primary_10_1109_MCI_2024_3401369 crossref_primary_10_1007_s11030_025_11118_5 crossref_primary_10_1016_j_trac_2025_118320 crossref_primary_10_1002_aenm_202304559 crossref_primary_10_1021_acs_jcim_5c00645 crossref_primary_10_1063_5_0245365 crossref_primary_10_1021_acs_est_4c14193 crossref_primary_10_1021_acs_jcim_5c00484 crossref_primary_10_3389_ebm_2025_10359 crossref_primary_10_3390_computation13070169 crossref_primary_10_1002_minf_202400146 crossref_primary_10_1016_j_envpol_2025_127011 crossref_primary_10_1021_acs_jpca_4c05718 crossref_primary_10_1002_jcc_27315 crossref_primary_10_1186_s13321_024_00818_z crossref_primary_10_1186_s13321_025_01045_w crossref_primary_10_3389_frhem_2024_1305741 |
| Cites_doi | 10.1021/cen-v030n034.p3523 10.1186/s13321-018-0258-y 10.1021/ci00039a002 10.26434/chemrxiv.14554803 10.1039/C9ME00039A 10.1021/acscentsci.8b00357 10.1016/j.neucom.2021.04.039 10.1021/acs.jcim.5b00543 10.1021/ci010132r 10.1007/978-3-030-30493-5_79 10.1093/nar/gkv352 10.1021/acs.chemrev.8b00588 10.1021/ci3001925 10.1021/jm0707727 10.1021/ed100697w 10.1021/ja00051a040 10.1088/2632-2153/aba947 10.1088/2632-2153/ac09d6 10.1021/ci900507g 10.1002/chem.201605499 10.1021/ci050400b 10.1186/s13321-021-00512-4 10.1016/S0003-2670(01)83100-7 10.1021/ci3001277 10.1038/s41586-021-03213-y 10.1021/acs.jcim.6b00601 10.1021/acs.jcim.8b00626 10.1021/ci00034a005 10.1186/s13321-016-0160-4 10.26434/chemrxiv.7097960.v1 10.1186/1758-2946-4-22 10.1016/j.ymeth.2014.08.005 10.1126/science.aar5169 10.1371/journal.pcbi.1002380 10.1021/ci600238j 10.1021/ci00054a007 10.1021/acscentsci.7b00512 10.1038/s41598-017-17299-w 10.1186/s13321-021-00517-z 10.1021/ci00007a012 10.1021/ci200488k 10.1021/ci970429i 10.1039/C9SC01844A 10.1002/wcms.36 10.1093/nar/gky1075 10.1002/cmdc.200800178 10.1039/D1SC00231G 10.1021/c160030a007 10.1021/acs.jcim.7b00616 10.1109/5.726791 10.1021/acscentsci.7b00572 10.1021/ci00062a008 10.1021/acs.jcim.0c00675 10.1016/j.drudis.2020.12.009 10.1038/sdata.2014.22 10.1021/ci100050t 10.1021/ci960109j 10.1039/C8SC04175J 10.1021/ci00047a024 10.1038/s41586-021-03819-2 10.1126/science.166.3902.178 10.1021/acs.accounts.0c00745 10.1021/acs.jcim.9b00286 10.1016/j.drudis.2020.11.037 10.1093/nar/gkw1074 10.1021/ci300116p 10.1016/j.drudis.2019.02.013 10.1021/ci00057a005 10.1021/acscentsci.9b00576 10.1093/nar/gkaa971 10.1186/s13321-015-0068-4 10.1021/acs.molpharmaceut.7b01134 10.1186/s13321-015-0057-7 10.1002/9783527618279.ch38 10.1039/D0CP00305K 10.1021/jacs.1c09820 10.1021/ci100384d |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by Wiley Periodicals LLC. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7QH 7TN 7UA C1K F1W H96 JQ2 L.G |
| DOI | 10.1002/wcms.1603 |
| DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Computer Science Collection Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1759-0884 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_wcms_1603 WCMS1603 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: UCB – fundername: Engineering and Physical Sciences Research Council funderid: EP/S024220/1 |
| GroupedDBID | 05W 0R~ 1OC 1VH 24P 31~ 33P 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR WYJ ZZTAW ~S- AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION LH4 7QH 7TN 7UA C1K F1W H96 JQ2 L.G |
| ID | FETCH-LOGICAL-c3323-e2e258079938622455aa743bf0e77b31cee7f6f2655e689e334d5a8aeae4cec13 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 230 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757657800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1759-0876 |
| IngestDate | Fri Jul 25 11:59:00 EDT 2025 Sat Nov 29 02:23:39 EST 2025 Tue Nov 18 22:08:15 EST 2025 Wed Jan 22 16:22:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3323-e2e258079938622455aa743bf0e77b31cee7f6f2655e689e334d5a8aeae4cec13 |
| Notes | Funding information Engineering and Physical Sciences Research Council, Grant/Award Number: EP/S024220/1; UCB ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8693-9136 0000-0002-0494-643X 0000-0001-7621-0889 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1603 |
| PQID | 2711617987 |
| PQPubID | 2034594 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2711617987 crossref_citationtrail_10_1002_wcms_1603 crossref_primary_10_1002_wcms_1603 wiley_primary_10_1002_wcms_1603_WCMS1603 |
| PublicationCentury | 2000 |
| PublicationDate | September/October 2022 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September/October 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Wiley interdisciplinary reviews. Computational molecular science |
| PublicationYear | 2022 |
| Publisher | Wiley Periodicals, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Periodicals, Inc – name: Wiley Subscription Services, Inc |
| References | 1968; 8 2017; 7 2021; 26 2018; 360 2021; 23 2015; 71 2019; 10 2020; 60 1952; 30 2019; 59 2017; 45 2008; 3 1998; 86 2012; 52 1969; 166 1985; 25 2014; 1 2020; 1 2018; 4 2021; 596 2002; 42 2019; 24 1992; 114 2015; 43 1982; 22 2021; 590 2019; 119 1978; 103 1983; 23 2021; 49 2019; 4 2011; 1 2019; 5 2021; 2 2011 2015; 55 2017; 23 2008 2021; 143 1992; 32 2008; 51 2015; 7 1989; 29 1998; 38 2021; 13 2010; 87 2021; 54 2021; 12 2006; 46 2021 2020 1997; 37 2011; 51 2017; 57 2019; 47 1988; 28 2019 2018 2017 2016 2021; 450 2014 2020; 22 2013 2012; 4 2018; 10 2016; 8 2018; 15 2007; 47 2010; 50 2018; 58 2012; 8 1987; 27 e_1_2_14_73_1 e_1_2_14_96_1 e_1_2_14_110_1 e_1_2_14_31_1 e_1_2_14_50_1 e_1_2_14_92_1 Favre HA (e_1_2_14_19_1) 2014 e_1_2_14_35_1 e_1_2_14_12_1 e_1_2_14_54_1 e_1_2_14_39_1 e_1_2_14_77_1 e_1_2_14_16_1 e_1_2_14_58_1 e_1_2_14_6_1 e_1_2_14_107_1 e_1_2_14_103_1 e_1_2_14_85_1 e_1_2_14_2_1 Kingma DP (e_1_2_14_69_1) 2013 e_1_2_14_20_1 e_1_2_14_62_1 e_1_2_14_81_1 e_1_2_14_24_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_28_1 e_1_2_14_89_1 e_1_2_14_47_1 e_1_2_14_72_1 e_1_2_14_111_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_76_1 e_1_2_14_99_1 e_1_2_14_7_1 e_1_2_14_108_1 e_1_2_14_104_1 e_1_2_14_84_1 e_1_2_14_100_1 e_1_2_14_42_1 e_1_2_14_80_1 e_1_2_14_3_1 e_1_2_14_61_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_65_1 e_1_2_14_27_1 e_1_2_14_88_1 Sabando MV (e_1_2_14_95_1) 2021; 23 e_1_2_14_94_1 e_1_2_14_112_1 e_1_2_14_75_1 e_1_2_14_52_1 Henderson P (e_1_2_14_93_1) 2019 e_1_2_14_10_1 e_1_2_14_56_1 Software N. (e_1_2_14_101_1) 2021 e_1_2_14_33_1 e_1_2_14_14_1 e_1_2_14_98_1 e_1_2_14_37_1 e_1_2_14_79_1 e_1_2_14_8_1 e_1_2_14_109_1 e_1_2_14_105_1 e_1_2_14_60_1 e_1_2_14_83_1 e_1_2_14_41_1 e_1_2_14_64_1 e_1_2_14_4_1 e_1_2_14_45_1 e_1_2_14_68_1 e_1_2_14_22_1 e_1_2_14_87_1 Kurach K (e_1_2_14_91_1) 2019 e_1_2_14_49_1 Melis G (e_1_2_14_90_1) 2017 e_1_2_14_26_1 e_1_2_14_74_1 e_1_2_14_97_1 Neil D (e_1_2_14_71_1) 2018 e_1_2_14_51_1 e_1_2_14_70_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_55_1 e_1_2_14_17_1 e_1_2_14_36_1 e_1_2_14_59_1 e_1_2_14_78_1 e_1_2_14_29_1 e_1_2_14_5_1 e_1_2_14_9_1 e_1_2_14_106_1 e_1_2_14_102_1 e_1_2_14_86_1 e_1_2_14_63_1 e_1_2_14_40_1 e_1_2_14_82_1 e_1_2_14_67_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_25_1 e_1_2_14_48_1 Derwent C (e_1_2_14_18_1) 2020 |
| References_xml | – year: 2011 – volume: 10 start-page: 4 year: 2018 article-title: Mordred: a molecular descriptor calculator publication-title: J Chem – volume: 23 start-page: 1 year: 2021 end-page: 21 article-title: Using molecular embeddings in QSAR modeling: does it make a difference? publication-title: Brief Bioinform – volume: 60 start-page: 6065 year: 2020 end-page: 73 article-title: ZINC20—a free ultralarge‐scale chemical database for ligand discovery publication-title: J Chem Inf Model – volume: 15 start-page: 4378 year: 2018 end-page: 85 article-title: 3D molecular representations based on the wave transform for convolutional neural networks publication-title: Mol Pharm – volume: 51 start-page: 739 year: 2011 end-page: 53 article-title: Chemical name to structure: OPSIN, an open source solution publication-title: J Chem Inf Model – volume: 52 start-page: 1745 year: 2012 end-page: 56 article-title: Mining electronic laboratory notebooks: analysis, retrosynthesis, and reaction based enumeration publication-title: J Chem Inf Model – year: 2018 article-title: DeepSMILES: An adaptation of SMILES for use in machine‐learning of chemical structures publication-title: ChemRxiv – volume: 1 start-page: 557 year: 2011 end-page: 79 article-title: Representation of chemical structures publication-title: WIREs Comput Mol Sci – volume: 23 start-page: 93 year: 1983 end-page: 102 article-title: The CAS ONLINE search system. 1. General system design and selection, generation, and use of search screens publication-title: J Chem Inf Comput Sci – year: 2021 – volume: 59 start-page: 1136 year: 2019 end-page: 46 article-title: De novo molecule design by translating from reduced graphs to SMILES publication-title: J Chem Inf Model – volume: 30 start-page: 3523 year: 1952 end-page: 6 article-title: Thw (sic) Wiswesser line formula notation publication-title: Chem Eng News Arch – volume: 27 start-page: 74 year: 1987 end-page: 82 article-title: DARC system: notions of defined and generic substructures. Filiation and coding of FREL substructure (SS) classes publication-title: J Chem Inf Comput Sci – volume: 7 start-page: 23 year: 2015 article-title: InChI, the IUPAC international chemical identifier publication-title: J Chem – volume: 50 start-page: 742 year: 2010 end-page: 54 article-title: Extended‐connectivity fingerprints publication-title: J Chem Inf Model – volume: 26 start-page: 511 year: 2021 end-page: 24 article-title: Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: ways to make an impact, and why we are not there yet publication-title: Drug Discov Today – volume: 114 start-page: 10024 year: 1992 end-page: 35 article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations publication-title: J Am Chem Soc – volume: 45 start-page: D945 year: 2017 end-page: 54 article-title: The ChEMBL database in 2017 publication-title: Nucleic Acids Res – volume: 12 start-page: 7079 year: 2021 end-page: 90 article-title: Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES publication-title: Chem Sci – year: 2018 – volume: 55 start-page: 2111 year: 2015 end-page: 20 article-title: Get your atoms in order—an open‐source implementation of a novel and robust molecular canonicalization algorithm publication-title: J Chem Inf Model – volume: 119 start-page: 6561 year: 2019 end-page: 94 article-title: Computational ligand descriptors for catalyst design publication-title: Chem Rev – year: 2014 – volume: 1 year: 2014 article-title: Quantum chemistry structures and properties of 134 kilo molecules publication-title: Sci Data – volume: 47 start-page: 1734 year: 2007 end-page: 46 article-title: Algorithm for advanced canonical coding of planar chemical structures that considers stereochemical and symmetric information publication-title: J Chem Inf Model – volume: 4 start-page: 22 year: 2012 article-title: Towards a universal SMILES representation—a standard method to generate canonical SMILES based on the InChI publication-title: J Chem – volume: 37 start-page: 71 year: 1997 end-page: 9 article-title: SYBYL Line Notation (SLN): a versatile language for chemical structure representation publication-title: J Chem Inf Comput Sci – volume: 22 start-page: 88 year: 1982 end-page: 93 article-title: How the WLN began in 1949 and how it might be in 1999 publication-title: J Chem Inf Comput Sci – volume: 43 start-page: W612 year: 2015 end-page: 20 article-title: ChEMBL web services: streamlining access to drug discovery data and utilities publication-title: Nucleic Acids Res – volume: 3 start-page: 1503 year: 2008 end-page: 7 article-title: On the art of compiling and using “drug‐like” chemical fragment spaces publication-title: ChemMedChem – volume: 51 start-page: 3149 year: 2011 end-page: 57 article-title: Accurate specification of molecular structures: the case for zero‐order bonds and explicit hydrogen counting publication-title: J Chem Inf Model – volume: 8 start-page: 50 year: 2016 article-title: Jmol SMILES and Jmol SMARTS: specifications and applications publication-title: J Chem – volume: 86 start-page: 2278 year: 1998 end-page: 324 article-title: Gradient‐based learning applied to document recognition publication-title: Proc IEEE – volume: 71 start-page: 58 year: 2015 end-page: 63 article-title: Molecular fingerprint similarity search in virtual screening publication-title: Methods – year: 2008 – volume: 13 start-page: 40 year: 2021 article-title: InChI version 1.06: now more than 99.99% reliable publication-title: J Chem – volume: 5 start-page: 1572 year: 2019 end-page: 83 article-title: Molecular transformer: a model for uncertainty‐calibrated chemical reaction prediction publication-title: ACS Cent Sci – volume: 24 start-page: 1148 year: 2019 end-page: 56 article-title: The next level in chemical space navigation: going far beyond enumerable compound libraries publication-title: Drug Discov Today – volume: 7 start-page: 16991 year: 2017 article-title: A universal 3D voxel descriptor for solid‐state material informatics with deep convolutional neural networks publication-title: Sci Rep – volume: 26 start-page: 1040 year: 2021 end-page: 52 article-title: Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data publication-title: Drug Discov Today – volume: 52 start-page: 2796 year: 2012 end-page: 806 article-title: HELM: a hierarchical notation language for complex biomolecule structure representation publication-title: J Chem Inf Model – year: 2019 – volume: 49 start-page: D1388 year: 2021 end-page: 95 article-title: PubChem in 2021: new data content and improved web interfaces publication-title: Nucleic Acids Res – volume: 4 start-page: 1465 year: 2018 end-page: 76 article-title: Using machine learning to predict suitable conditions for organic reactions publication-title: ACS Cent Sci – volume: 51 start-page: 2468 year: 2008 end-page: 80 article-title: Similarity searching and scaffold hopping in synthetically accessible combinatorial chemistry spaces publication-title: J Med Chem – volume: 13 start-page: 34 year: 2021 article-title: STOUT: SMILES to IUPAC names using neural machine translation publication-title: J Chem – volume: 596 start-page: 583 year: 2021 end-page: 9 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature – volume: 8 year: 2012 article-title: DOGS: reaction‐driven de novo design of bioactive compounds publication-title: PLoS Comput Biol – volume: 54 start-page: 827 year: 2021 end-page: 36 article-title: Importance of engineered and learned molecular representations in predicting organic reactivity, selectivity, and chemical properties publication-title: Acc Chem Res – volume: 166 start-page: 178 year: 1969 end-page: 92 article-title: Computer‐assisted design of complex organic syntheses publication-title: Science – volume: 57 start-page: 1757 year: 2017 end-page: 72 article-title: Convolutional embedding of attributed molecular graphs for physical property prediction publication-title: J Chem Inf Model – volume: 50 start-page: 992 year: 2010 end-page: 1004 article-title: Comparative evaluation of 3D virtual ligand screening methods: impact of the molecular alignment on enrichment publication-title: J Chem Inf Model – volume: 87 start-page: 1123 year: 2010 end-page: 4 article-title: ChemSpider: an online chemical information resource publication-title: J Chem Educ – volume: 32 start-page: 244 year: 1992 end-page: 55 article-title: Description of several chemical structure file formats usedby computer programs developed at Molecular Design Limited publication-title: J Chem Inf Comput Sci – volume: 2019 start-page: 831 end-page: 835 – volume: 10 start-page: 6697 year: 2019 end-page: 706 article-title: Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis publication-title: Chem Sci – volume: 103 start-page: 355 year: 1978 end-page: 65 article-title: Hose—a novel substructure code publication-title: Anal Chim Acta – volume: 29 start-page: 97 year: 1989 end-page: 101 article-title: SMILES. 2. Algorithm for generation of unique SMILES notation publication-title: J Chem Inf Comput Sci – volume: 58 start-page: 27 year: 2018 end-page: 35 article-title: Mol2vec: unsupervised machine learning approach with chemical intuition publication-title: J Chem Inf Model – volume: 38 start-page: 511 year: 1998 end-page: 22 article-title: RECAP—retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry publication-title: J Chem Inf Comput Sci – volume: 52 start-page: 1757 year: 2012 end-page: 68 article-title: ZINC: a free tool to discover chemistry for biology publication-title: J Chem Inf Model – volume: 4 start-page: 828 year: 2019 end-page: 49 article-title: Deep learning for molecular design—a review of the state of the art publication-title: Mol Syst Design Eng – volume: 360 start-page: 186 year: 2018 end-page: 90 article-title: Predicting reaction performance in C–N cross‐coupling using machine learning publication-title: Science – volume: 46 start-page: 991 year: 2006 end-page: 8 article-title: The blue obelisk—interoperability in chemical informatics publication-title: J Chem Inf Model – volume: 23 start-page: 5966 year: 2017 end-page: 71 article-title: Neural‐symbolic machine learning for retrosynthesis and reaction prediction publication-title: Chem Eur J – volume: 8 start-page: 146 year: 1968 end-page: 50 article-title: 107 Years of line‐formula notations (1861–1968) publication-title: J Chem Doc – year: 2016 – volume: 1 start-page: 1757 year: 2020 end-page: 72 article-title: Self‐referencing embedded strings (SELFIES): a 100% robust molecular string representation publication-title: Mach Learn Sci Technol – volume: 22 start-page: 8373 year: 2020 end-page: 90 article-title: Are 2D fingerprints still valuable for drug discovery? publication-title: Phys Chem Chem Phys – volume: 59 start-page: 2529 year: 2019 end-page: 37 article-title: RDChiral: an RDKit wrapper for handling stereochemistry in retrosynthetic template extraction and application publication-title: J Chem Inf Model – volume: 25 start-page: 264 year: 1985 end-page: 70 article-title: Generic structure storage and retrieval publication-title: J Chem Inf Comput Sci – volume: 42 start-page: 1273 year: 2002 end-page: 80 article-title: Reoptimization of MDL keys for use in drug discovery publication-title: J Chem Inf Comput Sci – volume: 4 start-page: 268 year: 2018 end-page: 76 article-title: Automatic chemical design using a data‐driven continuous representation of molecules publication-title: ACS Cent Sci – volume: 4 start-page: 120 year: 2018 end-page: 31 article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks publication-title: ACS Cent Sci – volume: 2 year: 2021 article-title: Deep molecular dreaming: inverse machine learning for de‐novo molecular design and interpretability with surjective representations publication-title: Mach Learn Sci Technol – volume: 28 start-page: 31 year: 1988 end-page: 6 article-title: A chemical language and information system. 1. Introduction to methodology and encoding rules publication-title: J Chem Inf Comput Sci – volume: 7 start-page: 9 year: 2015 article-title: Machines first, humans second: on the importance of algorithmic interpretation of open chemistry data publication-title: J Chem – volume: 47 start-page: D930 year: 2019 end-page: 40 article-title: ChEMBL: towards direct deposition of bioassay data publication-title: Nucleic Acids Res – year: 2020 – volume: 10 start-page: 1692 year: 2019 end-page: 701 article-title: Learning continuous and datadriven molecular descriptors by translating equivalent chemical representations publication-title: Chem Sci – start-page: 311 year: 2020 – year: 2017 – volume: 143 start-page: 18820 year: 2021 end-page: 6 article-title: The open reaction database publication-title: J Am Chem Soc – volume: 590 start-page: 89 year: 2021 end-page: 96 article-title: Bayesian reaction optimization as a tool for chemical synthesis publication-title: Nature – year: 2013 – volume: 450 start-page: 242 year: 2021 end-page: 52 article-title: Molecular graph generation with graph neural networks publication-title: Neurocomputing – ident: e_1_2_14_14_1 doi: 10.1021/cen-v030n034.p3523 – ident: e_1_2_14_74_1 – volume-title: Proceedings of the 36th international conference on machine learning (ICML) year: 2019 ident: e_1_2_14_91_1 – ident: e_1_2_14_43_1 – ident: e_1_2_14_56_1 doi: 10.1186/s13321-018-0258-y – ident: e_1_2_14_8_1 doi: 10.1021/ci00039a002 – ident: e_1_2_14_103_1 doi: 10.26434/chemrxiv.14554803 – ident: e_1_2_14_68_1 doi: 10.1039/C9ME00039A – ident: e_1_2_14_66_1 doi: 10.1021/acscentsci.8b00357 – ident: e_1_2_14_82_1 doi: 10.1016/j.neucom.2021.04.039 – ident: e_1_2_14_92_1 – ident: e_1_2_14_42_1 – ident: e_1_2_14_24_1 doi: 10.1021/acs.jcim.5b00543 – ident: e_1_2_14_64_1 doi: 10.1021/ci010132r – ident: e_1_2_14_75_1 – volume-title: Deep reinforcement learning that matters. AAAI Conference on Artificial Intelligence (AAAI) year: 2019 ident: e_1_2_14_93_1 – ident: e_1_2_14_72_1 doi: 10.1007/978-3-030-30493-5_79 – ident: e_1_2_14_13_1 doi: 10.1093/nar/gkv352 – ident: e_1_2_14_86_1 – ident: e_1_2_14_54_1 doi: 10.1021/acs.chemrev.8b00588 – start-page: 311 volume-title: Derwent World Patents Index year: 2020 ident: e_1_2_14_18_1 – ident: e_1_2_14_3_1 doi: 10.1021/ci3001925 – ident: e_1_2_14_99_1 doi: 10.1021/jm0707727 – ident: e_1_2_14_10_1 doi: 10.1021/ed100697w – ident: e_1_2_14_111_1 doi: 10.1021/ja00051a040 – ident: e_1_2_14_36_1 doi: 10.1088/2632-2153/aba947 – ident: e_1_2_14_38_1 doi: 10.1088/2632-2153/ac09d6 – ident: e_1_2_14_5_1 doi: 10.1021/ci900507g – ident: e_1_2_14_80_1 – ident: e_1_2_14_31_1 doi: 10.1002/chem.201605499 – ident: e_1_2_14_29_1 – ident: e_1_2_14_112_1 doi: 10.1021/ci050400b – ident: e_1_2_14_33_1 doi: 10.1186/s13321-021-00512-4 – ident: e_1_2_14_60_1 doi: 10.1016/S0003-2670(01)83100-7 – ident: e_1_2_14_78_1 doi: 10.1021/ci3001277 – ident: e_1_2_14_55_1 doi: 10.1038/s41586-021-03213-y – ident: e_1_2_14_58_1 doi: 10.1021/acs.jcim.6b00601 – ident: e_1_2_14_59_1 doi: 10.1021/acs.jcim.8b00626 – ident: e_1_2_14_6_1 – volume-title: Exploring deep recurrent models with reinforcement learning for molecule design. International Conference on Learning Representations (ICLR) workshop year: 2018 ident: e_1_2_14_71_1 – ident: e_1_2_14_110_1 – ident: e_1_2_14_16_1 doi: 10.1021/ci00034a005 – volume-title: Nomenclature of organic chemistry: IUPAC recommendations and preferred names 2013 year: 2014 ident: e_1_2_14_19_1 – ident: e_1_2_14_30_1 – ident: e_1_2_14_104_1 doi: 10.1186/s13321-016-0160-4 – ident: e_1_2_14_52_1 – ident: e_1_2_14_39_1 – ident: e_1_2_14_35_1 doi: 10.26434/chemrxiv.7097960.v1 – ident: e_1_2_14_23_1 doi: 10.1186/1758-2946-4-22 – ident: e_1_2_14_62_1 doi: 10.1016/j.ymeth.2014.08.005 – ident: e_1_2_14_57_1 doi: 10.1126/science.aar5169 – ident: e_1_2_14_98_1 doi: 10.1371/journal.pcbi.1002380 – ident: e_1_2_14_106_1 doi: 10.1021/ci600238j – ident: e_1_2_14_61_1 doi: 10.1021/ci00054a007 – ident: e_1_2_14_70_1 doi: 10.1021/acscentsci.7b00512 – ident: e_1_2_14_84_1 doi: 10.1038/s41598-017-17299-w – ident: e_1_2_14_45_1 doi: 10.1186/s13321-021-00517-z – ident: e_1_2_14_83_1 – ident: e_1_2_14_49_1 doi: 10.1021/ci00007a012 – ident: e_1_2_14_65_1 – ident: e_1_2_14_50_1 doi: 10.1021/ci200488k – ident: e_1_2_14_79_1 – ident: e_1_2_14_97_1 doi: 10.1021/ci970429i – ident: e_1_2_14_48_1 – ident: e_1_2_14_53_1 doi: 10.1039/C9SC01844A – ident: e_1_2_14_81_1 – ident: e_1_2_14_4_1 doi: 10.1002/wcms.36 – ident: e_1_2_14_11_1 doi: 10.1093/nar/gky1075 – ident: e_1_2_14_96_1 doi: 10.1002/cmdc.200800178 – ident: e_1_2_14_40_1 doi: 10.1039/D1SC00231G – volume-title: Auto‐encoding variational Bayes. The 2nd International Conference on Learning Representations (ICLR) year: 2013 ident: e_1_2_14_69_1 – ident: e_1_2_14_15_1 doi: 10.1021/c160030a007 – ident: e_1_2_14_34_1 doi: 10.1021/acs.jcim.7b00616 – ident: e_1_2_14_109_1 doi: 10.1109/5.726791 – volume: 23 start-page: 1 year: 2021 ident: e_1_2_14_95_1 article-title: Using molecular embeddings in QSAR modeling: does it make a difference? publication-title: Brief Bioinform – ident: e_1_2_14_67_1 doi: 10.1021/acscentsci.7b00572 – ident: e_1_2_14_25_1 doi: 10.1021/ci00062a008 – ident: e_1_2_14_7_1 – ident: e_1_2_14_102_1 doi: 10.1021/acs.jcim.0c00675 – ident: e_1_2_14_87_1 doi: 10.1016/j.drudis.2020.12.009 – ident: e_1_2_14_77_1 doi: 10.1038/sdata.2014.22 – ident: e_1_2_14_63_1 doi: 10.1021/ci100050t – ident: e_1_2_14_46_1 doi: 10.1021/ci960109j – ident: e_1_2_14_73_1 doi: 10.1039/C8SC04175J – ident: e_1_2_14_17_1 doi: 10.1021/ci00047a024 – ident: e_1_2_14_2_1 doi: 10.1038/s41586-021-03819-2 – ident: e_1_2_14_26_1 doi: 10.1126/science.166.3902.178 – ident: e_1_2_14_37_1 – ident: e_1_2_14_107_1 doi: 10.1021/acs.accounts.0c00745 – ident: e_1_2_14_76_1 – ident: e_1_2_14_28_1 doi: 10.1021/acs.jcim.9b00286 – ident: e_1_2_14_88_1 doi: 10.1016/j.drudis.2020.11.037 – ident: e_1_2_14_12_1 doi: 10.1093/nar/gkw1074 – ident: e_1_2_14_27_1 doi: 10.1021/ci300116p – ident: e_1_2_14_100_1 doi: 10.1016/j.drudis.2019.02.013 – ident: e_1_2_14_21_1 doi: 10.1021/ci00057a005 – ident: e_1_2_14_32_1 doi: 10.1021/acscentsci.9b00576 – volume-title: SmallWorld year: 2021 ident: e_1_2_14_101_1 – ident: e_1_2_14_9_1 doi: 10.1093/nar/gkaa971 – ident: e_1_2_14_41_1 doi: 10.1186/s13321-015-0068-4 – ident: e_1_2_14_85_1 doi: 10.1021/acs.molpharmaceut.7b01134 – ident: e_1_2_14_22_1 – ident: e_1_2_14_51_1 doi: 10.1186/s13321-015-0057-7 – ident: e_1_2_14_105_1 – ident: e_1_2_14_47_1 doi: 10.1002/9783527618279.ch38 – ident: e_1_2_14_108_1 – ident: e_1_2_14_44_1 – ident: e_1_2_14_94_1 doi: 10.1039/D0CP00305K – volume-title: On the state of the art of evaluation in neural language models. International Conference on Learning Representations (ICLR) year: 2017 ident: e_1_2_14_90_1 – ident: e_1_2_14_89_1 doi: 10.1021/jacs.1c09820 – ident: e_1_2_14_20_1 doi: 10.1021/ci100384d |
| SSID | ssj0000491231 |
| Score | 2.6788127 |
| SecondaryResourceType | review_article |
| Snippet | Research in chemistry increasingly requires interdisciplinary work prompted by, among other things, advances in computing, machine learning, and artificial... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e1603 |
| SubjectTerms | Accessibility Artificial intelligence chemoinformatics Computation Computational chemistry Computer applications fingerprints Learning algorithms Machine learning molecular representation Navigation Representations variational autoencoder |
| Title | A review of molecular representation in the age of machine learning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1603 https://www.proquest.com/docview/2711617987 |
| Volume | 12 |
| WOSCitedRecordID | wos000757657800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1759-0884 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491231 issn: 1759-0876 databaseCode: DRFUL dateStart: 20110101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7MTdCLv8XpHEE8eClbk6Zp8TSqw4OOoQ53K2mWyMB1sk79903SH1NQELz18JqWJO-974W87wM4VyaN6MpDRz9fOR4TwgmESx03CZQG-BOPJsqKTbDBIBiPw2ENLstemJwfojpwM55h47VxcJ5knRVp6IeYZeZshKxBw3VJYHQbsDesDlg09NVR2RZcjIaOoV4rmYW6uFO9_T0frUDmV6hqc01_-19_uQNbBcREvXxP7EJNpnuwEZXKbvsQ9VDesYLmCs1KfVxk-S3LXqQUTVOkwSHS8caa2UuXEhUqE88HMOpfP0Y3TiGm4AhCMHEklpgGXabxiC5isEcp5xo9JKorGUuIq5MlU77CPqXSD0JJiDehPOCSS09I4ZJDqKfzVB4B8iVOdBXEFRfEC7ucJzrJS6JzfUK4cr0mXJRTGouCadwIXrzEOUcyjs2sxGZWmnBWmb7m9Bo_GbXKdYkLD8tizFxTmoUB05-zK_D7APFTdPdgHo7_bnoCm9h0OtjrZC2oLxdv8hTWxftymi3adqu1oXF13x_dfgKuH9gF |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qFerFt1ituogHL6HNPrIJeClFqdiWghV7C5vtrhRsKm3Vv-_uJmkVFARvOUw2YR_zfTPsfANwqS2MmMjDeL9Ae5RL6YXSZ56fhNoQ_BFliXbNJnivFw6HUb8E10UtTKYPsUy42ZPh_LU94DYhXV-phn7IydwmR8garFODMnaXY9pfZlgM9zVu2UVcnEWe1V4rpIUauL58-zsgrVjmV67qwOZ2-3-_uQNbOclEzWxX7EJJpXtQaRW93fah1URZzQqaajQpOuQip3BZVCOlaJwiQw-R8TjOzF27VCjvM_F8AI-3N4NW28vbKXiSEEw8hRVmYYMbRmLCGEwZE8Lwh0Q3FOcJ8Q1cch1oHDCmgjBShNARE6FQQlGppE8OoZxOU3UEKFA4MXGQ0EISGjWESAzMK2LQPiFC-7QKV8WcxjLXGrctL17iTCUZx3ZWYjsrVbhYmr5mAhs_GdWKhYnzMzaPMfdtcBaF3HzOLcHvA8RPre6DfTj-u-k5VNqDbifu3PXuT2AT27oHd7msBuXF7E2dwoZ8X4znszO37z4ByaLaUA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7MTdSLv8Xp1CAevJStSdO04GVsDsU5hjrcraRZIgPXjW3qv2-StpuCguCth9e0JHnvfS_kfR_AhTJpRFceOvr5yvGYEE4gXOq4caA0wB94NFZWbIJ1OkG_H3YLcJX3wqT8EIsDN-MZNl4bB5eTgaouWUM_xGhmDkfICpQ8IyJThFLzodVrL85YNPrVgdnWXIyGjmFfy8mFari6eP97SlrizK9o1aab1tb_fnQbNjOYierpvtiBgkx2Yb2Rq7vtQaOO0q4VNFZolGvkIstxmfcjJWiYIA0QkY451sxevJQoU5p42Yde6_qpceNkggqOIAQTR2KJaVBjGpPoQgZ7lHKuEUSsapKxmLg6YTLlK-xTKv0glIR4A8oDLrn0hBQuOYBiMk7kISBf4lhXQlxxQbywxnmsE70kOt_HhCvXK8NlPqeRyNjGjejFa5TyJOPIzEpkZqUM5wvTSUqx8ZNRJV-YKPOyWYSZa8qzMGD6c3YJfh8gem7cP5qHo7-bnsFat9mK2redu2PYwKbxwd4uq0BxPn2TJ7Aq3ufD2fQ023ifj6_bZg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+molecular+representation+in+the+age+of+machine+learning&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Wigh%2C+Daniel+S.&rft.au=Goodman%2C+Jonathan+M.&rft.au=Lapkin%2C+Alexei+A.&rft.date=2022-09-01&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=12&rft.issue=5&rft_id=info:doi/10.1002%2Fwcms.1603&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_wcms_1603 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon |