A surface defect identification method based on improved threshold segmentation algorithm

For enterprises, defect detection is very important because it is related to the quality of products produced by enterprises. With the development of machine vision, accurate analysis of image data benefits defect detection. In an enterprise that produces electronic cigarettes, professional and tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series Jg. 1651; H. 1; S. 12072 - 12076
Hauptverfasser: Feng, Xinglong, Gao, Xianwen, Luo, Ling
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.11.2020
Schlagworte:
ISSN:1742-6588, 1742-6596
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For enterprises, defect detection is very important because it is related to the quality of products produced by enterprises. With the development of machine vision, accurate analysis of image data benefits defect detection. In an enterprise that produces electronic cigarettes, professional and technical personnel used to detect a defect in a workpiece by using manual testing. The defect detection rate of this method is only 95%, and the efficiency is low. We use an improved threshold segmentation method to solve this problem in this paper and we have achieved success. Compared with typical methods, the accuracy of our proposed algorithm reaches over 99% and at the same time, the detection efficiency has been improved by more than 50%. Our method also has the advantage of simplicity, practicality and low cost.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1651/1/012072