Universality for bounded degree spanning trees in randomly perturbed graphs

We solve a problem of Krivelevich, Kwan and Sudakov concerning the threshold for the containment of all bounded degree spanning trees in the model of randomly perturbed dense graphs. More precisely, we show that, if we start with a dense graph Gα on n vertices with δ(Gα) ≥ αn for α > 0 and we add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms Jg. 55; H. 4; S. 854 - 864
Hauptverfasser: Böttcher, Julia, Han, Jie, Kohayakawa, Yoshiharu, Montgomery, Richard, Parczyk, Olaf, Person, Yury
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York John Wiley & Sons, Inc 01.12.2019
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1042-9832, 1098-2418
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We solve a problem of Krivelevich, Kwan and Sudakov concerning the threshold for the containment of all bounded degree spanning trees in the model of randomly perturbed dense graphs. More precisely, we show that, if we start with a dense graph Gα on n vertices with δ(Gα) ≥ αn for α > 0 and we add to it the binomial random graph G(n,C/n), then with high probability the graph Gα∪G(n,C/n) contains copies of all spanning trees with maximum degree at most Δ simultaneously, where C depends only on α and Δ.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20850