Gradient-Enhancing Conversion for Illumination-Robust Lane Detection

Lane detection is important in many advanced driver-assistance systems (ADAS). Vision-based lane detection algorithms are widely used and generally use gradient information as a lane feature. However, gradient values between lanes and roads vary with illumination change, which degrades the performan...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on intelligent transportation systems Ročník 14; číslo 3; s. 1083 - 1094
Hlavní autori: Yoo, Hunjae, Yang, Ukil, Sohn, Kwanghoon
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.09.2013
Predmet:
ISSN:1524-9050, 1558-0016
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Lane detection is important in many advanced driver-assistance systems (ADAS). Vision-based lane detection algorithms are widely used and generally use gradient information as a lane feature. However, gradient values between lanes and roads vary with illumination change, which degrades the performance of lane detection systems. In this paper, we propose a gradient-enhancing conversion method for illumination-robust lane detection. Our proposed gradient-enhancing conversion method produces a new gray-level image from an RGB color image based on linear discriminant analysis. The converted images have large gradients at lane boundaries. To deal with illumination changes, the gray-level conversion vector is dynamically updated. In addition, we propose a novel lane detection algorithm, which uses the proposed conversion method, adaptive Canny edge detector, Hough transform, and curve model fitting method. We performed several experiments in various illumination environments and confirmed that the gradient is maximized at lane boundaries on the road. The detection rate of the proposed lane detection algorithm averages 96% and is greater than 93% in very poor environments.
AbstractList Lane detection is important in many advanced driver-assistance systems (ADAS). Vision-based lane detection algorithms are widely used and generally use gradient information as a lane feature. However, gradient values between lanes and roads vary with illumination change, which degrades the performance of lane detection systems. In this paper, we propose a gradient-enhancing conversion method for illumination-robust lane detection. Our proposed gradient-enhancing conversion method produces a new gray-level image from an RGB color image based on linear discriminant analysis. The converted images have large gradients at lane boundaries. To deal with illumination changes, the gray-level conversion vector is dynamically updated. In addition, we propose a novel lane detection algorithm, which uses the proposed conversion method, adaptive Canny edge detector, Hough transform, and curve model fitting method. We performed several experiments in various illumination environments and confirmed that the gradient is maximized at lane boundaries on the road. The detection rate of the proposed lane detection algorithm averages 96% and is greater than 93% in very poor environments.
Author Ukil Yang
Kwanghoon Sohn
Hunjae Yoo
Author_xml – sequence: 1
  givenname: Hunjae
  surname: Yoo
  fullname: Yoo, Hunjae
– sequence: 2
  givenname: Ukil
  surname: Yang
  fullname: Yang, Ukil
– sequence: 3
  givenname: Kwanghoon
  surname: Sohn
  fullname: Sohn, Kwanghoon
BookMark eNp9kE1LAzEQhoNUsK3-APGyfyB1Jh_7cZS21kJB0HpekmxWI9usJKngv7driwcPnmZ44XmHeSZk5HtvCblGmCFCdbtdb59nDJDPGJNMsOKMjFHKkgJgPhp2JmgFEi7IJMb3Qyok4pgsVkE1zvpEl_5NeeP8azbv_acN0fU-a_uQrbtuv3NepUNAn3q9jynbKG-zhU3WDOklOW9VF-3VaU7Jy_1yO3-gm8fVen63oYZzTNQ2goPkVctNoYXRBQPZGEQhSsi1bpgsGRSVlsaapkFZ5ooJI0yZt7oSbcWnBI-9JvQxBtvWH8HtVPiqEepBQz1oqAcN9UnDgSn-MMaln19SUK77l7w5ks5a-3spl1BwLPk3UzdtAg
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_jvcir_2019_102675
crossref_primary_10_1049_trit_2017_0022
crossref_primary_10_1109_ACCESS_2020_2991930
crossref_primary_10_1109_TITS_2015_2464253
crossref_primary_10_1109_TITS_2020_2983077
crossref_primary_10_1109_TIM_2024_3351240
crossref_primary_10_1109_TITS_2023_3290991
crossref_primary_10_3390_machines5010006
crossref_primary_10_1177_03611981241243078
crossref_primary_10_3390_ijgi12030132
crossref_primary_10_1007_s11554_017_0687_2
crossref_primary_10_1016_j_jksuci_2022_06_008
crossref_primary_10_3390_app12063168
crossref_primary_10_3390_s21134428
crossref_primary_10_1016_j_micpro_2019_102874
crossref_primary_10_1109_TCSVT_2018_2805704
crossref_primary_10_1186_s13677_020_00172_z
crossref_primary_10_1109_TITS_2020_3035614
crossref_primary_10_1109_TIV_2022_3158750
crossref_primary_10_1109_TIP_2021_3115454
crossref_primary_10_1109_TVT_2023_3292401
crossref_primary_10_1109_MCSE_2018_2882700
crossref_primary_10_1177_0954407014547929
crossref_primary_10_1109_JSEN_2023_3279052
crossref_primary_10_1109_TITS_2015_2506609
crossref_primary_10_1109_ACCESS_2018_2868976
crossref_primary_10_1109_TITS_2021_3102479
crossref_primary_10_3390_app13169313
crossref_primary_10_1049_iet_its_2019_0391
crossref_primary_10_1007_s12652_019_01496_8
crossref_primary_10_1109_TITS_2022_3158584
crossref_primary_10_1049_iet_ipr_2018_6236
crossref_primary_10_1109_ACCESS_2023_3292128
crossref_primary_10_1109_TIP_2016_2539683
crossref_primary_10_1109_TITS_2020_2989349
crossref_primary_10_1049_iet_ipr_2018_6433
crossref_primary_10_3390_s19184028
crossref_primary_10_1080_21680566_2020_1782786
crossref_primary_10_1109_TCSVT_2023_3313576
crossref_primary_10_1109_TIE_2016_2578841
crossref_primary_10_1007_s12652_022_04346_2
crossref_primary_10_1016_j_patcog_2015_12_010
crossref_primary_10_3390_app8122508
crossref_primary_10_1109_TITS_2017_2658662
crossref_primary_10_1049_cth2_12129
crossref_primary_10_1109_ACCESS_2022_3208128
crossref_primary_10_1007_s00170_020_06185_x
crossref_primary_10_1109_TITS_2017_2679222
crossref_primary_10_1016_j_eswa_2014_10_024
crossref_primary_10_1016_j_knosys_2021_107941
crossref_primary_10_3390_s19102305
crossref_primary_10_1007_s00371_024_03626_6
crossref_primary_10_3390_app12147109
crossref_primary_10_1088_1755_1315_81_1_012212
crossref_primary_10_1109_TII_2020_2998818
crossref_primary_10_1109_TITS_2018_2791572
crossref_primary_10_1016_j_image_2021_116413
crossref_primary_10_1109_ACCESS_2020_3000777
crossref_primary_10_1109_TITS_2023_3274767
crossref_primary_10_1016_j_eswa_2015_04_035
crossref_primary_10_1109_TITS_2020_2980855
crossref_primary_10_3390_s19020281
crossref_primary_10_1016_j_measurement_2025_116870
crossref_primary_10_1109_ACCESS_2023_3283440
crossref_primary_10_1109_TITS_2025_3545554
crossref_primary_10_1038_s41598_022_25032_5
crossref_primary_10_1109_TITS_2020_2975710
crossref_primary_10_1088_1742_6596_1187_3_032018
crossref_primary_10_1109_TVT_2019_2913187
crossref_primary_10_3390_s17112475
crossref_primary_10_1109_ACCESS_2021_3083890
crossref_primary_10_3390_s16081313
crossref_primary_10_1177_03611981231178814
crossref_primary_10_1007_s00500_021_05815_0
crossref_primary_10_1109_ACCESS_2019_2933598
crossref_primary_10_1186_s44147_022_00162_9
crossref_primary_10_1007_s11042_024_19297_3
crossref_primary_10_1109_TVT_2015_2420752
crossref_primary_10_1007_s11042_015_3141_0
crossref_primary_10_1109_TIV_2019_2938092
crossref_primary_10_1587_transinf_2018EDP7279
crossref_primary_10_1016_j_matpr_2020_09_605
crossref_primary_10_1016_j_micpro_2018_10_003
crossref_primary_10_1109_TCSVT_2022_3144184
crossref_primary_10_1007_s44163_025_00455_x
crossref_primary_10_1177_09544070211016254
crossref_primary_10_1109_TITS_2017_2751746
crossref_primary_10_3390_s16081276
Cites_doi 10.1109/ITSC.2009.5309855
10.1109/TITS.2006.883940
10.1016/j.eswa.2009.05.026
10.1109/CASE.2009.104
10.1109/IVS.2010.5548087
10.1109/TITS.2004.838221
10.1109/ICVES.2006.371644
10.1109/TITS.2006.869595
10.1088/0957-0233/17/4/020
10.1109/TITS.2011.2173196
10.1109/ICCAS.2008.4694332
10.1109/TITS.2003.821339
10.1109/TITS.2007.908582
10.1049/el.2010.3413
10.1016/j.sigpro.2011.07.019
10.1109/ICINFA.2010.5512220
10.1109/TPAMI.2004.44
10.1109/IVS.2008.4621152
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2013.2252427
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 1094
ExternalDocumentID 10_1109_TITS_2013_2252427
6507318
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c331t-ed430539f3c7b4cb7205dc1144806bbd2582079b5cecdd1586a24c4c86fb94f93
IEDL.DBID RIE
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324336100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sat Nov 29 06:34:48 EST 2025
Tue Nov 18 22:26:23 EST 2025
Tue Aug 26 16:44:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-ed430539f3c7b4cb7205dc1144806bbd2582079b5cecdd1586a24c4c86fb94f93
PageCount 12
ParticipantIDs ieee_primary_6507318
crossref_primary_10_1109_TITS_2013_2252427
crossref_citationtrail_10_1109_TITS_2013_2252427
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref22
apostoloff (ref7) 2003
ref21
ref2
ref1
ref17
ref16
ref19
ref18
sun (ref8) 2006
ref9
ref4
ref3
ref6
wang (ref10) 2010
ref5
mcdonald (ref20) 2001
References_xml – ident: ref13
  doi: 10.1109/ITSC.2009.5309855
– ident: ref9
  doi: 10.1109/TITS.2006.883940
– ident: ref11
  doi: 10.1016/j.eswa.2009.05.026
– start-page: 558
  year: 2003
  ident: ref7
  article-title: Robust vision based lane tracking using multiple cues and particle filtering
  publication-title: Proc IEEE IV Symp
– ident: ref14
  doi: 10.1109/CASE.2009.104
– ident: ref15
  doi: 10.1109/IVS.2010.5548087
– start-page: 1735
  year: 2010
  ident: ref10
  article-title: Lane detection and tracking using a layered approach
  publication-title: Proc IEEE Int Conf Des Autom
– ident: ref2
  doi: 10.1109/TITS.2004.838221
– ident: ref16
  doi: 10.1109/ICVES.2006.371644
– ident: ref1
  doi: 10.1109/TITS.2006.869595
– ident: ref5
  doi: 10.1088/0957-0233/17/4/020
– start-page: 1168
  year: 2006
  ident: ref8
  article-title: HSI color model based lane-marking detection
  publication-title: Proc IEEE ITSC
– ident: ref22
  doi: 10.1109/TITS.2011.2173196
– ident: ref17
  doi: 10.1109/ICCAS.2008.4694332
– ident: ref3
  doi: 10.1109/TITS.2003.821339
– ident: ref6
  doi: 10.1109/TITS.2007.908582
– ident: ref19
  doi: 10.1049/el.2010.3413
– ident: ref4
  doi: 10.1016/j.sigpro.2011.07.019
– ident: ref18
  doi: 10.1109/ICINFA.2010.5512220
– year: 2001
  ident: ref20
  article-title: Application of the Hough transform to lane detection and following on high speed roads
  publication-title: Proc Irish Signals Syst Conf ?Motorway Driving Scenarios
– ident: ref12
  doi: 10.1109/TPAMI.2004.44
– ident: ref21
  doi: 10.1109/IVS.2008.4621152
SSID ssj0014511
Score 2.460398
Snippet Lane detection is important in many advanced driver-assistance systems (ADAS). Vision-based lane detection algorithms are widely used and generally use...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1083
SubjectTerms Feature extraction
Gradient-enhancing conversion
illumination-robust method
Image color analysis
Image edge detection
lane detection
Lighting
linear discriminant analysis (LDA)
Roads
Training data
Vectors
Title Gradient-Enhancing Conversion for Illumination-Robust Lane Detection
URI https://ieeexplore.ieee.org/document/6507318
Volume 14
WOSCitedRecordID wos000324336100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5z-KAP3qY4b_TBJzFblkvTPMouOpAhOmFvpTlNdSCdbJ2_3yTtxgQRfCslhXJyyLl9-T6ErmVKwIS2yAmVodjWXwnWSQLYgHJaL2CPTfBiE3I0iiYT9VRDt-u7MMYYDz4zLffoZ_npDJauVda22YS0PriFtqQMy7ta64mB49ny3KiUY0XEaoLZIao9Ho5fHIiLtazz2pAkf8SgDVEVH1MG-__7mwO0V-WOwV252YeoZvIjtLvBKNhAvfu5x3AVuJ-_OyqN_C3oOmC574oFNkMNhk7beFo2AfHzTC8XRfCY5CbomcLjsvJj9Droj7sPuBJKwMBYp8AmdcRdTGUMpOagJSUiBVvp8IiEWqdU2DgvlRZgIE07IgoTyoFDFGZa8UyxE1TPZ7k5RQEVOjQiZQlhGU8Y1SQBYbeR8kyA0rSJyMp0MVQs4k7M4iP21QRRsbN27KwdV9Zuopv1J58lhcZfixvO0uuFlZHPfn99jnaol6dwmK8LVC_mS3OJtuGrmC7mV95BvgH7RbhQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XB2xTv9sEnMVuWNG3zKN42nEO0gm-lOU11IJ1snb_fJOuKggi-lZJCOTnk3L58H8BpmFHUgSlyAqkZMfVXSlSaItEordYLmmMTndhE2O9HLy_yYQ7O67swWmsHPtNN--hm-dkQJ7ZV1jLZRGh8cB4WrXJWdVurnhlYpi3Hjsp8IqmYzTDbVLbibvxkYVy8adzXBKXwRxT6JqviosrN-v_-ZwPWquzRu5hu9ybM6WILVr9xCjbg6nbkUFwluS7eLJlG8epdWmi564t5Jkf1ulbdeDBtA5LHoZqMS6-XFtq70qVDZhXb8HxzHV92SCWVQJDzdkl0Zqm7uMw5hspHFTIqMjS1jh_RQKmMCRPpQ6kEasyytoiClPnoYxTkSvq55DuwUAwLvQseEyrQIuMp5bmfcqZoisJsJPNzgVKxPaAz0yVY8YhbOYv3xNUTVCbW2om1dlJZew_O6k8-piQafy1uWEvXCysj7__--gSWO_F9L-l1-3cHsMKcWIVFgB3CQjma6CNYws9yMB4dO2f5AsRzu5k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient-Enhancing+Conversion+for+Illumination-Robust+Lane+Detection&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Yoo%2C+Hunjae&rft.au=Yang%2C+Ukil&rft.au=Sohn%2C+Kwanghoon&rft.date=2013-09-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=14&rft.issue=3&rft.spage=1083&rft.epage=1094&rft_id=info:doi/10.1109%2FTITS.2013.2252427&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2013_2252427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon