A Hybrid Parametrization Method for B‐Spline Curve Interpolation via Supervised Learning

B‐spline curve interpolation is a fundamental algorithm in computer‐aided geometric design. Determining suitable parameters based on data points distribution has always been an important issue for high‐quality interpolation curves generation. Various parameterization methods have been proposed. Howe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 43; číslo 7
Hlavní autori: Song, Tianyu, Shen, Tong, Ge, Linlin, Feng, Jieqing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.10.2024
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:B‐spline curve interpolation is a fundamental algorithm in computer‐aided geometric design. Determining suitable parameters based on data points distribution has always been an important issue for high‐quality interpolation curves generation. Various parameterization methods have been proposed. However, there is no universally satisfactory method that is applicable to data points with diverse distributions. In this work, a hybrid parametrization method is proposed to overcome the problem. For a given set of data points, a classifier via supervised learning identifies an optimal local parameterization method based on the local geometric distribution of four adjacent data points, and the optimal local parameters are computed using the selected optimal local parameterization method for the four adjacent data points. Then a merging method is employed to calculate global parameters which align closely with the local parameters. Experiments demonstrate that the proposed hybrid parameterization method well adapts the different distributions of data points statistically. The proposed method has a flexible and scalable framework, which can includes current and potential new parameterization methods as its components.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.15240