Automatic calibration of a rainfall–runoff model using a fast and elitist multi-objective particle swarm algorithm

In order to successfully calibrate a numerical model, multiple criteria should be considered. Multi-objective genetic algorithms (MOGAs) have proved effective in numerous such applications, where most of the techniques relying on the condition of Pareto efficiency to compare different solutions. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 36; H. 5; S. 9533 - 9538
1. Verfasser: Liu, Yang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.07.2009
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In order to successfully calibrate a numerical model, multiple criteria should be considered. Multi-objective genetic algorithms (MOGAs) have proved effective in numerous such applications, where most of the techniques relying on the condition of Pareto efficiency to compare different solutions. In this paper, a new non-dominated sorting particle swarm optimisation (NSPSO), is proposed, that combines the operations (fast ranking of non-dominated solutions, crowding distance ranking and elitist strategy of combining parent population and offspring population together) of a known MOGA NSGA-II and the other advanced operations (selection and mutation operations) with a single particle swarm optimisation (PSO). The efficacy of this algorithm is demonstrated on the calibration of a rainfall–runoff model, and the comparison is made with the NSGA-II. The simulation results suggest that the proposed optimisation framework is able to achieve good solutions as well diversity compared to the NSGA-II optimisation framework.
AbstractList In order to successfully calibrate a numerical model, multiple criteria should be considered. Multi-objective genetic algorithms (MOGAs) have proved effective in numerous such applications, where most of the techniques relying on the condition of Pareto efficiency to compare different solutions. In this paper, a new non-dominated sorting particle swarm optimisation (NSPSO), is proposed, that combines the operations (fast ranking of non-dominated solutions, crowding distance ranking and elitist strategy of combining parent population and offspring population together) of a known MOGA NSGA-II and the other advanced operations (selection and mutation operations) with a single particle swarm optimisation (PSO). The efficacy of this algorithm is demonstrated on the calibration of a rainfall–runoff model, and the comparison is made with the NSGA-II. The simulation results suggest that the proposed optimisation framework is able to achieve good solutions as well diversity compared to the NSGA-II optimisation framework.
Author Liu, Yang
Author_xml – sequence: 1
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  email: sharkyangliu916@hotmail.com
  organization: Manchester Interdisciplinary Biocentre, Department of Engineering and Physical Sciences, University of Manchester, UK
BookMark eNp9kM9OGzEQhy0UpCbAC_TkU28b7HV2vZZ6Qai0lZB6KWfLf2bBkdcOtjdVb7wDb8iT4JCeeshpRjPz_WR_K7QIMQBCnylZU0L76-0a8h-1bgkZ6mBNhv4MLenAWdNzwRZoSUTHmw3lm09olfOWEMoJ4UtUbuYSJ1WcwUZ5p1NtY8BxxAon5cKovH97eU1ziOOIp2jB4zm78Fj3o8oFq2AxeFdc7afZF9dEvQVT3B7wTqUa7AHXt6UJK_8YkytP0yU6r7kZrv7VC_Rw9-337Y_m_tf3n7c3941hjJZm7ISGoSWCd1T1VnWCWTsyTeigBdWCWNN1wwYsbdXQE8M3uqeaG6E7znresgv05Zi7S_F5hlzk5LIB71WAOGfJmGCi5X09bI-HJsWcE4xyl9yk0l9JiTwIllt5ECwPgg-zKrhCw3-QceVDX6nm_Gn06xGF-vu9gySzcRAMWJeqO2mjO4W_AwvbnDU
CitedBy_id crossref_primary_10_1007_s10661_020_8228_z
crossref_primary_10_1007_s00500_012_0898_1
crossref_primary_10_1016_j_jhydrol_2016_01_024
crossref_primary_10_1016_j_ecoinf_2010_04_006
crossref_primary_10_1016_j_eswa_2019_04_038
crossref_primary_10_1080_02626667_2020_1714628
crossref_primary_10_1109_ACCESS_2021_3070071
crossref_primary_10_1007_s13369_016_2286_0
crossref_primary_10_1016_j_eswa_2012_08_006
crossref_primary_10_1016_j_eswa_2010_09_092
crossref_primary_10_1088_1748_9326_adbfab
crossref_primary_10_1007_s10661_022_09909_6
crossref_primary_10_3389_feart_2022_902596
crossref_primary_10_1007_s10661_021_09010_4
crossref_primary_10_3390_w8020063
crossref_primary_10_1016_j_jhydrol_2014_12_009
crossref_primary_10_1080_0305215X_2018_1439942
crossref_primary_10_1016_j_eswa_2013_01_054
crossref_primary_10_1007_s11269_016_1540_2
crossref_primary_10_1016_j_jhydrol_2015_04_003
crossref_primary_10_1007_s11269_014_0806_9
crossref_primary_10_1007_s11269_013_0280_9
crossref_primary_10_1007_s11269_016_1418_3
crossref_primary_10_3846_16111699_2015_1031823
crossref_primary_10_1016_j_envsoft_2023_105831
crossref_primary_10_1016_j_knosys_2016_01_019
crossref_primary_10_1016_j_eswa_2011_08_175
crossref_primary_10_1016_j_asoc_2017_05_013
crossref_primary_10_1111_jfr3_12678
crossref_primary_10_1007_s11269_018_2019_0
crossref_primary_10_1007_s00500_012_0944_z
Cites_doi 10.1109/IJCNN.2007.4371107
10.1145/1068009.1068047
10.2166/wst.1997.0163
10.1007/978-3-540-28651-6_80
10.1016/S0022-1694(97)00107-8
10.1016/S0022-1694(00)00279-1
10.1007/3-540-45105-6_4
10.1016/0304-3800(95)00084-9
10.1109/ICNN.1995.488968
10.1109/4235.996017
10.1109/CEC.2000.870279
10.1109/TEVC.2004.826067
ContentType Journal Article
Copyright 2008 Elsevier Ltd
Copyright_xml – notice: 2008 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2008.10.086
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 9538
ExternalDocumentID 10_1016_j_eswa_2008_10_086
S0957417408007823
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-f59be8209751a6da593ddf3b018b91b90dc5584ed12a860c74b61b7c9b5736723
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000264782800087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Sep 28 08:13:23 EDT 2025
Tue Nov 18 21:04:28 EST 2025
Sat Nov 29 07:11:24 EST 2025
Fri Feb 23 02:30:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Multiple objectives
Parameter estimation
Rainfall–runoff models
Calibration
Optimisation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-f59be8209751a6da593ddf3b018b91b90dc5584ed12a860c74b61b7c9b5736723
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 33939276
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_33939276
crossref_primary_10_1016_j_eswa_2008_10_086
crossref_citationtrail_10_1016_j_eswa_2008_10_086
elsevier_sciencedirect_doi_10_1016_j_eswa_2008_10_086
PublicationCentury 2000
PublicationDate 2009-07-01
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-01
  day: 01
PublicationDecade 2000
PublicationTitle Expert systems with applications
PublicationYear 2009
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Khu, Savic (bib12) 2004; 3177
(pp. 1073–1078).
Deb, Agrawal, Pratap, Meyarivan (bib3) 2002; 6
Eberhart R., & Shi Y., (2000). Comparing inertia weights and constriction factors in particle swarm optimization. In
(pp. 1942–1945).
Hu, X. H. (2007).
.
Knowles J., & Corne D. (2000). On metrics for comparing non-dominated sets. In
Yapo, Gupta, Sorooshian (bib17) 1998; 204
Cooper, Nguyen, Nicell (bib2) 1997; 36
(pp. 84–88).
Janssen, Heuberger (bib7) 1995; 83
Coello, Pulido, Lechuga (bib1) 2004; 8
(pp. 116–121). San Mateo, CA: Morgan Kaufman Publishers.
(pp. 37–44).
Raquel, R. R, & Naval, P. C. (2005). An effective use of crowding distance in multiobjective particle swarm optimization. In
Fieldsend, J., & Singh, S. (2002). A multi-objective algorithm based upon particle swarm optimization, an efficient data structure and turbulence. In
Madsen (bib13) 2000; 235
Liu, Y., & Khu, S. T. (2007). Automatic calibration of numerical models using fast optimization by fitness estimation. In
Whitley, D. (1989). The genitor algorithm and selection pressure: why rank-based allocation of reproductive trials is best. In
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimisation. In
Li, X. (2003). A non-dominated sorting particle swarm optimizer for multiobjective optimization. In
Seshadri, A. (2006). NSGA-II: A multi-objective optimization algorithm.
10.1016/j.eswa.2008.10.086_b0055
Yapo (10.1016/j.eswa.2008.10.086_b0085) 1998; 204
10.1016/j.eswa.2008.10.086_b0045
10.1016/j.eswa.2008.10.086_b0025
10.1016/j.eswa.2008.10.086_b0040
10.1016/j.eswa.2008.10.086_b0030
10.1016/j.eswa.2008.10.086_b0020
10.1016/j.eswa.2008.10.086_b0075
Madsen (10.1016/j.eswa.2008.10.086_b0065) 2000; 235
Deb (10.1016/j.eswa.2008.10.086_b0015) 2002; 6
Janssen (10.1016/j.eswa.2008.10.086_b0035) 1995; 83
Coello (10.1016/j.eswa.2008.10.086_b0005) 2004; 8
10.1016/j.eswa.2008.10.086_b0080
10.1016/j.eswa.2008.10.086_b0070
10.1016/j.eswa.2008.10.086_b0050
Cooper (10.1016/j.eswa.2008.10.086_b0010) 1997; 36
Liu (10.1016/j.eswa.2008.10.086_b0060) 2004; 3177
References_xml – reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimisation. In
– reference: (pp. 84–88).
– reference: Hu, X. H. (2007).
– reference: (pp. 37–44).
– reference: (pp. 1073–1078).
– volume: 3177
  start-page: 546
  year: 2004
  end-page: 551
  ident: bib12
  article-title: A fast hybrid optimisation method of multi-objective genetic algorithm and
  publication-title: Lecture Notes in Computer Science (LNCS)
– volume: 36
  start-page: 53
  year: 1997
  end-page: 60
  ident: bib2
  article-title: Evaluation of global optimisation methods for conceptual rainfall–runoff model calibration
  publication-title: Water Science and Technology
– reference: .
– volume: 204
  start-page: 83
  year: 1998
  end-page: 97
  ident: bib17
  article-title: Multi-objective global optimisation for hydrologic models
  publication-title: Journal of Hydrology
– volume: 235
  start-page: 276
  year: 2000
  end-page: 288
  ident: bib13
  article-title: Automatic calibration of a conceptual rainfall–runoff model using multiple objectives
  publication-title: J. Hydrol.
– reference: Liu, Y., & Khu, S. T. (2007). Automatic calibration of numerical models using fast optimization by fitness estimation. In
– reference: Knowles J., & Corne D. (2000). On metrics for comparing non-dominated sets. In
– reference: Fieldsend, J., & Singh, S. (2002). A multi-objective algorithm based upon particle swarm optimization, an efficient data structure and turbulence. In
– reference: Raquel, R. R, & Naval, P. C. (2005). An effective use of crowding distance in multiobjective particle swarm optimization. In
– reference: Li, X. (2003). A non-dominated sorting particle swarm optimizer for multiobjective optimization. In
– reference: Seshadri, A. (2006). NSGA-II: A multi-objective optimization algorithm.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib3
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 83
  start-page: 55
  year: 1995
  end-page: 66
  ident: bib7
  article-title: Calibration of process-oriented models
  publication-title: Ecological Model.
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: bib1
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: (pp. 1942–1945).
– reference: Whitley, D. (1989). The genitor algorithm and selection pressure: why rank-based allocation of reproductive trials is best. In
– reference: (pp. 116–121). San Mateo, CA: Morgan Kaufman Publishers.
– reference: .
– reference: Eberhart R., & Shi Y., (2000). Comparing inertia weights and constriction factors in particle swarm optimization. In
– ident: 10.1016/j.eswa.2008.10.086_b0055
  doi: 10.1109/IJCNN.2007.4371107
– ident: 10.1016/j.eswa.2008.10.086_b0070
  doi: 10.1145/1068009.1068047
– volume: 36
  start-page: 53
  issue: 5
  year: 1997
  ident: 10.1016/j.eswa.2008.10.086_b0010
  article-title: Evaluation of global optimisation methods for conceptual rainfall–runoff model calibration
  publication-title: Water Science and Technology
  doi: 10.2166/wst.1997.0163
– volume: 3177
  start-page: 546
  year: 2004
  ident: 10.1016/j.eswa.2008.10.086_b0060
  article-title: A fast hybrid optimisation method of multi-objective genetic algorithm and k-nearest neighbour classifier for hydrological model calibration
  publication-title: Lecture Notes in Computer Science (LNCS)
  doi: 10.1007/978-3-540-28651-6_80
– volume: 204
  start-page: 83
  year: 1998
  ident: 10.1016/j.eswa.2008.10.086_b0085
  article-title: Multi-objective global optimisation for hydrologic models
  publication-title: Journal of Hydrology
  doi: 10.1016/S0022-1694(97)00107-8
– volume: 235
  start-page: 276
  year: 2000
  ident: 10.1016/j.eswa.2008.10.086_b0065
  article-title: Automatic calibration of a conceptual rainfall–runoff model using multiple objectives
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(00)00279-1
– ident: 10.1016/j.eswa.2008.10.086_b0080
– ident: 10.1016/j.eswa.2008.10.086_b0045
– ident: 10.1016/j.eswa.2008.10.086_b0025
– ident: 10.1016/j.eswa.2008.10.086_b0050
  doi: 10.1007/3-540-45105-6_4
– volume: 83
  start-page: 55
  year: 1995
  ident: 10.1016/j.eswa.2008.10.086_b0035
  article-title: Calibration of process-oriented models
  publication-title: Ecological Model.
  doi: 10.1016/0304-3800(95)00084-9
– ident: 10.1016/j.eswa.2008.10.086_b0040
  doi: 10.1109/ICNN.1995.488968
– ident: 10.1016/j.eswa.2008.10.086_b0030
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2008.10.086_b0015
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– ident: 10.1016/j.eswa.2008.10.086_b0075
– ident: 10.1016/j.eswa.2008.10.086_b0020
  doi: 10.1109/CEC.2000.870279
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2008.10.086_b0005
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826067
SSID ssj0017007
Score 2.1579769
Snippet In order to successfully calibrate a numerical model, multiple criteria should be considered. Multi-objective genetic algorithms (MOGAs) have proved effective...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9533
SubjectTerms Calibration
Multiple objectives
Optimisation
Parameter estimation
Rainfall–runoff models
Title Automatic calibration of a rainfall–runoff model using a fast and elitist multi-objective particle swarm algorithm
URI https://dx.doi.org/10.1016/j.eswa.2008.10.086
https://www.proquest.com/docview/33939276
Volume 36
WOSCitedRecordID wos000264782800087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ojl6QO3KKu4bmL7WKFFgNAKiUXqLbJjB7bKJlWalD3yH_iH_BLGsZ0tFawAiUuUus3z-zozHs8DoRfG5ilLAwhQreJ5kelYCKljrkAgq5JwSYdE4Xfs5IQvl-L9ZLINuTDbitU1v7gQ6_8KNYwB2DZ19i_gHk8KA7APoMMWYIftHwG_6LvG1WGF128nw8EmlJFtB1HKqgoRDrTt66YsXTucqB_cBjIq5caFnRsbGgf7Q9Bh3KiVE47R2l812nyR7Xkkq09Ne9Z9Pv_Jy29LKHe-UHRIodtZLB8Dgc76QQtIr0GDA0KMwareKxYyYy7DkJx7kcVz4jrwHBknXDmjccZcR8QgfV35E8-ydEeU2rjXHbUMH_kvRb7zPqyODDyzi4210Xr79bUHjf3B3pW9KWsmg2lEr6GDGUsFn6KDxZvj5dtx_YklLtE-PIVPt3KRgftX-p1Js6fcB4vl9Da66acaeOHAuoMmpr6LboU2HthL9XuoGxmDdxiDmxJLHBjz_es3xxU8cAUPXIHvLVcwcAV7ruA9ruDAFTxwBY9cuY8-vjo-ffk69s044oJS0sVlKpQBc1GwlMhMy1RQrUuqEsKVIEokukjBmDWazCTPkoLNVUYUK4RKGc3YjD5A07qpzUOEUwM2KxesBG0J9qNQRTJXMw1zCaKTTKaHiIT3mRe-Ur1tmFLlISRxlVsMXAtVGAMMDlE0HrN2dVqu_HUaYMq9peksyBxYdeVxzwOmOYhhu7Yma9P0m5xSATMNlj36xzM_Rjcu_1tP0LRre_MUXS-2gF37zNPzBwEmsyw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+calibration+of+a+rainfall%E2%80%93runoff+model+using+a+fast+and+elitist+multi-objective+particle+swarm+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Liu%2C+Yang&rft.date=2009-07-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=36&rft.issue=5&rft.spage=9533&rft.epage=9538&rft_id=info:doi/10.1016%2Fj.eswa.2008.10.086&rft.externalDocID=S0957417408007823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon