Spin 1 Particle With Anomalous Magnetic Moment in External Uniform Electric Field, Solutions With Cylindrical Symmetry

ABSTRACT A generalized 10‐dimensional Duffin–Kemmer–Petiau equation for spin 1 particle with anomalous magnetic moment is examined in cylindrical coordinates (t,r,ϕ,z)$$ \left(t,r,\phi, z\right) $$ in the presence of the external uniform electric field oriented along the axis z$$ z $$. On solutions,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical methods in the applied sciences Ročník 48; číslo 9; s. 9640 - 9652
Hlavní autoři: Ivashkevich, Alina, Red'kov, Viktor, Chichurin, Alexander
Médium: Journal Article
Jazyk:angličtina
Vydáno: Freiburg Wiley Subscription Services, Inc 01.06.2025
Témata:
ISSN:0170-4214, 1099-1476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:ABSTRACT A generalized 10‐dimensional Duffin–Kemmer–Petiau equation for spin 1 particle with anomalous magnetic moment is examined in cylindrical coordinates (t,r,ϕ,z)$$ \left(t,r,\phi, z\right) $$ in the presence of the external uniform electric field oriented along the axis z$$ z $$. On solutions, we diagonalize operators of the energy and third projection of the total angular momentum. First, we derive the system of 10 equations in partial derivatives for functions Fi(r,z)=Gi(r)Hi(z)(i=1,10‾)$$ {F}_i\left(r,z\right)={G}_i(r){H}_i(z)\kern0.3em \left(i=\overline{1,10}\right) $$. The use of the method based on the projective operators permits us to express 10 variables Gi(r)$$ {G}_i(r) $$ through only three different functions f1(r),f2(r),f3(r)$$ {f}_1(r),{f}_2(r),{f}_3(r) $$, which are solved in Bessel functions. After that, we derive the system of 10 first‐order differential equations for functions Hi(z)$$ {H}_i(z) $$. This system reduces to one independent equation for a separate function and to the system of two linked equations for two remaining primary functions. This system after diagonalization of the mixing matrix gives two separated equations for new variables. All three equations for basic functions are solved in terms of the confluent hypergeometric functions. Thus, the complete system of solutions with cylindrical symmetry for the vector particle with anomalous magnetic moment in the presence of the external uniform electric field is found.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.10831