Automatic calibration of a rainfall–runoff model using a fast and elitist multi-objective particle swarm algorithm

In order to successfully calibrate a numerical model, multiple criteria should be considered. Multi-objective genetic algorithms (MOGAs) have proved effective in numerous such applications, where most of the techniques relying on the condition of Pareto efficiency to compare different solutions. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 36; H. 5; S. 9533 - 9538
1. Verfasser: Liu, Yang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.07.2009
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to successfully calibrate a numerical model, multiple criteria should be considered. Multi-objective genetic algorithms (MOGAs) have proved effective in numerous such applications, where most of the techniques relying on the condition of Pareto efficiency to compare different solutions. In this paper, a new non-dominated sorting particle swarm optimisation (NSPSO), is proposed, that combines the operations (fast ranking of non-dominated solutions, crowding distance ranking and elitist strategy of combining parent population and offspring population together) of a known MOGA NSGA-II and the other advanced operations (selection and mutation operations) with a single particle swarm optimisation (PSO). The efficacy of this algorithm is demonstrated on the calibration of a rainfall–runoff model, and the comparison is made with the NSGA-II. The simulation results suggest that the proposed optimisation framework is able to achieve good solutions as well diversity compared to the NSGA-II optimisation framework.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2008.10.086