A Hybrid Parametrization Method for B‐Spline Curve Interpolation via Supervised Learning
B‐spline curve interpolation is a fundamental algorithm in computer‐aided geometric design. Determining suitable parameters based on data points distribution has always been an important issue for high‐quality interpolation curves generation. Various parameterization methods have been proposed. Howe...
Saved in:
| Published in: | Computer graphics forum Vol. 43; no. 7 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Blackwell Publishing Ltd
01.10.2024
|
| Subjects: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | B‐spline curve interpolation is a fundamental algorithm in computer‐aided geometric design. Determining suitable parameters based on data points distribution has always been an important issue for high‐quality interpolation curves generation. Various parameterization methods have been proposed. However, there is no universally satisfactory method that is applicable to data points with diverse distributions. In this work, a hybrid parametrization method is proposed to overcome the problem. For a given set of data points, a classifier via supervised learning identifies an optimal local parameterization method based on the local geometric distribution of four adjacent data points, and the optimal local parameters are computed using the selected optimal local parameterization method for the four adjacent data points. Then a merging method is employed to calculate global parameters which align closely with the local parameters. Experiments demonstrate that the proposed hybrid parameterization method well adapts the different distributions of data points statistically. The proposed method has a flexible and scalable framework, which can includes current and potential new parameterization methods as its components. |
|---|---|
| AbstractList | B‐spline curve interpolation is a fundamental algorithm in computer‐aided geometric design. Determining suitable parameters based on data points distribution has always been an important issue for high‐quality interpolation curves generation. Various parameterization methods have been proposed. However, there is no universally satisfactory method that is applicable to data points with diverse distributions. In this work, a hybrid parametrization method is proposed to overcome the problem. For a given set of data points, a classifier via supervised learning identifies an optimal local parameterization method based on the local geometric distribution of four adjacent data points, and the optimal local parameters are computed using the selected optimal local parameterization method for the four adjacent data points. Then a merging method is employed to calculate global parameters which align closely with the local parameters. Experiments demonstrate that the proposed hybrid parameterization method well adapts the different distributions of data points statistically. The proposed method has a flexible and scalable framework, which can includes current and potential new parameterization methods as its components. |
| Author | Feng, Jieqing Shen, Tong Ge, Linlin Song, Tianyu |
| Author_xml | – sequence: 1 givenname: Tianyu surname: Song fullname: Song, Tianyu organization: Zhejiang University – sequence: 2 givenname: Tong surname: Shen fullname: Shen, Tong organization: Zhejiang University – sequence: 3 givenname: Linlin surname: Ge fullname: Ge, Linlin organization: Zhejiang University – sequence: 4 givenname: Jieqing surname: Feng fullname: Feng, Jieqing email: jqfeng@cad.zju.edu.cn organization: Zhejiang University |
| BookMark | eNp9kL1OwzAUhS0EEm1h4A0sMTG0teM4P2OJ6I9UBFJhYbEcxy6uUjs4SVGZeASekSfBNExIcJd7h--cq3P64NhYIwG4wGiE_YzFWo0wDUJ0BHo4jOJhEtH0GPQQ9neMKD0F_breIITCOKI98DSB833udAHvueNb2Tj9xhttDbyVzbMtoLIOXn--f6yqUhsJs9btJFyYRrrKlh250xyu2kq6na5lAZeSO6PN-gycKF7W8vxnD8Dj9OYhmw-Xd7NFNlkOBSEBGioaqCiJE8yDRIQFjwQRISYFpjQuch9FCsJRrnCYUxxRyRFPRYJiyilNOVFkAC4738rZl1bWDdvY1hn_khEcJD5zmsaeuuoo4WxdO6lY5fSWuz3DiH1Xx3x17FCdZ8e_WKGbQ9bGcV3-p3jVpdz_bc2y2bRTfAHjXoI_ |
| CitedBy_id | crossref_primary_10_1016_j_cag_2025_104360 crossref_primary_10_1016_j_cad_2025_103942 |
| Cites_doi | 10.1007/978-1-4612-6333-3 10.1115/1.4054089 10.1016/S0167-8396(97)00041-1 10.1145/3591569.3591586 10.1109/NNSP.1997.622408 10.1109/3DV.2018.00084 10.1016/S0167-8396(99)00010-2 10.1016/0010-4485(89)90003-1 10.1109/ACCESS.2019.2961412 10.1109/IV60283.2023.00070 10.1016/j.cad.2006.12.006 10.1016/j.cagd.2024.102308 10.1016/j.cad.2011.08.004 10.1016/B978-0-12-174585-1.50018-X 10.22323/1.299.0093 10.1016/0021-9045(72)90080-9 10.1016/j.cad.2020.102885 10.1023/A:1010933404324 10.1214/aos/1013203451 10.1016/j.cad.2013.01.005 10.1016/j.cagd.2021.101977 10.1145/2939672.2939785 10.5555/2188385.2188395 10.1006/jcss.1997.1504 10.1016/B978-0-12-460515-2.50023-8 |
| ContentType | Journal Article |
| Copyright | 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd. 2024 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd. – notice: 2024 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1111/cgf.15240 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | n/a |
| ExternalDocumentID | 10_1111_cgf_15240 CGF15240 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62272408; 61932018; 61732015 |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3320-f52f68781a28c4da6c3c413d1557db524ec3a0bf14b5165ea0a9c8075a559a3f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341405100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Sat Jul 26 00:06:40 EDT 2025 Tue Nov 18 21:25:40 EST 2025 Sat Nov 29 03:41:24 EST 2025 Wed Jan 22 17:12:46 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3320-f52f68781a28c4da6c3c413d1557db524ec3a0bf14b5165ea0a9c8075a559a3f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.15240 |
| PQID | 3128055997 |
| PQPubID | 30877 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_3128055997 crossref_primary_10_1111_cgf_15240 crossref_citationtrail_10_1111_cgf_15240 wiley_primary_10_1111_cgf_15240_CGF15240 |
| PublicationCentury | 2000 |
| PublicationDate | October 2024 2024-10-00 20241001 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationYear | 2024 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2019; 8 2007; 39 1989; 21 2012 2013; 45 2020; 127 1997 2002 2022; 22 2012; 13 2001; 45 1972; 6 1998; 15 2001 1997; 55 2023 1999; 16 1987 2018 2017 2016 1978; 27 2024; 111 2021; 85 1989 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 Do Carmo M. P. (e_1_2_7_8_2) 2016 Farin G. E. (e_1_2_7_9_2) 2002 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_22_2 e_1_2_7_21_2 e_1_2_7_20_2 Piegl L. (e_1_2_7_23_2) 2012 |
| References_xml | – volume: 6 start-page: 50 issue: 1 year: 1972 end-page: 62 article-title: On calculating with b-splines publication-title: Journal of Approximation theory – start-page: 691 year: 2018 end-page: 699 article-title: Deep learning parametrization for b-spline curve approximation – volume: 39 start-page: 439 issue: 6 year: 2007 end-page: 451 article-title: B-spline curve fitting based on adaptive curve refinement using dominant points publication-title: Computer-Aided Design – start-page: 276 year: 1997 end-page: 285 article-title: An improved training algorithm for support vector machines – volume: 45 start-page: 5 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine learning – volume: 27 year: 1978 – start-page: 261 year: 1989 end-page: CP4 article-title: Knot selection for parametric spline interpolation – volume: 15 start-page: 399 issue: 4 year: 1998 end-page: 416 article-title: A method for determining knots in parametric curve interpolation publication-title: Computer Aided Geometric Design – volume: 45 start-page: 853 issue: 4 year: 2013 end-page: 859 article-title: Local computation of curve interpolation knots with quadratic precision publication-title: Computer-Aided Design – volume: 21 start-page: 363 issue: 6 year: 1989 end-page: 370 article-title: Choosing nodes in parametric curve interpolation publication-title: Computer-Aided Design – start-page: 175 year: 1987 end-page: 184 article-title: Coordinate free scattered data interpolation – volume: 127 year: 2020 article-title: Nsga-ii approach for proper choice of nodes and knots in b-spline curve interpolation publication-title: Computer-Aided Design – volume: 55 start-page: 119 issue: 1 year: 1997 end-page: 139 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: Journal of computer and system sciences – volume: 8 start-page: 589 year: 2019 end-page: 598 article-title: Dynamic centripetal parameterization method for b-spline curve interpolation publication-title: IEEE Access – volume: 111 year: 2024 article-title: Computing nodes for plane data points by constructing cubic polynomial with constraints publication-title: Computer Aided Geometric Design – year: 2016 – volume: 45 start-page: 1005 issue: 6 year: 2013 end-page: 1028 article-title: An improved parameterization method for b-spline curve and surface interpolation publication-title: Computer-aided design – volume: 16 start-page: 407 issue: 5 year: 1999 end-page: 422 article-title: A universal parametrization in b-spline curve and surface interpolation publication-title: Computer Aided Geometric Design – year: 2012 – volume: 22 issue: 6 year: 2022 article-title: An improved parameterized interpolation method based on modified chord length publication-title: Journal of Computing and Information Science in Engineering – start-page: 785 year: 2016 end-page: 794 – start-page: 374 year: 2023 end-page: 377 article-title: A review of point sets parameterization methods for curve fitting – volume: 13 issue: 2 year: 2012 article-title: Random search for hyper-parameter optimization publication-title: Journal of machine learning research – year: 2002 – volume: 85 year: 2021 article-title: Parameterization for polynomial curve approximation via residual deep neural networks publication-title: Computer Aided Geometric Design – start-page: 1189 year: 2001 end-page: 1232 – start-page: 1 year: 2017 end-page: 12 – start-page: 97 year: 2023 end-page: 105 – ident: e_1_2_7_7_2 doi: 10.1007/978-1-4612-6333-3 – ident: e_1_2_7_26_2 doi: 10.1115/1.4054089 – ident: e_1_2_7_27_2 doi: 10.1016/S0167-8396(97)00041-1 – ident: e_1_2_7_16_2 doi: 10.1145/3591569.3591586 – ident: e_1_2_7_21_2 doi: 10.1109/NNSP.1997.622408 – volume-title: Curves and surfaces for CAGD: a practical guide year: 2002 ident: e_1_2_7_9_2 – ident: e_1_2_7_18_2 doi: 10.1109/3DV.2018.00084 – ident: e_1_2_7_19_2 doi: 10.1016/S0167-8396(99)00010-2 – ident: e_1_2_7_17_2 doi: 10.1016/0010-4485(89)90003-1 – ident: e_1_2_7_3_2 doi: 10.1109/ACCESS.2019.2961412 – ident: e_1_2_7_29_2 doi: 10.1109/IV60283.2023.00070 – ident: e_1_2_7_22_2 doi: 10.1016/j.cad.2006.12.006 – ident: e_1_2_7_25_2 doi: 10.1016/j.cagd.2024.102308 – ident: e_1_2_7_28_2 doi: 10.1016/j.cad.2011.08.004 – volume-title: The NURBS book year: 2012 ident: e_1_2_7_23_2 – volume-title: Differential geometry of curves and surfaces: revised and updated second edition year: 2016 ident: e_1_2_7_8_2 – ident: e_1_2_7_20_2 doi: 10.1016/B978-0-12-174585-1.50018-X – ident: e_1_2_7_14_2 doi: 10.22323/1.299.0093 – ident: e_1_2_7_6_2 doi: 10.1016/0021-9045(72)90080-9 – ident: e_1_2_7_15_2 doi: 10.1016/j.cad.2020.102885 – ident: e_1_2_7_4_2 doi: 10.1023/A:1010933404324 – ident: e_1_2_7_12_2 doi: 10.1214/aos/1013203451 – ident: e_1_2_7_10_2 doi: 10.1016/j.cad.2013.01.005 – ident: e_1_2_7_24_2 doi: 10.1016/j.cagd.2021.101977 – ident: e_1_2_7_5_2 doi: 10.1145/2939672.2939785 – ident: e_1_2_7_2_2 doi: 10.5555/2188385.2188395 – ident: e_1_2_7_13_2 doi: 10.1006/jcss.1997.1504 – ident: e_1_2_7_11_2 doi: 10.1016/B978-0-12-460515-2.50023-8 |
| SSID | ssj0004765 |
| Score | 2.428668 |
| Snippet | B‐spline curve interpolation is a fundamental algorithm in computer‐aided geometric design. Determining suitable parameters based on data points distribution... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms CCS Concepts Computing methodologies → Parametric curve and surface models Curves Data points Interpolation Machine learning Parameter identification Parameterization Spline functions Statistical methods Supervised learning Supervised learning by classification |
| Title | A Hybrid Parametrization Method for B‐Spline Curve Interpolation via Supervised Learning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.15240 https://www.proquest.com/docview/3128055997 |
| Volume | 43 |
| WOSCitedRecordID | wos001341405100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5j86AHf4vTKUE8eCm0S9tkeJrTuoOO4RwML-U1bcZAttFuA2_-Cf6N_iUmabpNUBC89fDahiQv73vt-76H0CWvc8-hMbU4JcJyIVJtXriwlPac_jHEAHSzCdrpsMGg0S2h64ILk-tDLD-4Kc_Q57VycIiyNSfnQ6Ga97gyX68oUpXMvCq3T0H_YUWLpL5XSHsr0RgjLKQKeZY3fw9HK4y5jlR1qAl2_jXIXbRtECZu5ltiD5WS8T7aWtMdPEAvTdx-U1Qt3AVVnDVLDRsTP-qG0lgiWXzz-f7RU3zdBLfm6SLBeX3iJC-ew4sR4N58qo6aLImx0WkdHqJ-cPfcalumyYLFiWJPC68ufEaZA3XG3Rh8TrgMbLHEGTSO5NATTsCOhONGnuN7CdjQ4ErBGGQuAkSQI1QeT8bJMcIytDnMBl_mcDLJpDaLfUeAB0wI2yUiqqKrYq5DbhTIVSOM17DIROR0hXq6quhiaTrNZTd-MqoVCxYaz8tCIgOurWTUqHydXprfHxC27gN9cfJ301O0WZe4Jq_nq6HyLJ0nZ2iDL2ajLD03W_ALIwfebg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5KK6gH32K1ahAPXhZ2N7ubFLzUaq3YlmJbEC9LNpuUgrRl-wBv_gR_o7_EZB9tBQXB2x5md8Mkk_kmmfkG4JLb3LVISAxOsDQcFug2L1wamnsuvhiijMXNJkirRZ-fy-0cXGe1MAk_xOLATVtGvF9rA9cH0itWzvtSd-9xVMBecDxMaB4Kt0-1XmNZF0k8N-P21qwxKbOQzuRZvPzdHy1B5ipUjX1Nbft_o9yBrRRjokqyKHYhJ4Z7sLnCPLgPLxVUf9PFWqjNdHrWNErrMVEzbimNFJZFN5_vHx1dsStQdRbNBUoyFEdJ-hyaDxjqzMZ6s5mIEKVMrf0D6NXuutW6kbZZMDjW9dPStaVHCbWYTbkTMo9jrlxbqJAGCQM1dMExMwNpOYFrea5gJitzzWHMVDTCsMSHkB-OhuIIkHJuFjWZp6I4FWYSk4aeJZnLqJSmg2VQhKtM2T5POch1K4xXP4tFlLr8WF1FuFiIjhPijZ-EStmM-antTXysXK6pidSI-l08N79_wK_e1-KH47-LnsN6vdts-I2H1uMJbNgK5STZfSXIT6OZOIU1Pp8OJtFZuh6_AHxk4l4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5KK6IH32K1ahAPXhb2nRS81Na1Yi3FWihelmw2KQVpS1_gzZ_gb_SXmGR32woKgrc9zO6GJJP5Znfm-wAumc08C8fYYNgRhksjJfPChKG45_SPIUKpFpvAzSbpdsutHFxnvTAJP8Tig5vyDH1eKwfno1iseDnrCaXe48qEveB6Zc_NQ6H2FHQay75I7HsZt7dijUmZhVQlz-Lm7_FoCTJXoaqONcH2_0a5A1spxkSVZFPsQo4P9mBzhXlwH14qqP6mmrVQi6ryrOk47cdEj1pSGkksi24-3z_aqmOXo-psPOcoqVAcJuVzaN6nqD0bqcNmwmOUMrX2DqAT3D5X60Yqs2AwR_VPC88WPsHEojZhbkx95jAZ2mKJNHAcyaFz5lAzEpYbeZbvcWrSMlMcxlRmI9QRziHkB8MBPwIkg5tFTOrLLE6mmdgksW8J6lEihOk6IirCVTbZIUs5yJUUxmuY5SJyukI9XUW4WJiOEuKNn4xK2YqFqe9NQkeGXFMRqWH5Or02vz8grN4F-uL476bnsN6qBWHjvvlwAhu2BDlJcV8J8tPxjJ_CGptP-5PxWbodvwAyveHZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Parametrization+Method+for+B%E2%80%90Spline+Curve+Interpolation+via+Supervised+Learning&rft.jtitle=Computer+graphics+forum&rft.au=Song%2C+Tianyu&rft.au=Shen%2C+Tong&rft.au=Ge%2C+Linlin&rft.au=Feng%2C+Jieqing&rft.date=2024-10-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=43&rft.issue=7&rft_id=info:doi/10.1111%2Fcgf.15240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_15240 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |