Gradient-Enhancing Conversion for Illumination-Robust Lane Detection
Lane detection is important in many advanced driver-assistance systems (ADAS). Vision-based lane detection algorithms are widely used and generally use gradient information as a lane feature. However, gradient values between lanes and roads vary with illumination change, which degrades the performan...
Uložené v:
| Vydané v: | IEEE transactions on intelligent transportation systems Ročník 14; číslo 3; s. 1083 - 1094 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.09.2013
|
| Predmet: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Lane detection is important in many advanced driver-assistance systems (ADAS). Vision-based lane detection algorithms are widely used and generally use gradient information as a lane feature. However, gradient values between lanes and roads vary with illumination change, which degrades the performance of lane detection systems. In this paper, we propose a gradient-enhancing conversion method for illumination-robust lane detection. Our proposed gradient-enhancing conversion method produces a new gray-level image from an RGB color image based on linear discriminant analysis. The converted images have large gradients at lane boundaries. To deal with illumination changes, the gray-level conversion vector is dynamically updated. In addition, we propose a novel lane detection algorithm, which uses the proposed conversion method, adaptive Canny edge detector, Hough transform, and curve model fitting method. We performed several experiments in various illumination environments and confirmed that the gradient is maximized at lane boundaries on the road. The detection rate of the proposed lane detection algorithm averages 96% and is greater than 93% in very poor environments. |
|---|---|
| AbstractList | Lane detection is important in many advanced driver-assistance systems (ADAS). Vision-based lane detection algorithms are widely used and generally use gradient information as a lane feature. However, gradient values between lanes and roads vary with illumination change, which degrades the performance of lane detection systems. In this paper, we propose a gradient-enhancing conversion method for illumination-robust lane detection. Our proposed gradient-enhancing conversion method produces a new gray-level image from an RGB color image based on linear discriminant analysis. The converted images have large gradients at lane boundaries. To deal with illumination changes, the gray-level conversion vector is dynamically updated. In addition, we propose a novel lane detection algorithm, which uses the proposed conversion method, adaptive Canny edge detector, Hough transform, and curve model fitting method. We performed several experiments in various illumination environments and confirmed that the gradient is maximized at lane boundaries on the road. The detection rate of the proposed lane detection algorithm averages 96% and is greater than 93% in very poor environments. |
| Author | Ukil Yang Kwanghoon Sohn Hunjae Yoo |
| Author_xml | – sequence: 1 givenname: Hunjae surname: Yoo fullname: Yoo, Hunjae – sequence: 2 givenname: Ukil surname: Yang fullname: Yang, Ukil – sequence: 3 givenname: Kwanghoon surname: Sohn fullname: Sohn, Kwanghoon |
| BookMark | eNp9kE1LAzEQhoNUsK3-APGyfyB1Jh_7cZS21kJB0HpekmxWI9usJKngv7driwcPnmZ44XmHeSZk5HtvCblGmCFCdbtdb59nDJDPGJNMsOKMjFHKkgJgPhp2JmgFEi7IJMb3Qyok4pgsVkE1zvpEl_5NeeP8azbv_acN0fU-a_uQrbtuv3NepUNAn3q9jynbKG-zhU3WDOklOW9VF-3VaU7Jy_1yO3-gm8fVen63oYZzTNQ2goPkVctNoYXRBQPZGEQhSsi1bpgsGRSVlsaapkFZ5ooJI0yZt7oSbcWnBI-9JvQxBtvWH8HtVPiqEepBQz1oqAcN9UnDgSn-MMaln19SUK77l7w5ks5a-3spl1BwLPk3UzdtAg |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1016_j_jvcir_2019_102675 crossref_primary_10_1049_trit_2017_0022 crossref_primary_10_1109_ACCESS_2020_2991930 crossref_primary_10_1109_TITS_2015_2464253 crossref_primary_10_1109_TITS_2020_2983077 crossref_primary_10_1109_TIM_2024_3351240 crossref_primary_10_1109_TITS_2023_3290991 crossref_primary_10_3390_machines5010006 crossref_primary_10_1177_03611981241243078 crossref_primary_10_3390_ijgi12030132 crossref_primary_10_1007_s11554_017_0687_2 crossref_primary_10_1016_j_jksuci_2022_06_008 crossref_primary_10_3390_app12063168 crossref_primary_10_3390_s21134428 crossref_primary_10_1016_j_micpro_2019_102874 crossref_primary_10_1109_TCSVT_2018_2805704 crossref_primary_10_1186_s13677_020_00172_z crossref_primary_10_1109_TITS_2020_3035614 crossref_primary_10_1109_TIV_2022_3158750 crossref_primary_10_1109_TIP_2021_3115454 crossref_primary_10_1109_TVT_2023_3292401 crossref_primary_10_1109_MCSE_2018_2882700 crossref_primary_10_1177_0954407014547929 crossref_primary_10_1109_JSEN_2023_3279052 crossref_primary_10_1109_TITS_2015_2506609 crossref_primary_10_1109_ACCESS_2018_2868976 crossref_primary_10_1109_TITS_2021_3102479 crossref_primary_10_3390_app13169313 crossref_primary_10_1049_iet_its_2019_0391 crossref_primary_10_1007_s12652_019_01496_8 crossref_primary_10_1109_TITS_2022_3158584 crossref_primary_10_1049_iet_ipr_2018_6236 crossref_primary_10_1109_ACCESS_2023_3292128 crossref_primary_10_1109_TIP_2016_2539683 crossref_primary_10_1109_TITS_2020_2989349 crossref_primary_10_1049_iet_ipr_2018_6433 crossref_primary_10_3390_s19184028 crossref_primary_10_1080_21680566_2020_1782786 crossref_primary_10_1109_TCSVT_2023_3313576 crossref_primary_10_1109_TIE_2016_2578841 crossref_primary_10_1007_s12652_022_04346_2 crossref_primary_10_1016_j_patcog_2015_12_010 crossref_primary_10_3390_app8122508 crossref_primary_10_1109_TITS_2017_2658662 crossref_primary_10_1049_cth2_12129 crossref_primary_10_1109_ACCESS_2022_3208128 crossref_primary_10_1007_s00170_020_06185_x crossref_primary_10_1109_TITS_2017_2679222 crossref_primary_10_1016_j_eswa_2014_10_024 crossref_primary_10_1016_j_knosys_2021_107941 crossref_primary_10_3390_s19102305 crossref_primary_10_1007_s00371_024_03626_6 crossref_primary_10_3390_app12147109 crossref_primary_10_1088_1755_1315_81_1_012212 crossref_primary_10_1109_TII_2020_2998818 crossref_primary_10_1109_TITS_2018_2791572 crossref_primary_10_1016_j_image_2021_116413 crossref_primary_10_1109_ACCESS_2020_3000777 crossref_primary_10_1109_TITS_2023_3274767 crossref_primary_10_1016_j_eswa_2015_04_035 crossref_primary_10_1109_TITS_2020_2980855 crossref_primary_10_3390_s19020281 crossref_primary_10_1016_j_measurement_2025_116870 crossref_primary_10_1109_ACCESS_2023_3283440 crossref_primary_10_1109_TITS_2025_3545554 crossref_primary_10_1038_s41598_022_25032_5 crossref_primary_10_1109_TITS_2020_2975710 crossref_primary_10_1088_1742_6596_1187_3_032018 crossref_primary_10_1109_TVT_2019_2913187 crossref_primary_10_3390_s17112475 crossref_primary_10_1109_ACCESS_2021_3083890 crossref_primary_10_3390_s16081313 crossref_primary_10_1177_03611981231178814 crossref_primary_10_1007_s00500_021_05815_0 crossref_primary_10_1109_ACCESS_2019_2933598 crossref_primary_10_1186_s44147_022_00162_9 crossref_primary_10_1007_s11042_024_19297_3 crossref_primary_10_1109_TVT_2015_2420752 crossref_primary_10_1007_s11042_015_3141_0 crossref_primary_10_1109_TIV_2019_2938092 crossref_primary_10_1587_transinf_2018EDP7279 crossref_primary_10_1016_j_matpr_2020_09_605 crossref_primary_10_1016_j_micpro_2018_10_003 crossref_primary_10_1109_TCSVT_2022_3144184 crossref_primary_10_1007_s44163_025_00455_x crossref_primary_10_1177_09544070211016254 crossref_primary_10_1109_TITS_2017_2751746 crossref_primary_10_3390_s16081276 |
| Cites_doi | 10.1109/ITSC.2009.5309855 10.1109/TITS.2006.883940 10.1016/j.eswa.2009.05.026 10.1109/CASE.2009.104 10.1109/IVS.2010.5548087 10.1109/TITS.2004.838221 10.1109/ICVES.2006.371644 10.1109/TITS.2006.869595 10.1088/0957-0233/17/4/020 10.1109/TITS.2011.2173196 10.1109/ICCAS.2008.4694332 10.1109/TITS.2003.821339 10.1109/TITS.2007.908582 10.1049/el.2010.3413 10.1016/j.sigpro.2011.07.019 10.1109/ICINFA.2010.5512220 10.1109/TPAMI.2004.44 10.1109/IVS.2008.4621152 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TITS.2013.2252427 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 1094 |
| ExternalDocumentID | 10_1109_TITS_2013_2252427 6507318 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION |
| ID | FETCH-LOGICAL-c331t-ed430539f3c7b4cb7205dc1144806bbd2582079b5cecdd1586a24c4c86fb94f93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 149 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324336100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Sat Nov 29 06:34:48 EST 2025 Tue Nov 18 22:26:23 EST 2025 Tue Aug 26 16:44:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-ed430539f3c7b4cb7205dc1144806bbd2582079b5cecdd1586a24c4c86fb94f93 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_6507318 crossref_primary_10_1109_TITS_2013_2252427 crossref_citationtrail_10_1109_TITS_2013_2252427 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-09-01 |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref11 ref22 apostoloff (ref7) 2003 ref21 ref2 ref1 ref17 ref16 ref19 ref18 sun (ref8) 2006 ref9 ref4 ref3 ref6 wang (ref10) 2010 ref5 mcdonald (ref20) 2001 |
| References_xml | – ident: ref13 doi: 10.1109/ITSC.2009.5309855 – ident: ref9 doi: 10.1109/TITS.2006.883940 – ident: ref11 doi: 10.1016/j.eswa.2009.05.026 – start-page: 558 year: 2003 ident: ref7 article-title: Robust vision based lane tracking using multiple cues and particle filtering publication-title: Proc IEEE IV Symp – ident: ref14 doi: 10.1109/CASE.2009.104 – ident: ref15 doi: 10.1109/IVS.2010.5548087 – start-page: 1735 year: 2010 ident: ref10 article-title: Lane detection and tracking using a layered approach publication-title: Proc IEEE Int Conf Des Autom – ident: ref2 doi: 10.1109/TITS.2004.838221 – ident: ref16 doi: 10.1109/ICVES.2006.371644 – ident: ref1 doi: 10.1109/TITS.2006.869595 – ident: ref5 doi: 10.1088/0957-0233/17/4/020 – start-page: 1168 year: 2006 ident: ref8 article-title: HSI color model based lane-marking detection publication-title: Proc IEEE ITSC – ident: ref22 doi: 10.1109/TITS.2011.2173196 – ident: ref17 doi: 10.1109/ICCAS.2008.4694332 – ident: ref3 doi: 10.1109/TITS.2003.821339 – ident: ref6 doi: 10.1109/TITS.2007.908582 – ident: ref19 doi: 10.1049/el.2010.3413 – ident: ref4 doi: 10.1016/j.sigpro.2011.07.019 – ident: ref18 doi: 10.1109/ICINFA.2010.5512220 – year: 2001 ident: ref20 article-title: Application of the Hough transform to lane detection and following on high speed roads publication-title: Proc Irish Signals Syst Conf ?Motorway Driving Scenarios – ident: ref12 doi: 10.1109/TPAMI.2004.44 – ident: ref21 doi: 10.1109/IVS.2008.4621152 |
| SSID | ssj0014511 |
| Score | 2.460398 |
| Snippet | Lane detection is important in many advanced driver-assistance systems (ADAS). Vision-based lane detection algorithms are widely used and generally use... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1083 |
| SubjectTerms | Feature extraction Gradient-enhancing conversion illumination-robust method Image color analysis Image edge detection lane detection Lighting linear discriminant analysis (LDA) Roads Training data Vectors |
| Title | Gradient-Enhancing Conversion for Illumination-Robust Lane Detection |
| URI | https://ieeexplore.ieee.org/document/6507318 |
| Volume | 14 |
| WOSCitedRecordID | wos000324336100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5z-KAP3qY4b_TBJzFblkvTPMouOpAhOmFvpTlNdSCdbJ2_3yTtxgQRfCslhXJyyLl9-T6ErmVKwIS2yAmVodjWXwnWSQLYgHJaL2CPTfBiE3I0iiYT9VRDt-u7MMYYDz4zLffoZ_npDJauVda22YS0PriFtqQMy7ta64mB49ny3KiUY0XEaoLZIao9Ho5fHIiLtazz2pAkf8SgDVEVH1MG-__7mwO0V-WOwV252YeoZvIjtLvBKNhAvfu5x3AVuJ-_OyqN_C3oOmC574oFNkMNhk7beFo2AfHzTC8XRfCY5CbomcLjsvJj9Droj7sPuBJKwMBYp8AmdcRdTGUMpOagJSUiBVvp8IiEWqdU2DgvlRZgIE07IgoTyoFDFGZa8UyxE1TPZ7k5RQEVOjQiZQlhGU8Y1SQBYbeR8kyA0rSJyMp0MVQs4k7M4iP21QRRsbN27KwdV9Zuopv1J58lhcZfixvO0uuFlZHPfn99jnaol6dwmK8LVC_mS3OJtuGrmC7mV95BvgH7RbhQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XB2xTv9sEnMVuWNG3zKN42nEO0gm-lOU11IJ1snb_fJOuKggi-lZJCOTnk3L58H8BpmFHUgSlyAqkZMfVXSlSaItEordYLmmMTndhE2O9HLy_yYQ7O67swWmsHPtNN--hm-dkQJ7ZV1jLZRGh8cB4WrXJWdVurnhlYpi3Hjsp8IqmYzTDbVLbibvxkYVy8adzXBKXwRxT6JqviosrN-v_-ZwPWquzRu5hu9ybM6WILVr9xCjbg6nbkUFwluS7eLJlG8epdWmi564t5Jkf1ulbdeDBtA5LHoZqMS6-XFtq70qVDZhXb8HxzHV92SCWVQJDzdkl0Zqm7uMw5hspHFTIqMjS1jh_RQKmMCRPpQ6kEasyytoiClPnoYxTkSvq55DuwUAwLvQseEyrQIuMp5bmfcqZoisJsJPNzgVKxPaAz0yVY8YhbOYv3xNUTVCbW2om1dlJZew_O6k8-piQafy1uWEvXCysj7__--gSWO_F9L-l1-3cHsMKcWIVFgB3CQjma6CNYws9yMB4dO2f5AsRzu5k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient-Enhancing+Conversion+for+Illumination-Robust+Lane+Detection&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Yoo%2C+Hunjae&rft.au=Yang%2C+Ukil&rft.au=Sohn%2C+Kwanghoon&rft.date=2013-09-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=14&rft.issue=3&rft.spage=1083&rft.epage=1094&rft_id=info:doi/10.1109%2FTITS.2013.2252427&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2013_2252427 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |