A surface defect identification method based on improved threshold segmentation algorithm

For enterprises, defect detection is very important because it is related to the quality of products produced by enterprises. With the development of machine vision, accurate analysis of image data benefits defect detection. In an enterprise that produces electronic cigarettes, professional and tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series Jg. 1651; H. 1; S. 12072 - 12076
Hauptverfasser: Feng, Xinglong, Gao, Xianwen, Luo, Ling
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.11.2020
Schlagworte:
ISSN:1742-6588, 1742-6596
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract For enterprises, defect detection is very important because it is related to the quality of products produced by enterprises. With the development of machine vision, accurate analysis of image data benefits defect detection. In an enterprise that produces electronic cigarettes, professional and technical personnel used to detect a defect in a workpiece by using manual testing. The defect detection rate of this method is only 95%, and the efficiency is low. We use an improved threshold segmentation method to solve this problem in this paper and we have achieved success. Compared with typical methods, the accuracy of our proposed algorithm reaches over 99% and at the same time, the detection efficiency has been improved by more than 50%. Our method also has the advantage of simplicity, practicality and low cost.
AbstractList For enterprises, defect detection is very important because it is related to the quality of products produced by enterprises. With the development of machine vision, accurate analysis of image data benefits defect detection. In an enterprise that produces electronic cigarettes, professional and technical personnel used to detect a defect in a workpiece by using manual testing. The defect detection rate of this method is only 95%, and the efficiency is low. We use an improved threshold segmentation method to solve this problem in this paper and we have achieved success. Compared with typical methods, the accuracy of our proposed algorithm reaches over 99% and at the same time, the detection efficiency has been improved by more than 50%. Our method also has the advantage of simplicity, practicality and low cost.
Author Gao, Xianwen
Feng, Xinglong
Luo, Ling
Author_xml – sequence: 1
  givenname: Xinglong
  surname: Feng
  fullname: Feng, Xinglong
  email: 1610238@stu.neu.edu.cn, fengxinglong@vip.163.com
  organization: Northeastern University, College of Information Science and Engineering , , China
– sequence: 2
  givenname: Xianwen
  surname: Gao
  fullname: Gao, Xianwen
  organization: Northeastern University, College of Information Science and Engineering , , China
– sequence: 3
  givenname: Ling
  surname: Luo
  fullname: Luo, Ling
  organization: Northeastern University, College of Information Science and Engineering , , China
BookMark eNqFkF1LwzAUhoNMcJv-BgveCbX5aJPscgw_GSioF16FtEnWjLWpSSf4702pTATB3OQkeZ-TwzMDk9a1GoBzBK8Q5DxDLMcpLRY0Q7RAGcogwpDhIzA9vEwONecnYBbCFkISF5uCt2US9t7ISidKG131iVW67a2xleyta5NG97VTSSmDVkk826bz7iPWfe11qN1OJUFvmsiMebnbOG_7ujkFx0bugj773ufg9eb6ZXWXrh9v71fLdVoRgnFaUlqqosAUFwYzWBkCNSTKLIpc4VyW3CCm4p1ZoDg9NkYRrQgvNc2x1EVO5uBi7Bvnet_r0Iut2_s2fikwRRhhxjmLKTamKu9C8NqIzttG-k-BoBg8isGQGGyJwaNAYvQYSTKS1nU_rf-nLv-gHp5Wz7-DolOGfAEI0ITq
Cites_doi 10.1016/j.mfglet.2017.12.001
10.1109/TCPMT.2018.2794540
10.1016/j.autcon.2018.08.006
10.1016/j.cad.2013.04.005
10.3788/OPE.20172506.1418
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1651/1/012072
DatabaseName IOPscience
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Collection (ProQuest)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: O3W
  name: IOPscience
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate A surface defect identification method based on improved threshold segmentation algorithm
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1651_1_012072
JPCS_1651_1_012072
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3322-b66bd552625f270cf30e03df954d24ab8f17d30ef915882ffd3ed38be642ae543
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Sun Nov 30 04:19:44 EST 2025
Sat Nov 29 04:52:51 EST 2025
Wed Aug 21 03:38:18 EDT 2024
Thu Jan 07 14:56:12 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3322-b66bd552625f270cf30e03df954d24ab8f17d30ef915882ffd3ed38be642ae543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/1651/1/012072
PQID 2612127887
PQPubID 4998668
PageCount 5
ParticipantIDs iop_journals_10_1088_1742_6596_1651_1_012072
proquest_journals_2612127887
crossref_primary_10_1088_1742_6596_1651_1_012072
PublicationCentury 2000
PublicationDate 20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201101
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Yuan (JPCS_1651_1_012072bib1) 2017; 38
Galan (JPCS_1651_1_012072bib6) 2017; 15
Li (JPCS_1651_1_012072bib7) 2018; XX
Zhu (JPCS_1651_1_012072bib3) 2017; 37
Jiang (JPCS_1651_1_012072bib9) 2013; 45
Yuan (JPCS_1651_1_012072bib5) 2014; 26
Cheng (JPCS_1651_1_012072bib10) 2018; 95
Tao (JPCS_1651_1_012072bib8) 2018; 8
Lin (JPCS_1651_1_012072bib2) 2017; 25
Wu (JPCS_1651_1_012072bib4) 2015; 36
References_xml – volume: 15
  start-page: 5
  year: 2017
  ident: JPCS_1651_1_012072bib6
  article-title: Surface defect identificaion and measurement for metal castings by vision system
  publication-title: Manufacturing Letters
  doi: 10.1016/j.mfglet.2017.12.001
– volume: 8
  start-page: 689
  year: 2018
  ident: JPCS_1651_1_012072bib8
  article-title: Wire Defect Recognition of Spring-Wire Socket Using Multitask Convolutional Neural Networks
  publication-title: Ieee Transactions on Components Packaging and Manufacturing Technology
  doi: 10.1109/TCPMT.2018.2794540
– volume: 95
  start-page: 1081
  year: 2018
  ident: JPCS_1651_1_012072bib10
  article-title: Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2018.08.006
– volume: 37
  start-page: 937
  year: 2017
  ident: JPCS_1651_1_012072bib3
  article-title: A on-line detection system development based on image pro-cessing for rubber hose defects
  publication-title: Transactions of Beijing Institute of Technology
– volume: 26
  start-page: 800
  year: 2014
  ident: JPCS_1651_1_012072bib5
  article-title: Improved Image Preprocessing Algorithm for Rail Surface Defects Detection
  publication-title: Journal of Computer-Aided Design & Computer Graphics
– volume: 45
  start-page: 155
  year: 2013
  ident: JPCS_1651_1_012072bib9
  article-title: A feature-based method of rapidly detecting global exact symmetries in CAD models
  publication-title: Computer-Aided Design
  doi: 10.1016/j.cad.2013.04.005
– volume: 36
  start-page: 2258
  year: 2015
  ident: JPCS_1651_1_012072bib4
  article-title: In-pipe internal defect inspection method based on active stereo omni-directional vision sensor
  publication-title: Chinese Journal of Scientific Instrument
– volume: 25
  start-page: 1418
  year: 2017
  ident: JPCS_1651_1_012072bib2
  article-title: Evaluation of imaging performance for electroluminescence defect detector
  publication-title: Optics and precision engineering
  doi: 10.3788/OPE.20172506.1418
– volume: XX
  start-page: X
  year: 2018
  ident: JPCS_1651_1_012072bib7
  article-title: Review of development and application of defect detection technology
  publication-title: ACTA AUTOMATICA SINICA
– volume: 38
  start-page: 3100
  year: 2017
  ident: JPCS_1651_1_012072bib1
  article-title: Review of tunnel lining crack detction algorithm based on machine vision
  publication-title: Chinese Journal of Scientific Instrument
SSID ssj0033337
Score 2.2476292
Snippet For enterprises, defect detection is very important because it is related to the quality of products produced by enterprises. With the development of machine...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12072
SubjectTerms Algorithms
Identification methods
Image segmentation
Machine vision
Physics
Surface defects
Workpieces
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6u4MVdHDcCerRMk7RZTiKiiIgMqKBeQtIkOqAz43T095ukKTIIerCnNn2HkO_1vb4dgCOFBdfUI5BjQ7KCIp2JgpkMa5pXjBuNXOwze81ubvjDg-glh1ud0ipbmRgFtRlWwUfeja2ucMh9Oxm9Z2FqVIiuphEas2A-dEkIoxt65VMriYm_WFMQiTOvaXmb3-WNvrQmaBfREnVRNxSRMjylnWb7w9EPER31zsXKf3e8CpbTHyc8bVhkDczYwTpYjJmfVb0BHk9h_TF2qrLQ2JDbAfsmZRBF0GAzYxoGdWegf-5HN4S_n3g2qEP0Ctb2-S3VMA2gen32u5i8vG2C-4vzu7PLLM1byCoSbFJNqTZlib1J5DDLK0dymxPjRFkYXCjNHWLGrzmB_GFi5wyxhnBtvQ2jbFmQLTA3GA7sNoBUFIIpZjmtbEEV5ZobRAollDdRVJ53QN6esxw1bTVkDIdzLgM0MkAjAzQSyQaaDjj2eMj0idV_kx9OkV_1zm6nKeTIuA7Ya7H7Jv0Gbuf317tgCQfzO5Ym7oG5yfjD7oOF6nPSr8cHkRe_AOCe4Dg
  priority: 102
  providerName: ProQuest
Title A surface defect identification method based on improved threshold segmentation algorithm
URI https://iopscience.iop.org/article/10.1088/1742-6596/1651/1/012072
https://www.proquest.com/docview/2612127887
Volume 1651
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOPscience
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9WLfjSWmvxrJVAfXR7m2Q3H49WlCrtubSKHy8h2ST2QO-O27N_fyfZPeSQUgT3YcmGSTb8JjuT2cxMENozVEnLgQM5dSwrOLGZKoTLqOV5LaSzJKQ8s9_FYCCvrtRCLMx40on-L1BsEwW3EHYOcbIPa2ia8VLxPuEl6ZN-jP8UIIZXmARtDnP6jF3OpTGDS7RBkbGRlHMfr393tKChXsEonojppHuO377EqNfRm27liQ_aFu_Qkh9toNfJA7Ru3qPrA9w8TIOpPXY--njgoes8iRLzcHvWNI5qz2F4HqbfEVCewXRo4i4WbvztfRfLNMLm7nY8Hc5-32-ii-Oj88NvWXfuQlazaJtazq0rSwqmUaAirwPLfc5cUGXhaGGsDEQ4qAuKAKA0BMe8Y9J6sGWMLwv2AS2PxiO_hTBXhRJGeMlrX3DDpZWOsMIoA6aKyfMeyudY60mbXkOnbXEpdURMR8R0REwT3SLWQ_uAse4-teb_5J8XyE-rw1-LFHriQg_tzFn8SJqyq9Hobrn9vHd-RGs0muUpZHEHLc-mD_4TWq3_zIbNdBetfD0aVD930zyFe1XeQF118qO6_guj8OGS
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH_aOhBc-EYUBlgCbkRNbMcfB4SmwbSyrqrEkLaTsWN7q7S1pelA_FP8jdhOoqlCgtMO5JQ4T5Gc9_P78nt-AK81lsKwwIEcW5JRVphMUm4zbFhecWFN4dM5syM-HovjYznZgF9dLUxMq-xkYhLUdl7FGPkgHXWFY-7b-8W3LHaNirurXQuNBhYH7ueP4LLV74YfAn_fYLz38Wh3P2u7CmQViZ6XYczYssTB8PeY55UnucuJ9bKkFlNthC-4DWNeFmUwP723xFkijAuWunYlJeG7m7BFI9h7sDUZHk5OOtlPwsWbEkycBd0uuoyy4Ga2Y5INClYWg2IQy1Y5XtOHm9P54g-lkDTd3t3_7R_dgzutTY12mkVwHzbc7AHcTLmtVf0QTnZQfbn0unLIupi9gqa2zZFKsERNF20UFbpF4XmaAi3hfhWAXsf9OVS704u2SmuG9PlpmPXq7OIRfLmWeT2G3mw-c08AMUkl19wJVjnKNBNG2IJQLXVwwnSe9yHv-KoWzcEhKm34C6EiFFSEgopQUIVqoNCHt4H_qhUi9b_JX62Rf5rsfl6nUAvr-7DdYeWK9AooT__--iXc2j86HKnRcHzwDG7jGGxIhZjb0FstL91zuFF9X03r5Yt2JSD4et3A-g0NIT4h
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED8B-9Be9gFM68Y2S-xxIbGd-OOxAqoNUKm0TcCTZcc2VBpt1bT7-2c7KahC0zRpeXKic2z97nLni-_OAJ80kcKwwIGCWJqVDJtMltxmxLCi5sIa7FOd2TM-HIrLSznagMFdLsx01qn-g9BsCwW3EHYBcSIPa2iSsUqyHLMK5ziP-Z-c5DPrN-FRLFcSpfucXqw0Mg0XbxMjY0chVnFef37ZmpXaDDN5oKqT_Rm8-F8zfwnPuxUo6re9XsGGm2zDkxQJWjc7cNVHzXLude2QdTHWA41tF1GUmIjaM6dRNH8Whftx-i0R2osgFk3czUKNu77tcpomSP-8ns7Hi5vbXfgxOP5--CXrzl_Iahp9VMOYsVVFgovkCS9qTwtXUOtlVVpSaiM85jY88xIHUIn3ljpLhXHBp9GuKulr2JpMJ-4NICZLyTV3gtWuZJoJIyympZY6uCy6KHpQrPBWs7bMhkrb40KoiJqKqKmImsKqRa0HnwPOqvvkmr-T76-Rn4wOv61TqMCGHuyt2HxPmqqskRh2-fbfxvwIT0dHA3X2dXj6Dp6R6KmnLMY92FrMl-49PK5_LcbN_EMS1994jOKu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+surface+defect+identification+method+based+on+improved+threshold+segmentation+algorithm&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Feng%2C+Xinglong&rft.au=Gao%2C+Xianwen&rft.au=Luo%2C+Ling&rft.date=2020-11-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1651&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1651%2F1%2F012072&rft.externalDocID=JPCS_1651_1_012072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon