Universality for bounded degree spanning trees in randomly perturbed graphs

We solve a problem of Krivelevich, Kwan and Sudakov concerning the threshold for the containment of all bounded degree spanning trees in the model of randomly perturbed dense graphs. More precisely, we show that, if we start with a dense graph Gα on n vertices with δ(Gα) ≥ αn for α > 0 and we add...

Full description

Saved in:
Bibliographic Details
Published in:Random structures & algorithms Vol. 55; no. 4; pp. 854 - 864
Main Authors: Böttcher, Julia, Han, Jie, Kohayakawa, Yoshiharu, Montgomery, Richard, Parczyk, Olaf, Person, Yury
Format: Journal Article
Language:English
Published: New York John Wiley & Sons, Inc 01.12.2019
Wiley Subscription Services, Inc
Subjects:
ISSN:1042-9832, 1098-2418
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We solve a problem of Krivelevich, Kwan and Sudakov concerning the threshold for the containment of all bounded degree spanning trees in the model of randomly perturbed dense graphs. More precisely, we show that, if we start with a dense graph Gα on n vertices with δ(Gα) ≥ αn for α > 0 and we add to it the binomial random graph G(n,C/n), then with high probability the graph Gα∪G(n,C/n) contains copies of all spanning trees with maximum degree at most Δ simultaneously, where C depends only on α and Δ.
AbstractList We solve a problem of Krivelevich, Kwan and Sudakov concerning the threshold for the containment of all bounded degree spanning trees in the model of randomly perturbed dense graphs. More precisely, we show that, if we start with a dense graph G α on n vertices with δ ( G α ) ≥  αn for α  > 0 and we add to it the binomial random graph G ( n , C / n ), then with high probability the graph G α ∪ G ( n , C / n ) contains copies of all spanning trees with maximum degree at most Δ simultaneously, where C depends only on α and Δ.
We solve a problem of Krivelevich, Kwan and Sudakov concerning the threshold for the containment of all bounded degree spanning trees in the model of randomly perturbed dense graphs. More precisely, we show that, if we start with a dense graph Gα on n vertices with δ(Gα) ≥ αn for α > 0 and we add to it the binomial random graph G(n,C/n), then with high probability the graph Gα∪G(n,C/n) contains copies of all spanning trees with maximum degree at most Δ simultaneously, where C depends only on α and Δ.
Author Montgomery, Richard
Parczyk, Olaf
Han, Jie
Böttcher, Julia
Person, Yury
Kohayakawa, Yoshiharu
Author_xml – sequence: 1
  givenname: Julia
  surname: Böttcher
  fullname: Böttcher, Julia
  email: j.boettcher@lse.ac.uk
  organization: London School of Economics
– sequence: 2
  givenname: Jie
  surname: Han
  fullname: Han, Jie
  organization: University of Rhode Island
– sequence: 3
  givenname: Yoshiharu
  surname: Kohayakawa
  fullname: Kohayakawa, Yoshiharu
  organization: Universidade de São Paulo
– sequence: 4
  givenname: Richard
  surname: Montgomery
  fullname: Montgomery, Richard
  organization: University of Birmingham
– sequence: 5
  givenname: Olaf
  surname: Parczyk
  fullname: Parczyk, Olaf
  organization: Technische Universität Ilmenau
– sequence: 6
  givenname: Yury
  surname: Person
  fullname: Person, Yury
  organization: Technische Universität Ilmenau
BookMark eNp9kE9PwzAMxSM0JLbBgW8QiROHbq7Tdu1xmvgnJiEBO1dpk4xMXVKSFtRvT8Y4IcHJtvR7tt-bkJGxRhJyGcMsBsC583yGkKdwQsYxFHmESZyPDn2CUZEzPCMT73cAsGDIxuRxY_SHDKpGdwNV1tHK9kZIQYXcOimpb7kx2mxpFyZPtaGOG2H3zUBb6breVYHdOt6--XNyqnjj5cVPnZLN7c3r6j5aP909rJbrqGYMIUqYZCmKBATmgqV8UaVxllSq5grTVAmFdVYJBnmRFqgqDEhdQB1-YhnEecWm5Oq4t3X2vZe-K3e2dyacLJFBliBC8DYl10eqdtZ7J1XZOr3nbihjKA9ZlcF1-Z1VYOe_2Fp3vNPWdI7r5j_Fp27k8Pfq8vlleVR8AWDIfUM
CitedBy_id crossref_primary_10_1002_rsa_20981
crossref_primary_10_1016_j_jctb_2024_04_003
crossref_primary_10_1137_20M1332992
crossref_primary_10_1002_rsa_21035
crossref_primary_10_1016_j_jctb_2019_12_005
crossref_primary_10_1002_rsa_21154
crossref_primary_10_1016_j_ejc_2020_103118
crossref_primary_10_1016_j_ejc_2021_103452
crossref_primary_10_1017_S0963548323000391
crossref_primary_10_1016_j_ejc_2025_104152
crossref_primary_10_1017_S0963548323000378
crossref_primary_10_1137_18M1227007
crossref_primary_10_1016_j_jctb_2023_11_002
crossref_primary_10_1017_S0963548320000231
crossref_primary_10_1002_jgt_22901
crossref_primary_10_1002_rsa_20885
crossref_primary_10_1002_rsa_20971
crossref_primary_10_1002_rsa_21103
crossref_primary_10_1016_j_ejc_2023_103848
crossref_primary_10_1002_rsa_21122
crossref_primary_10_1016_j_entcs_2019_08_056
crossref_primary_10_1002_rsa_21182
crossref_primary_10_1002_jgt_23022
crossref_primary_10_1137_21M1423117
crossref_primary_10_1002_rsa_20913
crossref_primary_10_1017_fms_2024_34
Cites_doi 10.1016/j.aim.2019.106793
10.1002/rsa.20885
10.1112/plms/s3-2.1.69
10.37236/7671
10.1137/15M1032910
10.1016/j.endm.2017.06.033
10.1002/1097-0118(200103)36:3<121::AID-JGT1000>3.0.CO;2-U
10.1017/S0963548316000079
10.37236/278
10.1017/S0963548301004849
10.1002/rsa.10070
10.1007/s00493-007-2182-z
10.1002/9781118032718
10.1016/0012-365X(76)90068-6
10.1007/BF02579198
ContentType Journal Article
Copyright 2019 The Authors. published by Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 The Authors. published by Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID 24P
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/rsa.20850
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2418
EndPage 864
ExternalDocumentID 10_1002_rsa_20850
RSA20850
Genre article
GrantInformation_xml – fundername: CAPES‐DAAD Probral
  funderid: 430/15; 57350402
– fundername: EPSRC
  funderid: EP/R00532X/1
– fundername: FAPESP
  funderid: 2014/18641‐5; 2013/03447‐6; 2013/03447‐6
– fundername: DFG
  funderid: PE 2299/1‐1
– fundername: DAAD
  funderid: 57391197
– fundername: CNPq
  funderid: 310974/2013‐5; 311412/2018‐1; 459335/2014‐6
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3320-43e352d40d28d35a7b5164bfcaf255fdf2c6bd3089592fb235ac90cded36018b3
IEDL.DBID 24P
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000491480300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1042-9832
IngestDate Fri Jul 25 10:41:16 EDT 2025
Sat Nov 29 02:48:13 EST 2025
Tue Nov 18 21:56:41 EST 2025
Wed Jan 22 16:38:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3320-43e352d40d28d35a7b5164bfcaf255fdf2c6bd3089592fb235ac90cded36018b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.20850
PQID 2306422032
PQPubID 1016429
PageCount 11
ParticipantIDs proquest_journals_2306422032
crossref_primary_10_1002_rsa_20850
crossref_citationtrail_10_1002_rsa_20850
wiley_primary_10_1002_rsa_20850_RSA20850
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Hoboken
PublicationTitle Random structures & algorithms
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 31
1976; 14
2000
2018 2019; 55
2010; 17
1976; 228
1987; 7
1952; 3
2018
2017
2006
2016
2014
2001; 36
2016; 25
2003; 22
2007; 27
2001; 10
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
Balogh J. (e_1_2_7_5_1) 2018
e_1_2_7_13_1
e_1_2_7_24_1
e_1_2_7_12_1
e_1_2_7_23_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
Krivelevich M. (e_1_2_7_20_1) 2006
Koršunov A.D. (e_1_2_7_17_1) 1976; 228
References_xml – volume: 25
  start-page: 909
  year: 2016
  end-page: 927
  article-title: Cycles and matchings in randomly perturbed digraphs and hypergraphs
  publication-title: Combin. Probab. Comput.
– start-page: 199
  year: 2006
  end-page: 262
– start-page: 1
  year: 2018
  end-page: 18
  article-title: Tilings in randomly perturbed dense graphs
  publication-title: Combin. Probab. Comput.
– volume: 228
  start-page: 529
  year: 1976
  end-page: 532
  article-title: Solution of a problem of P. Erdős and A. Rényi on Hamiltonian cycles in undirected graphs
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 55
  start-page: 795
  year: 2018 2019
  end-page: 807
– volume: 36
  start-page: 121
  year: 2001
  end-page: 130
  article-title: Tree embeddings
  publication-title: J. Graph Theory
– year: 2000
– volume: 14
  start-page: 359
  year: 1976
  end-page: 364
  article-title: Hamiltonian circuits in random graphs
  publication-title: Discrete Math.
– volume: 7
  start-page: 35
  year: 1987
  end-page: 38
  article-title: Threshold functions
  publication-title: Combinatorica
– year: 2017
– year: 2016
– year: 2018
– volume: 22
  start-page: 33
  year: 2003
  end-page: 42
  article-title: How many random edges make a dense graph Hamiltonian?
  publication-title: Random Structures Algorithms
– volume: 3
  start-page: 69
  year: 1952
  end-page: 81
  article-title: Some theorems on abstract graphs
  publication-title: Proc. Lond. Math. Soc.
– volume: 31
  start-page: 155
  year: 2017
  end-page: 171
  article-title: Bounded‐degree spanning trees in randomly perturbed graphs
  publication-title: SIAM J. Discrete Math.
– year: 2014
– volume: 17
  start-page: R6
  year: 2010
  article-title: Large bounded degree trees in expanding graphs
  publication-title: Electron. J. Combin.
– volume: 10
  start-page: 397
  year: 2001
  end-page: 416
  article-title: Spanning trees in dense graphs
  publication-title: Combin. Probab. Comput.
– volume: 27
  start-page: 629
  year: 2007
  end-page: 644
  article-title: Embedding nearly‐spanning bounded degree trees
  publication-title: Combinatorica
– ident: e_1_2_7_23_1
  doi: 10.1016/j.aim.2019.106793
– ident: e_1_2_7_6_1
  doi: 10.1002/rsa.20885
– ident: e_1_2_7_11_1
  doi: 10.1112/plms/s3-2.1.69
– start-page: 199
  volume-title: Bolyai Soc. Math. Stud
  year: 2006
  ident: e_1_2_7_20_1
– ident: e_1_2_7_21_1
  doi: 10.37236/7671
– ident: e_1_2_7_2_1
– ident: e_1_2_7_19_1
  doi: 10.1137/15M1032910
– ident: e_1_2_7_10_1
  doi: 10.1016/j.endm.2017.06.033
– ident: e_1_2_7_13_1
  doi: 10.1002/1097-0118(200103)36:3<121::AID-JGT1000>3.0.CO;2-U
– start-page: 1
  year: 2018
  ident: e_1_2_7_5_1
  article-title: Tilings in randomly perturbed dense graphs
  publication-title: Combin. Probab. Comput.
– volume: 228
  start-page: 529
  year: 1976
  ident: e_1_2_7_17_1
  article-title: Solution of a problem of P. Erdős and A. Rényi on Hamiltonian cycles in undirected graphs
  publication-title: Dokl. Akad. Nauk SSSR
– ident: e_1_2_7_18_1
  doi: 10.1017/S0963548316000079
– ident: e_1_2_7_4_1
  doi: 10.37236/278
– ident: e_1_2_7_16_1
  doi: 10.1017/S0963548301004849
– ident: e_1_2_7_22_1
– ident: e_1_2_7_8_1
  doi: 10.1002/rsa.10070
– ident: e_1_2_7_3_1
  doi: 10.1007/s00493-007-2182-z
– ident: e_1_2_7_7_1
– ident: e_1_2_7_14_1
  doi: 10.1002/9781118032718
– ident: e_1_2_7_24_1
  doi: 10.1016/0012-365X(76)90068-6
– ident: e_1_2_7_12_1
– ident: e_1_2_7_9_1
  doi: 10.1007/BF02579198
– ident: e_1_2_7_15_1
SSID ssj0007323
Score 2.4780014
Snippet We solve a problem of Krivelevich, Kwan and Sudakov concerning the threshold for the containment of all bounded degree spanning trees in the model of randomly...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 854
SubjectTerms Apexes
Containment
Graph theory
Graphs
perturbed graphs
random graphs
spanning trees
Trees (mathematics)
universality
Title Universality for bounded degree spanning trees in randomly perturbed graphs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.20850
https://www.proquest.com/docview/2306422032
Volume 55
WOSCitedRecordID wos000491480300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007323
  issn: 1042-9832
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7FetCDb7FaSxAPXpZuk30FT0UtglpKtdDb0kk2UKjb0q2C_95J9lEFBcHbHmZ3s8lM5vuyyTeEXAofeAi-dgCziYORGDkgXe5A4ANSIhVE4NpiE2G_H43HYlAj1-VZmFwfolpwM5Fh52sT4BPI2mvR0GVmZIMiw9frnQ4PjUszb1BNwyFn-e56jzkC_baUFXJZu7r1ezJaI8yvONUmmt7uv5q4R3YKfEm7uUPsk1qSHpDtp0qcNTskD8VmDIvAKYJWCqa2UqKoSpB9JxQnGVvIiJo_1hmdphQTmpq_zj7oIllijgK0tUrX2REZ9e5ebu6doqaCI7k5LO3xBCGX8lzFIsX9CY4TEibQcqKRXGilmQxAcTcSvmAaGJpI4UpsA0fqFgE_JhvpPE1OCNVuqBG9iBCk5-nQF1qCAK6Rk3mBZLxBrsrOjWUhOG7qXsziXCqZxfilse2fBrmoTBe5ysZPRs1yhOIi0LI4Z1CmDDy-zo7F7w-Ih89de3H6d9MzsoUQSeQbWJpkY7V8S87JpnxfTbNly3pci9Rvh73R4yfRm9oG
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH6MTVAP_hanU4N48FIsSbs24GWoY7IfyNxgt7IkDQzmNtop-N_7knadgoLgrYfXNk3ey_u-NPkewDX3BQuErx2B2cTBSAwdIV3miLovkBKpeihcW2wi6PXC0Yg_l-BudRYm04coFtxMZNj52gS4WZC-XauGJqnRDQoNYa946EZ-GSoP_eawU8zEAaPZBnuPOhxdd6Us5NLb4ubv-WgNMr9CVZtrmrv_a-Ue7OQYkzQyp9iHUjw7gO1uIdCaHkI735BhUThB4EqEqa8UK6JiZOAxwYnGFjMi5q91SiYzgklNzV-nH2QRJ5inBNpatev0CIbNx8F9y8nrKjiSmQPTHosRdinPVTRUzB_jWCFpElqONRIMrTSVdaGYG3KfUy0omkjuSmwDQ_oWCnYM5dl8Fp8A0W6gEcHwQEjP04HPtRRcMI28zKtLyqpws-rdSOai46b2xTTK5JJphF8a2f6pwlVhusiUNn4yqq2GKMqDLY0yFmVKwePr7GD8_oCo_9KwF6d_N72Ezdag24k6T732GWwhZOLZhpYalJfJW3wOG_J9OUmTi9wBPwH0Od3j
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FRfTgW6xWDeLBy9Il2VfAS1GLUi3FB_QWmhcU6rbsVsF_7yT7qIKC4G0Ps7vZJDPzfdnkG4TOWShoLELjCcgmHnhi4gnpU09EoQBKpKJE-K7YRNzvJ8MhGzTQZXUWptCHqBfcrGe4eG0dXM-UaS9UQ7Pc6gYllrAvByHEWKvrHAzqOBxTUmyvD4jHYOJWukI-ade3fs9GC4j5Fai6TNPd_F8bt9BGiTBxp5gS26ih0x20_lDLs-a7qFdux3AYHANsxcJWV9IKKw38W2MIM66UEbb_rHM8TjGkNDV9nXzgmc4gSwmwdVrX-R566d48X916ZVUFT1J7XDqgGkCXCnxFEkXDEYwUUCZh5MgAvTDKEBkJRf2EhYwYQcBEMl9CGyiQt0TQfbSUTlN9gLDxYwP4hcVCBoGJQ2akYIIaYGVBJAltoouqd7ksJcdt5YsJL8SSCYcv5a5_muisNp0VOhs_GbWqIeKlq-W84FC2EDy8zg3G7w_gj08dd3H4d9NTtDq47vL7u37vCK0BXmLFbpYWWppnb_oYrcj3-TjPTtzs-wS7pdvM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universality+for+bounded+degree+spanning+trees+in+randomly+perturbed+graphs&rft.jtitle=Random+structures+%26+algorithms&rft.au=B%C3%B6ttcher%2C+Julia&rft.au=Han%2C+Jie&rft.au=Kohayakawa%2C+Yoshiharu&rft.au=Montgomery%2C+Richard&rft.date=2019-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=55&rft.issue=4&rft.spage=854&rft.epage=864&rft_id=info:doi/10.1002%2Frsa.20850&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon