Existence of positive periodic solutions of some nonlinear fractional differential equations

•Are considered nonlinear fractional differential equations coupled to periodic boundary value conditions.•The right-hand side of the equation contains certain singularities.•Our approach is based on Krasnoselskii fixed point theorem and monotone iterative techniques.•The discussed problems are char...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications in nonlinear science & numerical simulation Ročník 50; s. 51 - 67
Hlavní autori: Cabada, Alberto, Kisela, Tomáš
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.09.2017
Elsevier Science Ltd
Predmet:
ISSN:1007-5704, 1878-7274
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Are considered nonlinear fractional differential equations coupled to periodic boundary value conditions.•The right-hand side of the equation contains certain singularities.•Our approach is based on Krasnoselskii fixed point theorem and monotone iterative techniques.•The discussed problems are characterized by a Green's function which has integrable singularities.•Due to the type of singularities contained in right-hand side, the approaches used by other authors cannot be utilized.•The numerical algorithms related to lower and upper solutions do not seem to be used for these kind of problems in the literature.•Illustrative examples are showed on the paper. The paper is devoted to study of existence and uniqueness of periodic solutions for a particular class of nonlinear fractional differential equations admitting its right-hand side with certain singularities. Our approach is based on Krasnosel’skiĭ and Schauder fixed point theorems and monotone iterative technique which enable us to extend some previously known results. The discussed problems are characterized by a Green’s function which has integrable singularities disallowing a direct use of classical techniques known from theory of ordinary differential equations, therefore proper modifications are proposed. Furher, the paper presents simple numerical algorithms directly built on the iterative technique used in theoretical proofs. Illustrative examples conclude the paper.
AbstractList The paper is devoted to study of existence and uniqueness of periodic solutions for a particular class of nonlinear fractional differential equations admitting its right-hand side with certain singularities. Our approach is based on Krasnosel'skii and Schauder fixed point theorems and monotone iterative technique which enable us to extend some previously known results. The discussed problems are characterized by a Green's function which has integrable singularities disallowing a direct use of classical techniques known from theory of ordinary differential equations, therefore proper modifications are proposed. Furher, the paper presents simple numerical algorithms directly built on the iterative technique used in theoretical proofs. Illustrative examples conclude the paper.
•Are considered nonlinear fractional differential equations coupled to periodic boundary value conditions.•The right-hand side of the equation contains certain singularities.•Our approach is based on Krasnoselskii fixed point theorem and monotone iterative techniques.•The discussed problems are characterized by a Green's function which has integrable singularities.•Due to the type of singularities contained in right-hand side, the approaches used by other authors cannot be utilized.•The numerical algorithms related to lower and upper solutions do not seem to be used for these kind of problems in the literature.•Illustrative examples are showed on the paper. The paper is devoted to study of existence and uniqueness of periodic solutions for a particular class of nonlinear fractional differential equations admitting its right-hand side with certain singularities. Our approach is based on Krasnosel’skiĭ and Schauder fixed point theorems and monotone iterative technique which enable us to extend some previously known results. The discussed problems are characterized by a Green’s function which has integrable singularities disallowing a direct use of classical techniques known from theory of ordinary differential equations, therefore proper modifications are proposed. Furher, the paper presents simple numerical algorithms directly built on the iterative technique used in theoretical proofs. Illustrative examples conclude the paper.
Author Cabada, Alberto
Kisela, Tomáš
Author_xml – sequence: 1
  givenname: Alberto
  surname: Cabada
  fullname: Cabada, Alberto
  email: alberto.cabada@usc.es
  organization: Instituto de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
– sequence: 2
  givenname: Tomáš
  surname: Kisela
  fullname: Kisela, Tomáš
  email: kisela@fme.vutbr.cz
  organization: Institute of Mathematics, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
BookMark eNqFkDtPwzAQgC1UJFrgF7BEYk6wnTiPgQFV5SFVYoENyXKcs-QotVPbqeDf47RMDDCdT3ffne9boYWxBhC6ITgjmJR3fSaNNz6jmFQZphkm-AwtSV3VaUWrYhHfGFcpq3BxgVbe9zhSDSuW6GPzqX0AIyGxKhmt10EfIBnBadtpmXg7TEFb4-eytztI4upBGxAuUU7IuSaGpNNKgQMTdExgP4kjc4XOlRg8XP_ES_T-uHlbP6fb16eX9cM2lXlOQgqEyrxmTVUKDFIUpO1aVpadzEVRlB1rVU5kXbYKVKdIzJmiRLQF1A2TomX5Jbo9zR2d3U_gA-_t5OK_PKeYkqZhZY1jV37qks5670Dx0emdcF-cYD5r5D0_auSzRo4pjxoj1fyipA7H84ITeviHvT-xEI8_aHDcSz277rQDGXhn9Z_8NxvVlJs
CitedBy_id crossref_primary_10_1186_s13661_018_1095_7
crossref_primary_10_3390_math12071000
crossref_primary_10_1007_s11784_021_00864_2
crossref_primary_10_1016_j_cam_2018_02_033
crossref_primary_10_1186_s13660_020_02463_0
crossref_primary_10_1186_s13662_017_1428_3
crossref_primary_10_1007_s11075_021_01121_w
crossref_primary_10_1186_s13663_021_00696_2
crossref_primary_10_1186_s13661_018_1037_4
crossref_primary_10_1186_s13662_018_1867_5
crossref_primary_10_1186_s13662_018_1886_2
crossref_primary_10_1002_mma_8520
crossref_primary_10_1186_s13660_019_2164_x
crossref_primary_10_1186_s13662_018_1788_3
crossref_primary_10_1186_s13661_017_0853_2
crossref_primary_10_1186_s13662_018_1627_6
crossref_primary_10_1186_s13662_017_1331_y
crossref_primary_10_1007_s12190_018_1210_z
crossref_primary_10_1088_1402_4896_ad0c12
crossref_primary_10_1155_2018_6598351
Cites_doi 10.1016/j.aml.2011.09.078
10.1016/j.ajmsc.2014.11.001
10.1007/s12346-014-0121-0
10.15388/NA.2016.5.5
10.1016/j.cnsns.2011.07.019
10.1186/s13662-016-1042-9
10.1007/978-1-4614-9506-2_1
10.1186/s13661-016-0745-x
10.1007/s00030-013-0247-9
10.22436/jnsa.009.05.117
10.1515/fca-2015-0073
10.7494/OpMath.2016.36.2.189
10.1016/S0898-1221(03)90003-4
10.1016/j.jmaa.2010.01.023
10.1016/j.nonrwa.2011.07.052
10.1016/S0022-0396(02)00152-3
10.1016/j.jmaa.2011.11.065
10.1007/s10440-008-9356-6
10.1186/1687-1812-2013-125
10.1155/2011/298628
10.1016/j.aml.2015.12.006
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier Science Ltd. Sep 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Sep 2017
DBID AAYXX
CITATION
DOI 10.1016/j.cnsns.2017.02.010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-7274
EndPage 67
ExternalDocumentID 10_1016_j_cnsns_2017_02_010
S1007570417300576
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c331t-e12c385976a0eca41bdb566dc3a446d5bf31c86bfefdf1d5b5f21ab4e895cab53
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399513200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1007-5704
IngestDate Sun Oct 05 00:03:22 EDT 2025
Sat Nov 29 07:50:17 EST 2025
Tue Nov 18 22:51:06 EST 2025
Fri Feb 23 02:27:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 34B27
Green’s function
Periodic Fractional Equation
Krasnosel’skiĭ fixed point
Monotone Iterative Methods
34A08
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-e12c385976a0eca41bdb566dc3a446d5bf31c86bfefdf1d5b5f21ab4e895cab53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2021995680
PQPubID 2047477
PageCount 17
ParticipantIDs proquest_journals_2021995680
crossref_primary_10_1016_j_cnsns_2017_02_010
crossref_citationtrail_10_1016_j_cnsns_2017_02_010
elsevier_sciencedirect_doi_10_1016_j_cnsns_2017_02_010
PublicationCentury 2000
PublicationDate September 2017
2017-09-00
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2017
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Guo, Liu, Wu (bib0015) 2016; 21
Li, Liu, Wu (bib0024) 2015; 2015
Feng, Wang, Li (bib0013) 2015; 35
Zhang (bib0041) 2016; 2016
Syam, Attili (bib0035) 2005; 170
Zeidler (bib0040) 1986
Denton (bib0011) 2016; 36
Cherpion, De Coster, Habets (bib0012) 1999; 12
Ahmad, Nieto b, Alsaedi, El-Shahed (bib0002) 2012; 13
Liu, Li (bib0025) 2016; 9
A. Cabada, Cid, Infante (bib0008) 2013
Torres (bib0036) 2003; 190
Vatsala, Sowmya, Stutson (bib0037) 2015; 24
Podlubný (bib0029) 1999
Agarwal, Benchohra, Hamani (bib0001) 2010; 109
Samko, Kilbas, Marichev (bib0033) 1993
Wang, Agarwal, Cabada (bib0038) 2012; 25
Jebelean, Popa, Serban (bib0019) 2014; 21
Bai, Zhang, Sun, Yin (bib0003) 2016
Haubold, Mathai, Saxena (bib0016) 2011; 2011
Belmekki, Nieto, Rodríguez-López (bib0004) 2009; 2009
Qiao, Zhou (bib0031) 2017; 2017
Zhou, Feng (bib0043) 2014; 2014
Cabada A., Dimitrijević S., Tomović T.V., Aleksić S.. The existence of a positive solution for nonlinear fractional differential equations with integral boundary value conditions. Math. Meth. Appl. Sci., (to appear).
Cabada (bib0006) 2014
Hilfer (bib0017) 2000
Jin, Liu (bib0020) 2015; 2015
Kiryakova (bib0022) 1994
D-X (bib0026) 2015; 21
Ladde, Lakshmikantham, Vatsala (bib0023) 1985
Miller, Ross (bib0027) 1993
Wei, Li, Che (bib0039) 2010; 367
Cabada, Wang (bib0010) 2012; 389
Nanware, Dhaigude (bib0028) 2015; 22
Ramírez, Vatsala (bib0032) 2015; 23
Benchohra, Cabada, Seba (bib0005) 2009; 2009
Graef, Kong, Yang (bib0014) 2016; 56
Zhou, Chu (bib0044) 2012; 17
Cabada, Hamdi (bib0009) 2014; 228
Qiao Y., Zhou Z.. Existence of solutions for a class of fractional differential equations with integral and anti-periodic boundary conditions. Boundary Value Probl. 2017. 2017, 11.
Zhou, Zhang, Li (bib0045) 2014; 2014
Kilbas, Srivastava, Trujillo (bib0021) 2006
Zhao, Gong (bib0042) 2015; 14
Staněk (bib0034) 2015; 18
Jankowski (bib0018) 2003; 45
Zhou (10.1016/j.cnsns.2017.02.010_bib0043) 2014; 2014
Miller (10.1016/j.cnsns.2017.02.010_bib0027) 1993
Zhang (10.1016/j.cnsns.2017.02.010_bib0041) 2016; 2016
Ladde (10.1016/j.cnsns.2017.02.010_bib0023) 1985
Zhou (10.1016/j.cnsns.2017.02.010_bib0045) 2014; 2014
Hilfer (10.1016/j.cnsns.2017.02.010_bib0017) 2000
Zhou (10.1016/j.cnsns.2017.02.010_bib0044) 2012; 17
A. Cabada (10.1016/j.cnsns.2017.02.010_bib0008) 2013
Kiryakova (10.1016/j.cnsns.2017.02.010_bib0022) 1994
Podlubný (10.1016/j.cnsns.2017.02.010_bib0029) 1999
Jin (10.1016/j.cnsns.2017.02.010_bib0020) 2015; 2015
Haubold (10.1016/j.cnsns.2017.02.010_bib0016) 2011; 2011
D-X (10.1016/j.cnsns.2017.02.010_bib0026) 2015; 21
Agarwal (10.1016/j.cnsns.2017.02.010_bib0001) 2010; 109
Denton (10.1016/j.cnsns.2017.02.010_bib0011) 2016; 36
Ahmad (10.1016/j.cnsns.2017.02.010_bib0002) 2012; 13
Bai (10.1016/j.cnsns.2017.02.010_sbref0003) 2016
10.1016/j.cnsns.2017.02.010_bib0030
Torres (10.1016/j.cnsns.2017.02.010_bib0036) 2003; 190
Jankowski (10.1016/j.cnsns.2017.02.010_bib0018) 2003; 45
Li (10.1016/j.cnsns.2017.02.010_bib0024) 2015; 2015
Wei (10.1016/j.cnsns.2017.02.010_bib0039) 2010; 367
Zhao (10.1016/j.cnsns.2017.02.010_bib0042) 2015; 14
Jebelean (10.1016/j.cnsns.2017.02.010_bib0019) 2014; 21
Zeidler (10.1016/j.cnsns.2017.02.010_bib0040) 1986
Belmekki (10.1016/j.cnsns.2017.02.010_bib0004) 2009; 2009
Syam (10.1016/j.cnsns.2017.02.010_bib0035) 2005; 170
Cabada (10.1016/j.cnsns.2017.02.010_bib0009) 2014; 228
Kilbas (10.1016/j.cnsns.2017.02.010_bib0021) 2006
Ramírez (10.1016/j.cnsns.2017.02.010_bib0032) 2015; 23
Liu (10.1016/j.cnsns.2017.02.010_bib0025) 2016; 9
Cherpion (10.1016/j.cnsns.2017.02.010_bib0012) 1999; 12
10.1016/j.cnsns.2017.02.010_bib0007
Staněk (10.1016/j.cnsns.2017.02.010_bib0034) 2015; 18
Nanware (10.1016/j.cnsns.2017.02.010_bib0028) 2015; 22
Vatsala (10.1016/j.cnsns.2017.02.010_bib0037) 2015; 24
Cabada (10.1016/j.cnsns.2017.02.010_bib0010) 2012; 389
Feng (10.1016/j.cnsns.2017.02.010_bib0013) 2015; 35
Graef (10.1016/j.cnsns.2017.02.010_bib0014) 2016; 56
Qiao (10.1016/j.cnsns.2017.02.010_bib0031) 2017; 2017
Cabada (10.1016/j.cnsns.2017.02.010_bib0006) 2014
Benchohra (10.1016/j.cnsns.2017.02.010_bib0005) 2009; 2009
Guo (10.1016/j.cnsns.2017.02.010_bib0015) 2016; 21
Samko (10.1016/j.cnsns.2017.02.010_bib0033) 1993
Wang (10.1016/j.cnsns.2017.02.010_bib0038) 2012; 25
References_xml – volume: 9
  start-page: 3310
  year: 2016
  end-page: 3318
  ident: bib0025
  article-title: Extremal system of solutions for a coupled system of nonlinear fractional differential equations by monotone iterative method
  publication-title: J Nonlinear Sci Appl
– year: 1986
  ident: bib0040
  article-title: Nonlinear functional analysis and its applications
  publication-title: I: fixed-point theorems, Springer, New York
– volume: 23
  start-page: 219
  year: 2015
  end-page: 237
  ident: bib0032
  article-title: Generalized monotone iterative techniques for caputo fractional integro-differential equations with initial condition
  publication-title: Neural Parallel Sci Comput
– volume: 14
  start-page: 157
  year: 2015
  end-page: 171
  ident: bib0042
  article-title: Existence of positive solutions for a class of higher-order caputo fractional differential equation
  publication-title: Qual Theory Dyn Syst
– volume: 36
  start-page: 189
  year: 2016
  end-page: 206
  ident: bib0011
  article-title: Monotone method for Riemann-Liouville multi-order fractional differential systems
  publication-title: Opuscula Math
– volume: 12
  start-page: 309
  year: 1999
  end-page: 338
  ident: bib0012
  article-title: Monotone iterative methods for boundary value problems
  publication-title: Differ Integral Equ
– volume: 389
  start-page: 403
  year: 2012
  end-page: 411
  ident: bib0010
  article-title: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions
  publication-title: J Math Anal Appl
– reference: Qiao Y., Zhou Z.. Existence of solutions for a class of fractional differential equations with integral and anti-periodic boundary conditions. Boundary Value Probl. 2017. 2017, 11.
– volume: 2017
  start-page: 8
  year: 2017
  ident: bib0031
  article-title: Existence of positive solutions of singular fractional differential equations with infinite-point boundary conditions
  publication-title: Adv Difference Equ
– year: 1993
  ident: bib0033
  article-title: Fractional integrals and derivatives. theory and applications
– year: 2006
  ident: bib0021
  article-title: Theory and applications of fractional differential equations
– volume: 2009
  start-page: 18
  year: 2009
  ident: bib0004
  article-title: Existence of periodic solution for a nonlinear fractional differential equation
  publication-title: Boundary Value Probl
– year: 1985
  ident: bib0023
  article-title: Monotone iterative techniques for nonlinear differential equations
  publication-title: Monographs, Advanced Texts and Surveys in Pure and Applied Mathematics, 27. Pitman (Advanced Publishing Program), Boston, MA; distributed by John Wiley & Sons, Inc., New York
– year: 1993
  ident: bib0027
  article-title: An introduction to the fractional calculus and differential equations
– volume: 228
  start-page: 251
  year: 2014
  end-page: 257
  ident: bib0009
  article-title: Nonlinear fractional differential equations with integral boundary value conditions
  publication-title: Appl Math Comput
– year: 1999
  ident: bib0029
  article-title: Fractional differential equations
– volume: 25
  start-page: 1019
  year: 2012
  end-page: 1024
  ident: bib0038
  article-title: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations
  publication-title: Appl Math Lett
– volume: 2014
  start-page: 21
  year: 2014
  ident: bib0043
  article-title: Green’s function for Sturm-Liouville-type boundary value problems of fractional order impulsive differential equations and its application
  publication-title: Bound Value Probl
– volume: 2016
  start-page: 13
  year: 2016
  ident: bib0041
  article-title: Iterative solutions for fractional nonlocal boundary value problems involving integral conditions
  publication-title: Bound Value Probl
– volume: 21
  start-page: 289
  year: 2014
  end-page: 304
  ident: bib0019
  article-title: Numerical extremal solutions for a mixed problem with singular
  publication-title: Nonlinear Differ Equ Appl
– volume: 170
  start-page: 1085
  year: 2005
  end-page: 1094
  ident: bib0035
  article-title: Numerical solution of singularly perturbed fifth order two point boundary value problem
  publication-title: Appl Math Comput
– volume: 13
  start-page: 599
  year: 2012
  end-page: 606
  ident: bib0002
  article-title: A study of nonlinear Langevin equation involving two fractional orders in different intervals
  publication-title: Nonlinear Anal Real World Appl
– volume: 2011
  start-page: 51
  year: 2011
  ident: bib0016
  article-title: Mittag-Leffler functions and their applications
  publication-title: J Appl Math
– year: 1994
  ident: bib0022
  article-title: Generalized fractional calculus and applications. Pitman Resemdl notes in mathematics series
  publication-title: 301. Longman, Harlow (1994). Copublished in the United States with Wiley, New York
– volume: 21
  start-page: 225
  year: 2015
  end-page: 236
  ident: bib0026
  article-title: Positive solutions of multi-point boundary value problem of fractional differential equation
  publication-title: Arab J Math Sci
– volume: 24
  start-page: 429
  year: 2015
  end-page: 437
  ident: bib0037
  article-title: Generalized monotone method for ordinary and caputo fractional differential equations
  publication-title: Dynam Syst Appl
– year: 2000
  ident: bib0017
  article-title: Applications of fractional calculus in physics
– volume: 45
  start-page: 1823
  year: 2003
  end-page: 1828
  ident: bib0018
  article-title: Monotone and numerical-analytic methods for differential equations
  publication-title: Comput Math Appl
– start-page: 8
  year: 2016
  ident: bib0003
  article-title: Monotone iterative method for fractional differential equations
  publication-title: Electron J Differ Equ
– start-page: 125
  year: 2013
  ident: bib0008
  article-title: New criteria for the existence of non-trivial fixed points in cones
  publication-title: Fixed Point Theory Appl
– reference: Cabada A., Dimitrijević S., Tomović T.V., Aleksić S.. The existence of a positive solution for nonlinear fractional differential equations with integral boundary value conditions. Math. Meth. Appl. Sci., (to appear).
– volume: 2015
  start-page: 11
  year: 2015
  ident: bib0020
  article-title: On the periodic boundary value problem for duffing type fractional differential equation with p-laplacian operator
  publication-title: Bound Value Prob
– volume: 2009
  start-page: 11
  year: 2009
  ident: bib0005
  article-title: An existence result for nonlinear fractional differential equations on Banach spaces
  publication-title: Boundary Value Prob
– volume: 35
  start-page: 1059
  year: 2015
  end-page: 1070
  ident: bib0013
  article-title: Shou, existence and uniqueness results for periodic boundary value problems for fractional differential equations with singular nonlinearities
  publication-title: Acta Math Sci Ser-A Chin Ed
– volume: 17
  start-page: 1142
  year: 2012
  end-page: 1148
  ident: bib0044
  article-title: Existence of solutions for fractional differential equations with multi-point boundary conditions
  publication-title: Commun Nonlinear Sci Numer Simul
– year: 2014
  ident: bib0006
  article-title: Green’s functions in the theory of ordinary differential equations
  publication-title: Springer briefs in mathematics
– volume: 56
  start-page: 49
  year: 2016
  end-page: 55
  ident: bib0014
  article-title: Positive solutions for a fractional boundary value problem
  publication-title: Appl Math Lett
– volume: 367
  start-page: 260
  year: 2010
  end-page: 272
  ident: bib0039
  article-title: Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative
  publication-title: J Math Anal Appl
– volume: 2014
  start-page: 16
  year: 2014
  ident: bib0045
  article-title: Existence of multiple positive solutions for singular boundary value problems of nonlinear fractional differential equations
  publication-title: Adv Difference Equ
– volume: 21
  start-page: 635
  year: 2016
  end-page: 650
  ident: bib0015
  article-title: Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions
  publication-title: Nonlinear Anal Model Control
– volume: 2015
  start-page: 15
  year: 2015
  ident: bib0024
  article-title: Positive solutions for singular nonlinear fractional differential equation with integral boundary conditions
  publication-title: Bound Value Probl
– volume: 190
  start-page: 643
  year: 2003
  end-page: 662
  ident: bib0036
  article-title: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel’skiĭ fixed point theorem
  publication-title: J Differ Equ
– volume: 22
  start-page: 13
  year: 2015
  end-page: 23
  ident: bib0028
  article-title: Monotone technique for finite system of caputo fractional differential equations with periodic boundary conditions
  publication-title: Dyn Contin Discrete Impuls Syst Ser-A Math Anal
– volume: 18
  start-page: 1277
  year: 2015
  end-page: 1290
  ident: bib0034
  article-title: Periodic problem for the generalized basset fractional differential equation
  publication-title: Fract Calc Appl Anal
– volume: 109
  start-page: 973
  year: 2010
  end-page: 1033
  ident: bib0001
  article-title: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions
  publication-title: Acta Appl Math
– volume: 25
  start-page: 1019
  issue: 6
  year: 2012
  ident: 10.1016/j.cnsns.2017.02.010_bib0038
  article-title: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2011.09.078
– volume: 21
  start-page: 225
  issue: 2
  year: 2015
  ident: 10.1016/j.cnsns.2017.02.010_bib0026
  article-title: Positive solutions of multi-point boundary value problem of fractional differential equation
  publication-title: Arab J Math Sci
  doi: 10.1016/j.ajmsc.2014.11.001
– year: 1986
  ident: 10.1016/j.cnsns.2017.02.010_bib0040
  article-title: Nonlinear functional analysis and its applications
– volume: 2014
  start-page: 21
  issue: 69
  year: 2014
  ident: 10.1016/j.cnsns.2017.02.010_bib0043
  article-title: Green’s function for Sturm-Liouville-type boundary value problems of fractional order impulsive differential equations and its application
  publication-title: Bound Value Probl
– volume: 14
  start-page: 157
  issue: 1
  year: 2015
  ident: 10.1016/j.cnsns.2017.02.010_bib0042
  article-title: Existence of positive solutions for a class of higher-order caputo fractional differential equation
  publication-title: Qual Theory Dyn Syst
  doi: 10.1007/s12346-014-0121-0
– volume: 12
  start-page: 309
  issue: no. 3
  year: 1999
  ident: 10.1016/j.cnsns.2017.02.010_bib0012
  article-title: Monotone iterative methods for boundary value problems
  publication-title: Differ Integral Equ
– volume: 21
  start-page: 635
  issue: 5
  year: 2016
  ident: 10.1016/j.cnsns.2017.02.010_bib0015
  article-title: Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions
  publication-title: Nonlinear Anal Model Control
  doi: 10.15388/NA.2016.5.5
– volume: 17
  start-page: 1142
  year: 2012
  ident: 10.1016/j.cnsns.2017.02.010_bib0044
  article-title: Existence of solutions for fractional differential equations with multi-point boundary conditions
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2011.07.019
– volume: 2017
  start-page: 8
  year: 2017
  ident: 10.1016/j.cnsns.2017.02.010_bib0031
  article-title: Existence of positive solutions of singular fractional differential equations with infinite-point boundary conditions
  publication-title: Adv Difference Equ
  doi: 10.1186/s13662-016-1042-9
– year: 2014
  ident: 10.1016/j.cnsns.2017.02.010_bib0006
  article-title: Green’s functions in the theory of ordinary differential equations
  doi: 10.1007/978-1-4614-9506-2_1
– volume: 24
  start-page: 429
  issue: 4
  year: 2015
  ident: 10.1016/j.cnsns.2017.02.010_bib0037
  article-title: Generalized monotone method for ordinary and caputo fractional differential equations
  publication-title: Dynam Syst Appl
– year: 1999
  ident: 10.1016/j.cnsns.2017.02.010_bib0029
– volume: 228
  start-page: 251
  year: 2014
  ident: 10.1016/j.cnsns.2017.02.010_bib0009
  article-title: Nonlinear fractional differential equations with integral boundary value conditions
  publication-title: Appl Math Comput
– ident: 10.1016/j.cnsns.2017.02.010_bib0030
  doi: 10.1186/s13661-016-0745-x
– volume: 21
  start-page: 289
  year: 2014
  ident: 10.1016/j.cnsns.2017.02.010_bib0019
  article-title: Numerical extremal solutions for a mixed problem with singular ϕ-laplacian
  publication-title: Nonlinear Differ Equ Appl
  doi: 10.1007/s00030-013-0247-9
– volume: 9
  start-page: 3310
  issue: no. 5
  year: 2016
  ident: 10.1016/j.cnsns.2017.02.010_bib0025
  article-title: Extremal system of solutions for a coupled system of nonlinear fractional differential equations by monotone iterative method
  publication-title: J Nonlinear Sci Appl
  doi: 10.22436/jnsa.009.05.117
– volume: 35
  start-page: 1059
  issue: 6
  year: 2015
  ident: 10.1016/j.cnsns.2017.02.010_bib0013
  article-title: Shou, existence and uniqueness results for periodic boundary value problems for fractional differential equations with singular nonlinearities
  publication-title: Acta Math Sci Ser-A Chin Ed
– volume: 18
  start-page: 1277
  issue: 5
  year: 2015
  ident: 10.1016/j.cnsns.2017.02.010_bib0034
  article-title: Periodic problem for the generalized basset fractional differential equation
  publication-title: Fract Calc Appl Anal
  doi: 10.1515/fca-2015-0073
– volume: 170
  start-page: 1085
  year: 2005
  ident: 10.1016/j.cnsns.2017.02.010_bib0035
  article-title: Numerical solution of singularly perturbed fifth order two point boundary value problem
  publication-title: Appl Math Comput
– ident: 10.1016/j.cnsns.2017.02.010_bib0007
– volume: 36
  start-page: 189
  issue: 2
  year: 2016
  ident: 10.1016/j.cnsns.2017.02.010_bib0011
  article-title: Monotone method for Riemann-Liouville multi-order fractional differential systems
  publication-title: Opuscula Math
  doi: 10.7494/OpMath.2016.36.2.189
– year: 1993
  ident: 10.1016/j.cnsns.2017.02.010_bib0033
– volume: 2009
  start-page: 11
  year: 2009
  ident: 10.1016/j.cnsns.2017.02.010_bib0005
  article-title: An existence result for nonlinear fractional differential equations on Banach spaces
  publication-title: Boundary Value Prob
– volume: 2014
  start-page: 16
  issue: 97
  year: 2014
  ident: 10.1016/j.cnsns.2017.02.010_bib0045
  article-title: Existence of multiple positive solutions for singular boundary value problems of nonlinear fractional differential equations
  publication-title: Adv Difference Equ
– start-page: 8
  year: 2016
  ident: 10.1016/j.cnsns.2017.02.010_sbref0003
  article-title: Monotone iterative method for fractional differential equations
  publication-title: Electron J Differ Equ
– year: 1994
  ident: 10.1016/j.cnsns.2017.02.010_bib0022
  article-title: Generalized fractional calculus and applications. Pitman Resemdl notes in mathematics series
– year: 2006
  ident: 10.1016/j.cnsns.2017.02.010_bib0021
– volume: 45
  start-page: 1823
  year: 2003
  ident: 10.1016/j.cnsns.2017.02.010_bib0018
  article-title: Monotone and numerical-analytic methods for differential equations
  publication-title: Comput Math Appl
  doi: 10.1016/S0898-1221(03)90003-4
– year: 1993
  ident: 10.1016/j.cnsns.2017.02.010_bib0027
– volume: 2015
  start-page: 15
  issue: 232
  year: 2015
  ident: 10.1016/j.cnsns.2017.02.010_bib0024
  article-title: Positive solutions for singular nonlinear fractional differential equation with integral boundary conditions
  publication-title: Bound Value Probl
– volume: 2015
  start-page: 11
  issue: 144
  year: 2015
  ident: 10.1016/j.cnsns.2017.02.010_bib0020
  article-title: On the periodic boundary value problem for duffing type fractional differential equation with p-laplacian operator
  publication-title: Bound Value Prob
– volume: 367
  start-page: 260
  year: 2010
  ident: 10.1016/j.cnsns.2017.02.010_bib0039
  article-title: Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2010.01.023
– volume: 13
  start-page: 599
  year: 2012
  ident: 10.1016/j.cnsns.2017.02.010_bib0002
  article-title: A study of nonlinear Langevin equation involving two fractional orders in different intervals
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2011.07.052
– volume: 190
  start-page: 643
  year: 2003
  ident: 10.1016/j.cnsns.2017.02.010_bib0036
  article-title: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel’skiĭ fixed point theorem
  publication-title: J Differ Equ
  doi: 10.1016/S0022-0396(02)00152-3
– volume: 389
  start-page: 403
  year: 2012
  ident: 10.1016/j.cnsns.2017.02.010_bib0010
  article-title: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2011.11.065
– year: 1985
  ident: 10.1016/j.cnsns.2017.02.010_bib0023
  article-title: Monotone iterative techniques for nonlinear differential equations
– volume: 22
  start-page: 13
  issue: 1
  year: 2015
  ident: 10.1016/j.cnsns.2017.02.010_bib0028
  article-title: Monotone technique for finite system of caputo fractional differential equations with periodic boundary conditions
  publication-title: Dyn Contin Discrete Impuls Syst Ser-A Math Anal
– volume: 109
  start-page: 973
  year: 2010
  ident: 10.1016/j.cnsns.2017.02.010_bib0001
  article-title: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions
  publication-title: Acta Appl Math
  doi: 10.1007/s10440-008-9356-6
– start-page: 125
  year: 2013
  ident: 10.1016/j.cnsns.2017.02.010_bib0008
  article-title: New criteria for the existence of non-trivial fixed points in cones
  publication-title: Fixed Point Theory Appl
  doi: 10.1186/1687-1812-2013-125
– volume: 2011
  start-page: 51
  year: 2011
  ident: 10.1016/j.cnsns.2017.02.010_bib0016
  article-title: Mittag-Leffler functions and their applications
  publication-title: J Appl Math
  doi: 10.1155/2011/298628
– volume: 23
  start-page: 219
  issue: 2–4
  year: 2015
  ident: 10.1016/j.cnsns.2017.02.010_bib0032
  article-title: Generalized monotone iterative techniques for caputo fractional integro-differential equations with initial condition
  publication-title: Neural Parallel Sci Comput
– year: 2000
  ident: 10.1016/j.cnsns.2017.02.010_bib0017
– volume: 2009
  start-page: 18
  year: 2009
  ident: 10.1016/j.cnsns.2017.02.010_bib0004
  article-title: Existence of periodic solution for a nonlinear fractional differential equation
  publication-title: Boundary Value Probl
– volume: 56
  start-page: 49
  year: 2016
  ident: 10.1016/j.cnsns.2017.02.010_bib0014
  article-title: Positive solutions for a fractional boundary value problem
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2015.12.006
– volume: 2016
  start-page: 13
  issue: 3
  year: 2016
  ident: 10.1016/j.cnsns.2017.02.010_bib0041
  article-title: Iterative solutions for fractional nonlocal boundary value problems involving integral conditions
  publication-title: Bound Value Probl
SSID ssj0016954
Score 2.3317919
Snippet •Are considered nonlinear fractional differential equations coupled to periodic boundary value conditions.•The right-hand side of the equation contains certain...
The paper is devoted to study of existence and uniqueness of periodic solutions for a particular class of nonlinear fractional differential equations admitting...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms Differential equations
Fixed points (mathematics)
Green's functions
Green’s function
Iterative methods
Krasnosel’skiĭ fixed point
Mathematical analysis
Monotone Iterative Methods
Nonlinear equations
Ordinary differential equations
Periodic Fractional Equation
Singularities
Title Existence of positive periodic solutions of some nonlinear fractional differential equations
URI https://dx.doi.org/10.1016/j.cnsns.2017.02.010
https://www.proquest.com/docview/2021995680
Volume 50
WOSCitedRecordID wos000399513200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-7274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016954
  issn: 1007-5704
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLWqDgs2vBEDA_ICViWodmInWY5GRcBixKJIXSBFjh9SR20y06RVP4APx--UGVExCzZRGzeu23P8ur73XADec6TXDHgqkpIrlWSZ6VJc8ITVlNZcEE0xl2wiv7wsFovy-2j0K8TC7FZ50xT7fXn9X6HW9zTYJnT2HnDHSvUN_VqDrq8adn39J-Bne4Oc6a_Gmdn6ZO2kkSdetmLJJ_HLTXHXruWkcWoZbDNRGxfmYA9uXOKU3ljU5c32wLAXdA0OQ0usV-1QUQgWMrxqtu5QaDXplmufLGw4-aiZcJZdo7XVt4NLQCdXtmDeru1hPvpwQfT10EqhZ77ghhUGVmMSJblLNRxGXic564dOrzvrJmGXouPO8O4sDVefeNM1Rmsd5VZw1TvG_iGmfWuSi66HwavtqrKVVKaSaoorG6d3gnNSFmNwcv51tvgWT6NoabPpxd8Q1Kusn-CdtvxthXNrrrcLmPkT8MjvPOC5Y8xTMJLNM_DY70KgH-O75-BnJBBsFQwEgoFAMBLIFBsCwYg7HAgEDwkEI4FegB-fZ_OLL4nPwZHwNEV9IhHmaaF3nZRNJWcZqkWtdwCCpyzLqCC1ShEvaK2kEgrp90RhxOpMFiXhrCbpSzDWrZCvAKRYSCxTqusgWa5nN4WYJIwzJQgrZXkKcPjfKu4F6k2elFV1BLNT8DE-dO30WY5_nAZAKt8V3NKx0hQ7_uBZgK_ynd2UY6NwQIvp6_s14w14OHSSMzDuN1v5Fjzgu37Zbd55-v0GaOWueg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+of+positive+periodic+solutions+of+some+nonlinear+fractional+differential+equations&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Cabada%2C+Alberto&rft.au=Kisela%2C+Tom%C3%A1%C5%A1&rft.date=2017-09-01&rft.issn=1007-5704&rft.volume=50&rft.spage=51&rft.epage=67&rft_id=info:doi/10.1016%2Fj.cnsns.2017.02.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cnsns_2017_02_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon