A Hybrid Parametrization Method for B‐Spline Curve Interpolation via Supervised Learning

B‐spline curve interpolation is a fundamental algorithm in computer‐aided geometric design. Determining suitable parameters based on data points distribution has always been an important issue for high‐quality interpolation curves generation. Various parameterization methods have been proposed. Howe...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 43; no. 7
Main Authors: Song, Tianyu, Shen, Tong, Ge, Linlin, Feng, Jieqing
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.10.2024
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract B‐spline curve interpolation is a fundamental algorithm in computer‐aided geometric design. Determining suitable parameters based on data points distribution has always been an important issue for high‐quality interpolation curves generation. Various parameterization methods have been proposed. However, there is no universally satisfactory method that is applicable to data points with diverse distributions. In this work, a hybrid parametrization method is proposed to overcome the problem. For a given set of data points, a classifier via supervised learning identifies an optimal local parameterization method based on the local geometric distribution of four adjacent data points, and the optimal local parameters are computed using the selected optimal local parameterization method for the four adjacent data points. Then a merging method is employed to calculate global parameters which align closely with the local parameters. Experiments demonstrate that the proposed hybrid parameterization method well adapts the different distributions of data points statistically. The proposed method has a flexible and scalable framework, which can includes current and potential new parameterization methods as its components.
AbstractList B‐spline curve interpolation is a fundamental algorithm in computer‐aided geometric design. Determining suitable parameters based on data points distribution has always been an important issue for high‐quality interpolation curves generation. Various parameterization methods have been proposed. However, there is no universally satisfactory method that is applicable to data points with diverse distributions. In this work, a hybrid parametrization method is proposed to overcome the problem. For a given set of data points, a classifier via supervised learning identifies an optimal local parameterization method based on the local geometric distribution of four adjacent data points, and the optimal local parameters are computed using the selected optimal local parameterization method for the four adjacent data points. Then a merging method is employed to calculate global parameters which align closely with the local parameters. Experiments demonstrate that the proposed hybrid parameterization method well adapts the different distributions of data points statistically. The proposed method has a flexible and scalable framework, which can includes current and potential new parameterization methods as its components.
Author Feng, Jieqing
Shen, Tong
Ge, Linlin
Song, Tianyu
Author_xml – sequence: 1
  givenname: Tianyu
  surname: Song
  fullname: Song, Tianyu
  organization: Zhejiang University
– sequence: 2
  givenname: Tong
  surname: Shen
  fullname: Shen, Tong
  organization: Zhejiang University
– sequence: 3
  givenname: Linlin
  surname: Ge
  fullname: Ge, Linlin
  organization: Zhejiang University
– sequence: 4
  givenname: Jieqing
  surname: Feng
  fullname: Feng, Jieqing
  email: jqfeng@cad.zju.edu.cn
  organization: Zhejiang University
BookMark eNp9kL1OwzAUhS0EEm1h4A0sMTG0teM4P2OJ6I9UBFJhYbEcxy6uUjs4SVGZeASekSfBNExIcJd7h--cq3P64NhYIwG4wGiE_YzFWo0wDUJ0BHo4jOJhEtH0GPQQ9neMKD0F_breIITCOKI98DSB833udAHvueNb2Tj9xhttDbyVzbMtoLIOXn--f6yqUhsJs9btJFyYRrrKlh250xyu2kq6na5lAZeSO6PN-gycKF7W8vxnD8Dj9OYhmw-Xd7NFNlkOBSEBGioaqCiJE8yDRIQFjwQRISYFpjQuch9FCsJRrnCYUxxRyRFPRYJiyilNOVFkAC4738rZl1bWDdvY1hn_khEcJD5zmsaeuuoo4WxdO6lY5fSWuz3DiH1Xx3x17FCdZ8e_WKGbQ9bGcV3-p3jVpdz_bc2y2bRTfAHjXoI_
CitedBy_id crossref_primary_10_1016_j_cag_2025_104360
crossref_primary_10_1016_j_cad_2025_103942
Cites_doi 10.1007/978-1-4612-6333-3
10.1115/1.4054089
10.1016/S0167-8396(97)00041-1
10.1145/3591569.3591586
10.1109/NNSP.1997.622408
10.1109/3DV.2018.00084
10.1016/S0167-8396(99)00010-2
10.1016/0010-4485(89)90003-1
10.1109/ACCESS.2019.2961412
10.1109/IV60283.2023.00070
10.1016/j.cad.2006.12.006
10.1016/j.cagd.2024.102308
10.1016/j.cad.2011.08.004
10.1016/B978-0-12-174585-1.50018-X
10.22323/1.299.0093
10.1016/0021-9045(72)90080-9
10.1016/j.cad.2020.102885
10.1023/A:1010933404324
10.1214/aos/1013203451
10.1016/j.cad.2013.01.005
10.1016/j.cagd.2021.101977
10.1145/2939672.2939785
10.5555/2188385.2188395
10.1006/jcss.1997.1504
10.1016/B978-0-12-460515-2.50023-8
ContentType Journal Article
Copyright 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
2024 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
– notice: 2024 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.15240
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage n/a
ExternalDocumentID 10_1111_cgf_15240
CGF15240
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62272408; 61932018; 61732015
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3320-f52f68781a28c4da6c3c413d1557db524ec3a0bf14b5165ea0a9c8075a559a3f3
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341405100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sat Jul 26 00:06:40 EDT 2025
Tue Nov 18 21:25:40 EST 2025
Sat Nov 29 03:41:24 EST 2025
Wed Jan 22 17:12:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3320-f52f68781a28c4da6c3c413d1557db524ec3a0bf14b5165ea0a9c8075a559a3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.15240
PQID 3128055997
PQPubID 30877
PageCount 12
ParticipantIDs proquest_journals_3128055997
crossref_primary_10_1111_cgf_15240
crossref_citationtrail_10_1111_cgf_15240
wiley_primary_10_1111_cgf_15240_CGF15240
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2019; 8
2007; 39
1989; 21
2012
2013; 45
2020; 127
1997
2002
2022; 22
2012; 13
2001; 45
1972; 6
1998; 15
2001
1997; 55
2023
1999; 16
1987
2018
2017
2016
1978; 27
2024; 111
2021; 85
1989
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
Do Carmo M. P. (e_1_2_7_8_2) 2016
Farin G. E. (e_1_2_7_9_2) 2002
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_22_2
e_1_2_7_21_2
e_1_2_7_20_2
Piegl L. (e_1_2_7_23_2) 2012
References_xml – volume: 6
  start-page: 50
  issue: 1
  year: 1972
  end-page: 62
  article-title: On calculating with b-splines
  publication-title: Journal of Approximation theory
– start-page: 691
  year: 2018
  end-page: 699
  article-title: Deep learning parametrization for b-spline curve approximation
– volume: 39
  start-page: 439
  issue: 6
  year: 2007
  end-page: 451
  article-title: B-spline curve fitting based on adaptive curve refinement using dominant points
  publication-title: Computer-Aided Design
– start-page: 276
  year: 1997
  end-page: 285
  article-title: An improved training algorithm for support vector machines
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine learning
– volume: 27
  year: 1978
– start-page: 261
  year: 1989
  end-page: CP4
  article-title: Knot selection for parametric spline interpolation
– volume: 15
  start-page: 399
  issue: 4
  year: 1998
  end-page: 416
  article-title: A method for determining knots in parametric curve interpolation
  publication-title: Computer Aided Geometric Design
– volume: 45
  start-page: 853
  issue: 4
  year: 2013
  end-page: 859
  article-title: Local computation of curve interpolation knots with quadratic precision
  publication-title: Computer-Aided Design
– volume: 21
  start-page: 363
  issue: 6
  year: 1989
  end-page: 370
  article-title: Choosing nodes in parametric curve interpolation
  publication-title: Computer-Aided Design
– start-page: 175
  year: 1987
  end-page: 184
  article-title: Coordinate free scattered data interpolation
– volume: 127
  year: 2020
  article-title: Nsga-ii approach for proper choice of nodes and knots in b-spline curve interpolation
  publication-title: Computer-Aided Design
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  end-page: 139
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: Journal of computer and system sciences
– volume: 8
  start-page: 589
  year: 2019
  end-page: 598
  article-title: Dynamic centripetal parameterization method for b-spline curve interpolation
  publication-title: IEEE Access
– volume: 111
  year: 2024
  article-title: Computing nodes for plane data points by constructing cubic polynomial with constraints
  publication-title: Computer Aided Geometric Design
– year: 2016
– volume: 45
  start-page: 1005
  issue: 6
  year: 2013
  end-page: 1028
  article-title: An improved parameterization method for b-spline curve and surface interpolation
  publication-title: Computer-aided design
– volume: 16
  start-page: 407
  issue: 5
  year: 1999
  end-page: 422
  article-title: A universal parametrization in b-spline curve and surface interpolation
  publication-title: Computer Aided Geometric Design
– year: 2012
– volume: 22
  issue: 6
  year: 2022
  article-title: An improved parameterized interpolation method based on modified chord length
  publication-title: Journal of Computing and Information Science in Engineering
– start-page: 785
  year: 2016
  end-page: 794
– start-page: 374
  year: 2023
  end-page: 377
  article-title: A review of point sets parameterization methods for curve fitting
– volume: 13
  issue: 2
  year: 2012
  article-title: Random search for hyper-parameter optimization
  publication-title: Journal of machine learning research
– year: 2002
– volume: 85
  year: 2021
  article-title: Parameterization for polynomial curve approximation via residual deep neural networks
  publication-title: Computer Aided Geometric Design
– start-page: 1189
  year: 2001
  end-page: 1232
– start-page: 1
  year: 2017
  end-page: 12
– start-page: 97
  year: 2023
  end-page: 105
– ident: e_1_2_7_7_2
  doi: 10.1007/978-1-4612-6333-3
– ident: e_1_2_7_26_2
  doi: 10.1115/1.4054089
– ident: e_1_2_7_27_2
  doi: 10.1016/S0167-8396(97)00041-1
– ident: e_1_2_7_16_2
  doi: 10.1145/3591569.3591586
– ident: e_1_2_7_21_2
  doi: 10.1109/NNSP.1997.622408
– volume-title: Curves and surfaces for CAGD: a practical guide
  year: 2002
  ident: e_1_2_7_9_2
– ident: e_1_2_7_18_2
  doi: 10.1109/3DV.2018.00084
– ident: e_1_2_7_19_2
  doi: 10.1016/S0167-8396(99)00010-2
– ident: e_1_2_7_17_2
  doi: 10.1016/0010-4485(89)90003-1
– ident: e_1_2_7_3_2
  doi: 10.1109/ACCESS.2019.2961412
– ident: e_1_2_7_29_2
  doi: 10.1109/IV60283.2023.00070
– ident: e_1_2_7_22_2
  doi: 10.1016/j.cad.2006.12.006
– ident: e_1_2_7_25_2
  doi: 10.1016/j.cagd.2024.102308
– ident: e_1_2_7_28_2
  doi: 10.1016/j.cad.2011.08.004
– volume-title: The NURBS book
  year: 2012
  ident: e_1_2_7_23_2
– volume-title: Differential geometry of curves and surfaces: revised and updated second edition
  year: 2016
  ident: e_1_2_7_8_2
– ident: e_1_2_7_20_2
  doi: 10.1016/B978-0-12-174585-1.50018-X
– ident: e_1_2_7_14_2
  doi: 10.22323/1.299.0093
– ident: e_1_2_7_6_2
  doi: 10.1016/0021-9045(72)90080-9
– ident: e_1_2_7_15_2
  doi: 10.1016/j.cad.2020.102885
– ident: e_1_2_7_4_2
  doi: 10.1023/A:1010933404324
– ident: e_1_2_7_12_2
  doi: 10.1214/aos/1013203451
– ident: e_1_2_7_10_2
  doi: 10.1016/j.cad.2013.01.005
– ident: e_1_2_7_24_2
  doi: 10.1016/j.cagd.2021.101977
– ident: e_1_2_7_5_2
  doi: 10.1145/2939672.2939785
– ident: e_1_2_7_2_2
  doi: 10.5555/2188385.2188395
– ident: e_1_2_7_13_2
  doi: 10.1006/jcss.1997.1504
– ident: e_1_2_7_11_2
  doi: 10.1016/B978-0-12-460515-2.50023-8
SSID ssj0004765
Score 2.428668
Snippet B‐spline curve interpolation is a fundamental algorithm in computer‐aided geometric design. Determining suitable parameters based on data points distribution...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
CCS Concepts
Computing methodologies → Parametric curve and surface models
Curves
Data points
Interpolation
Machine learning
Parameter identification
Parameterization
Spline functions
Statistical methods
Supervised learning
Supervised learning by classification
Title A Hybrid Parametrization Method for B‐Spline Curve Interpolation via Supervised Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.15240
https://www.proquest.com/docview/3128055997
Volume 43
WOSCitedRecordID wos001341405100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5j86AHf4vTKUE8eCm0S9tkeJrTuoOO4RwML-U1bcZAttFuA2_-Cf6N_iUmabpNUBC89fDahiQv73vt-76H0CWvc8-hMbU4JcJyIVJtXriwlPac_jHEAHSzCdrpsMGg0S2h64ILk-tDLD-4Kc_Q57VycIiyNSfnQ6Ga97gyX68oUpXMvCq3T0H_YUWLpL5XSHsr0RgjLKQKeZY3fw9HK4y5jlR1qAl2_jXIXbRtECZu5ltiD5WS8T7aWtMdPEAvTdx-U1Qt3AVVnDVLDRsTP-qG0lgiWXzz-f7RU3zdBLfm6SLBeX3iJC-ew4sR4N58qo6aLImx0WkdHqJ-cPfcalumyYLFiWJPC68ufEaZA3XG3Rh8TrgMbLHEGTSO5NATTsCOhONGnuN7CdjQ4ErBGGQuAkSQI1QeT8bJMcIytDnMBl_mcDLJpDaLfUeAB0wI2yUiqqKrYq5DbhTIVSOM17DIROR0hXq6quhiaTrNZTd-MqoVCxYaz8tCIgOurWTUqHydXprfHxC27gN9cfJ301O0WZe4Jq_nq6HyLJ0nZ2iDL2ajLD03W_ALIwfebg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5KK6gH32K1ahAPXhZ2N7ubFLzUaq3YlmJbEC9LNpuUgrRl-wBv_gR_o7_EZB9tBQXB2x5md8Mkk_kmmfkG4JLb3LVISAxOsDQcFug2L1wamnsuvhiijMXNJkirRZ-fy-0cXGe1MAk_xOLATVtGvF9rA9cH0itWzvtSd-9xVMBecDxMaB4Kt0-1XmNZF0k8N-P21qwxKbOQzuRZvPzdHy1B5ipUjX1Nbft_o9yBrRRjokqyKHYhJ4Z7sLnCPLgPLxVUf9PFWqjNdHrWNErrMVEzbimNFJZFN5_vHx1dsStQdRbNBUoyFEdJ-hyaDxjqzMZ6s5mIEKVMrf0D6NXuutW6kbZZMDjW9dPStaVHCbWYTbkTMo9jrlxbqJAGCQM1dMExMwNpOYFrea5gJitzzWHMVDTCsMSHkB-OhuIIkHJuFjWZp6I4FWYSk4aeJZnLqJSmg2VQhKtM2T5POch1K4xXP4tFlLr8WF1FuFiIjhPijZ-EStmM-antTXysXK6pidSI-l08N79_wK_e1-KH47-LnsN6vdts-I2H1uMJbNgK5STZfSXIT6OZOIU1Pp8OJtFZuh6_AHxk4l4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5KK6IH32K1ahAPXhb2nRS81Na1Yi3FWihelmw2KQVpS1_gzZ_gb_SXmGR32woKgrc9zO6GJJP5Znfm-wAumc08C8fYYNgRhksjJfPChKG45_SPIUKpFpvAzSbpdsutHFxnvTAJP8Tig5vyDH1eKwfno1iseDnrCaXe48qEveB6Zc_NQ6H2FHQay75I7HsZt7dijUmZhVQlz-Lm7_FoCTJXoaqONcH2_0a5A1spxkSVZFPsQo4P9mBzhXlwH14qqP6mmrVQi6ryrOk47cdEj1pSGkksi24-3z_aqmOXo-psPOcoqVAcJuVzaN6nqD0bqcNmwmOUMrX2DqAT3D5X60Yqs2AwR_VPC88WPsHEojZhbkx95jAZ2mKJNHAcyaFz5lAzEpYbeZbvcWrSMlMcxlRmI9QRziHkB8MBPwIkg5tFTOrLLE6mmdgksW8J6lEihOk6IirCVTbZIUs5yJUUxmuY5SJyukI9XUW4WJiOEuKNn4xK2YqFqe9NQkeGXFMRqWH5Or02vz8grN4F-uL476bnsN6qBWHjvvlwAhu2BDlJcV8J8tPxjJ_CGptP-5PxWbodvwAyveHZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Parametrization+Method+for+B%E2%80%90Spline+Curve+Interpolation+via+Supervised+Learning&rft.jtitle=Computer+graphics+forum&rft.au=Song%2C+Tianyu&rft.au=Shen%2C+Tong&rft.au=Ge%2C+Linlin&rft.au=Feng%2C+Jieqing&rft.date=2024-10-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=43&rft.issue=7&rft_id=info:doi/10.1111%2Fcgf.15240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_15240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon