Existence of positive periodic solutions of some nonlinear fractional differential equations
•Are considered nonlinear fractional differential equations coupled to periodic boundary value conditions.•The right-hand side of the equation contains certain singularities.•Our approach is based on Krasnoselskii fixed point theorem and monotone iterative techniques.•The discussed problems are char...
Uložené v:
| Vydané v: | Communications in nonlinear science & numerical simulation Ročník 50; s. 51 - 67 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.09.2017
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 1007-5704, 1878-7274 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Are considered nonlinear fractional differential equations coupled to periodic boundary value conditions.•The right-hand side of the equation contains certain singularities.•Our approach is based on Krasnoselskii fixed point theorem and monotone iterative techniques.•The discussed problems are characterized by a Green's function which has integrable singularities.•Due to the type of singularities contained in right-hand side, the approaches used by other authors cannot be utilized.•The numerical algorithms related to lower and upper solutions do not seem to be used for these kind of problems in the literature.•Illustrative examples are showed on the paper.
The paper is devoted to study of existence and uniqueness of periodic solutions for a particular class of nonlinear fractional differential equations admitting its right-hand side with certain singularities. Our approach is based on Krasnosel’skiĭ and Schauder fixed point theorems and monotone iterative technique which enable us to extend some previously known results. The discussed problems are characterized by a Green’s function which has integrable singularities disallowing a direct use of classical techniques known from theory of ordinary differential equations, therefore proper modifications are proposed. Furher, the paper presents simple numerical algorithms directly built on the iterative technique used in theoretical proofs. Illustrative examples conclude the paper. |
|---|---|
| AbstractList | The paper is devoted to study of existence and uniqueness of periodic solutions for a particular class of nonlinear fractional differential equations admitting its right-hand side with certain singularities. Our approach is based on Krasnosel'skii and Schauder fixed point theorems and monotone iterative technique which enable us to extend some previously known results. The discussed problems are characterized by a Green's function which has integrable singularities disallowing a direct use of classical techniques known from theory of ordinary differential equations, therefore proper modifications are proposed. Furher, the paper presents simple numerical algorithms directly built on the iterative technique used in theoretical proofs. Illustrative examples conclude the paper. •Are considered nonlinear fractional differential equations coupled to periodic boundary value conditions.•The right-hand side of the equation contains certain singularities.•Our approach is based on Krasnoselskii fixed point theorem and monotone iterative techniques.•The discussed problems are characterized by a Green's function which has integrable singularities.•Due to the type of singularities contained in right-hand side, the approaches used by other authors cannot be utilized.•The numerical algorithms related to lower and upper solutions do not seem to be used for these kind of problems in the literature.•Illustrative examples are showed on the paper. The paper is devoted to study of existence and uniqueness of periodic solutions for a particular class of nonlinear fractional differential equations admitting its right-hand side with certain singularities. Our approach is based on Krasnosel’skiĭ and Schauder fixed point theorems and monotone iterative technique which enable us to extend some previously known results. The discussed problems are characterized by a Green’s function which has integrable singularities disallowing a direct use of classical techniques known from theory of ordinary differential equations, therefore proper modifications are proposed. Furher, the paper presents simple numerical algorithms directly built on the iterative technique used in theoretical proofs. Illustrative examples conclude the paper. |
| Author | Cabada, Alberto Kisela, Tomáš |
| Author_xml | – sequence: 1 givenname: Alberto surname: Cabada fullname: Cabada, Alberto email: alberto.cabada@usc.es organization: Instituto de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain – sequence: 2 givenname: Tomáš surname: Kisela fullname: Kisela, Tomáš email: kisela@fme.vutbr.cz organization: Institute of Mathematics, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic |
| BookMark | eNqFkDtPwzAQgC1UJFrgF7BEYk6wnTiPgQFV5SFVYoENyXKcs-QotVPbqeDf47RMDDCdT3ffne9boYWxBhC6ITgjmJR3fSaNNz6jmFQZphkm-AwtSV3VaUWrYhHfGFcpq3BxgVbe9zhSDSuW6GPzqX0AIyGxKhmt10EfIBnBadtpmXg7TEFb4-eytztI4upBGxAuUU7IuSaGpNNKgQMTdExgP4kjc4XOlRg8XP_ES_T-uHlbP6fb16eX9cM2lXlOQgqEyrxmTVUKDFIUpO1aVpadzEVRlB1rVU5kXbYKVKdIzJmiRLQF1A2TomX5Jbo9zR2d3U_gA-_t5OK_PKeYkqZhZY1jV37qks5670Dx0emdcF-cYD5r5D0_auSzRo4pjxoj1fyipA7H84ITeviHvT-xEI8_aHDcSz277rQDGXhn9Z_8NxvVlJs |
| CitedBy_id | crossref_primary_10_1186_s13661_018_1095_7 crossref_primary_10_3390_math12071000 crossref_primary_10_1007_s11784_021_00864_2 crossref_primary_10_1016_j_cam_2018_02_033 crossref_primary_10_1186_s13660_020_02463_0 crossref_primary_10_1186_s13662_017_1428_3 crossref_primary_10_1007_s11075_021_01121_w crossref_primary_10_1186_s13663_021_00696_2 crossref_primary_10_1186_s13661_018_1037_4 crossref_primary_10_1186_s13662_018_1867_5 crossref_primary_10_1186_s13662_018_1886_2 crossref_primary_10_1002_mma_8520 crossref_primary_10_1186_s13660_019_2164_x crossref_primary_10_1186_s13662_018_1788_3 crossref_primary_10_1186_s13661_017_0853_2 crossref_primary_10_1186_s13662_018_1627_6 crossref_primary_10_1186_s13662_017_1331_y crossref_primary_10_1007_s12190_018_1210_z crossref_primary_10_1088_1402_4896_ad0c12 crossref_primary_10_1155_2018_6598351 |
| Cites_doi | 10.1016/j.aml.2011.09.078 10.1016/j.ajmsc.2014.11.001 10.1007/s12346-014-0121-0 10.15388/NA.2016.5.5 10.1016/j.cnsns.2011.07.019 10.1186/s13662-016-1042-9 10.1007/978-1-4614-9506-2_1 10.1186/s13661-016-0745-x 10.1007/s00030-013-0247-9 10.22436/jnsa.009.05.117 10.1515/fca-2015-0073 10.7494/OpMath.2016.36.2.189 10.1016/S0898-1221(03)90003-4 10.1016/j.jmaa.2010.01.023 10.1016/j.nonrwa.2011.07.052 10.1016/S0022-0396(02)00152-3 10.1016/j.jmaa.2011.11.065 10.1007/s10440-008-9356-6 10.1186/1687-1812-2013-125 10.1155/2011/298628 10.1016/j.aml.2015.12.006 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Copyright Elsevier Science Ltd. Sep 2017 |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Sep 2017 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cnsns.2017.02.010 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1878-7274 |
| EndPage | 67 |
| ExternalDocumentID | 10_1016_j_cnsns_2017_02_010 S1007570417300576 |
| GroupedDBID | --K --M -01 -0A -0I -0Y -SA -S~ .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 92M 9D9 9DA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABJNI ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CS3 CUBFJ DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA0 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA JUIAU KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q-- Q-0 Q38 R-A R-I R2- RIG ROL RPZ RT1 RT9 S.. SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSW SSZ T5K T8Q T8Y U1F U1G U5A U5I U5K UHS ~G- ~LA 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c331t-e12c385976a0eca41bdb566dc3a446d5bf31c86bfefdf1d5b5f21ab4e895cab53 |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399513200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1007-5704 |
| IngestDate | Sun Oct 05 00:03:22 EDT 2025 Sat Nov 29 07:50:17 EST 2025 Tue Nov 18 22:51:06 EST 2025 Fri Feb 23 02:27:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 34B27 Green’s function Periodic Fractional Equation Krasnosel’skiĭ fixed point Monotone Iterative Methods 34A08 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-e12c385976a0eca41bdb566dc3a446d5bf31c86bfefdf1d5b5f21ab4e895cab53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2021995680 |
| PQPubID | 2047477 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2021995680 crossref_primary_10_1016_j_cnsns_2017_02_010 crossref_citationtrail_10_1016_j_cnsns_2017_02_010 elsevier_sciencedirect_doi_10_1016_j_cnsns_2017_02_010 |
| PublicationCentury | 2000 |
| PublicationDate | September 2017 2017-09-00 20170901 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: September 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Communications in nonlinear science & numerical simulation |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Guo, Liu, Wu (bib0015) 2016; 21 Li, Liu, Wu (bib0024) 2015; 2015 Feng, Wang, Li (bib0013) 2015; 35 Zhang (bib0041) 2016; 2016 Syam, Attili (bib0035) 2005; 170 Zeidler (bib0040) 1986 Denton (bib0011) 2016; 36 Cherpion, De Coster, Habets (bib0012) 1999; 12 Ahmad, Nieto b, Alsaedi, El-Shahed (bib0002) 2012; 13 Liu, Li (bib0025) 2016; 9 A. Cabada, Cid, Infante (bib0008) 2013 Torres (bib0036) 2003; 190 Vatsala, Sowmya, Stutson (bib0037) 2015; 24 Podlubný (bib0029) 1999 Agarwal, Benchohra, Hamani (bib0001) 2010; 109 Samko, Kilbas, Marichev (bib0033) 1993 Wang, Agarwal, Cabada (bib0038) 2012; 25 Jebelean, Popa, Serban (bib0019) 2014; 21 Bai, Zhang, Sun, Yin (bib0003) 2016 Haubold, Mathai, Saxena (bib0016) 2011; 2011 Belmekki, Nieto, Rodríguez-López (bib0004) 2009; 2009 Qiao, Zhou (bib0031) 2017; 2017 Zhou, Feng (bib0043) 2014; 2014 Cabada A., Dimitrijević S., Tomović T.V., Aleksić S.. The existence of a positive solution for nonlinear fractional differential equations with integral boundary value conditions. Math. Meth. Appl. Sci., (to appear). Cabada (bib0006) 2014 Hilfer (bib0017) 2000 Jin, Liu (bib0020) 2015; 2015 Kiryakova (bib0022) 1994 D-X (bib0026) 2015; 21 Ladde, Lakshmikantham, Vatsala (bib0023) 1985 Miller, Ross (bib0027) 1993 Wei, Li, Che (bib0039) 2010; 367 Cabada, Wang (bib0010) 2012; 389 Nanware, Dhaigude (bib0028) 2015; 22 Ramírez, Vatsala (bib0032) 2015; 23 Benchohra, Cabada, Seba (bib0005) 2009; 2009 Graef, Kong, Yang (bib0014) 2016; 56 Zhou, Chu (bib0044) 2012; 17 Cabada, Hamdi (bib0009) 2014; 228 Qiao Y., Zhou Z.. Existence of solutions for a class of fractional differential equations with integral and anti-periodic boundary conditions. Boundary Value Probl. 2017. 2017, 11. Zhou, Zhang, Li (bib0045) 2014; 2014 Kilbas, Srivastava, Trujillo (bib0021) 2006 Zhao, Gong (bib0042) 2015; 14 Staněk (bib0034) 2015; 18 Jankowski (bib0018) 2003; 45 Zhou (10.1016/j.cnsns.2017.02.010_bib0043) 2014; 2014 Miller (10.1016/j.cnsns.2017.02.010_bib0027) 1993 Zhang (10.1016/j.cnsns.2017.02.010_bib0041) 2016; 2016 Ladde (10.1016/j.cnsns.2017.02.010_bib0023) 1985 Zhou (10.1016/j.cnsns.2017.02.010_bib0045) 2014; 2014 Hilfer (10.1016/j.cnsns.2017.02.010_bib0017) 2000 Zhou (10.1016/j.cnsns.2017.02.010_bib0044) 2012; 17 A. Cabada (10.1016/j.cnsns.2017.02.010_bib0008) 2013 Kiryakova (10.1016/j.cnsns.2017.02.010_bib0022) 1994 Podlubný (10.1016/j.cnsns.2017.02.010_bib0029) 1999 Jin (10.1016/j.cnsns.2017.02.010_bib0020) 2015; 2015 Haubold (10.1016/j.cnsns.2017.02.010_bib0016) 2011; 2011 D-X (10.1016/j.cnsns.2017.02.010_bib0026) 2015; 21 Agarwal (10.1016/j.cnsns.2017.02.010_bib0001) 2010; 109 Denton (10.1016/j.cnsns.2017.02.010_bib0011) 2016; 36 Ahmad (10.1016/j.cnsns.2017.02.010_bib0002) 2012; 13 Bai (10.1016/j.cnsns.2017.02.010_sbref0003) 2016 10.1016/j.cnsns.2017.02.010_bib0030 Torres (10.1016/j.cnsns.2017.02.010_bib0036) 2003; 190 Jankowski (10.1016/j.cnsns.2017.02.010_bib0018) 2003; 45 Li (10.1016/j.cnsns.2017.02.010_bib0024) 2015; 2015 Wei (10.1016/j.cnsns.2017.02.010_bib0039) 2010; 367 Zhao (10.1016/j.cnsns.2017.02.010_bib0042) 2015; 14 Jebelean (10.1016/j.cnsns.2017.02.010_bib0019) 2014; 21 Zeidler (10.1016/j.cnsns.2017.02.010_bib0040) 1986 Belmekki (10.1016/j.cnsns.2017.02.010_bib0004) 2009; 2009 Syam (10.1016/j.cnsns.2017.02.010_bib0035) 2005; 170 Cabada (10.1016/j.cnsns.2017.02.010_bib0009) 2014; 228 Kilbas (10.1016/j.cnsns.2017.02.010_bib0021) 2006 Ramírez (10.1016/j.cnsns.2017.02.010_bib0032) 2015; 23 Liu (10.1016/j.cnsns.2017.02.010_bib0025) 2016; 9 Cherpion (10.1016/j.cnsns.2017.02.010_bib0012) 1999; 12 10.1016/j.cnsns.2017.02.010_bib0007 Staněk (10.1016/j.cnsns.2017.02.010_bib0034) 2015; 18 Nanware (10.1016/j.cnsns.2017.02.010_bib0028) 2015; 22 Vatsala (10.1016/j.cnsns.2017.02.010_bib0037) 2015; 24 Cabada (10.1016/j.cnsns.2017.02.010_bib0010) 2012; 389 Feng (10.1016/j.cnsns.2017.02.010_bib0013) 2015; 35 Graef (10.1016/j.cnsns.2017.02.010_bib0014) 2016; 56 Qiao (10.1016/j.cnsns.2017.02.010_bib0031) 2017; 2017 Cabada (10.1016/j.cnsns.2017.02.010_bib0006) 2014 Benchohra (10.1016/j.cnsns.2017.02.010_bib0005) 2009; 2009 Guo (10.1016/j.cnsns.2017.02.010_bib0015) 2016; 21 Samko (10.1016/j.cnsns.2017.02.010_bib0033) 1993 Wang (10.1016/j.cnsns.2017.02.010_bib0038) 2012; 25 |
| References_xml | – volume: 9 start-page: 3310 year: 2016 end-page: 3318 ident: bib0025 article-title: Extremal system of solutions for a coupled system of nonlinear fractional differential equations by monotone iterative method publication-title: J Nonlinear Sci Appl – year: 1986 ident: bib0040 article-title: Nonlinear functional analysis and its applications publication-title: I: fixed-point theorems, Springer, New York – volume: 23 start-page: 219 year: 2015 end-page: 237 ident: bib0032 article-title: Generalized monotone iterative techniques for caputo fractional integro-differential equations with initial condition publication-title: Neural Parallel Sci Comput – volume: 14 start-page: 157 year: 2015 end-page: 171 ident: bib0042 article-title: Existence of positive solutions for a class of higher-order caputo fractional differential equation publication-title: Qual Theory Dyn Syst – volume: 36 start-page: 189 year: 2016 end-page: 206 ident: bib0011 article-title: Monotone method for Riemann-Liouville multi-order fractional differential systems publication-title: Opuscula Math – volume: 12 start-page: 309 year: 1999 end-page: 338 ident: bib0012 article-title: Monotone iterative methods for boundary value problems publication-title: Differ Integral Equ – volume: 389 start-page: 403 year: 2012 end-page: 411 ident: bib0010 article-title: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions publication-title: J Math Anal Appl – reference: Qiao Y., Zhou Z.. Existence of solutions for a class of fractional differential equations with integral and anti-periodic boundary conditions. Boundary Value Probl. 2017. 2017, 11. – volume: 2017 start-page: 8 year: 2017 ident: bib0031 article-title: Existence of positive solutions of singular fractional differential equations with infinite-point boundary conditions publication-title: Adv Difference Equ – year: 1993 ident: bib0033 article-title: Fractional integrals and derivatives. theory and applications – year: 2006 ident: bib0021 article-title: Theory and applications of fractional differential equations – volume: 2009 start-page: 18 year: 2009 ident: bib0004 article-title: Existence of periodic solution for a nonlinear fractional differential equation publication-title: Boundary Value Probl – year: 1985 ident: bib0023 article-title: Monotone iterative techniques for nonlinear differential equations publication-title: Monographs, Advanced Texts and Surveys in Pure and Applied Mathematics, 27. Pitman (Advanced Publishing Program), Boston, MA; distributed by John Wiley & Sons, Inc., New York – year: 1993 ident: bib0027 article-title: An introduction to the fractional calculus and differential equations – volume: 228 start-page: 251 year: 2014 end-page: 257 ident: bib0009 article-title: Nonlinear fractional differential equations with integral boundary value conditions publication-title: Appl Math Comput – year: 1999 ident: bib0029 article-title: Fractional differential equations – volume: 25 start-page: 1019 year: 2012 end-page: 1024 ident: bib0038 article-title: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations publication-title: Appl Math Lett – volume: 2014 start-page: 21 year: 2014 ident: bib0043 article-title: Green’s function for Sturm-Liouville-type boundary value problems of fractional order impulsive differential equations and its application publication-title: Bound Value Probl – volume: 2016 start-page: 13 year: 2016 ident: bib0041 article-title: Iterative solutions for fractional nonlocal boundary value problems involving integral conditions publication-title: Bound Value Probl – volume: 21 start-page: 289 year: 2014 end-page: 304 ident: bib0019 article-title: Numerical extremal solutions for a mixed problem with singular publication-title: Nonlinear Differ Equ Appl – volume: 170 start-page: 1085 year: 2005 end-page: 1094 ident: bib0035 article-title: Numerical solution of singularly perturbed fifth order two point boundary value problem publication-title: Appl Math Comput – volume: 13 start-page: 599 year: 2012 end-page: 606 ident: bib0002 article-title: A study of nonlinear Langevin equation involving two fractional orders in different intervals publication-title: Nonlinear Anal Real World Appl – volume: 2011 start-page: 51 year: 2011 ident: bib0016 article-title: Mittag-Leffler functions and their applications publication-title: J Appl Math – year: 1994 ident: bib0022 article-title: Generalized fractional calculus and applications. Pitman Resemdl notes in mathematics series publication-title: 301. Longman, Harlow (1994). Copublished in the United States with Wiley, New York – volume: 21 start-page: 225 year: 2015 end-page: 236 ident: bib0026 article-title: Positive solutions of multi-point boundary value problem of fractional differential equation publication-title: Arab J Math Sci – volume: 24 start-page: 429 year: 2015 end-page: 437 ident: bib0037 article-title: Generalized monotone method for ordinary and caputo fractional differential equations publication-title: Dynam Syst Appl – year: 2000 ident: bib0017 article-title: Applications of fractional calculus in physics – volume: 45 start-page: 1823 year: 2003 end-page: 1828 ident: bib0018 article-title: Monotone and numerical-analytic methods for differential equations publication-title: Comput Math Appl – start-page: 8 year: 2016 ident: bib0003 article-title: Monotone iterative method for fractional differential equations publication-title: Electron J Differ Equ – start-page: 125 year: 2013 ident: bib0008 article-title: New criteria for the existence of non-trivial fixed points in cones publication-title: Fixed Point Theory Appl – reference: Cabada A., Dimitrijević S., Tomović T.V., Aleksić S.. The existence of a positive solution for nonlinear fractional differential equations with integral boundary value conditions. Math. Meth. Appl. Sci., (to appear). – volume: 2015 start-page: 11 year: 2015 ident: bib0020 article-title: On the periodic boundary value problem for duffing type fractional differential equation with p-laplacian operator publication-title: Bound Value Prob – volume: 2009 start-page: 11 year: 2009 ident: bib0005 article-title: An existence result for nonlinear fractional differential equations on Banach spaces publication-title: Boundary Value Prob – volume: 35 start-page: 1059 year: 2015 end-page: 1070 ident: bib0013 article-title: Shou, existence and uniqueness results for periodic boundary value problems for fractional differential equations with singular nonlinearities publication-title: Acta Math Sci Ser-A Chin Ed – volume: 17 start-page: 1142 year: 2012 end-page: 1148 ident: bib0044 article-title: Existence of solutions for fractional differential equations with multi-point boundary conditions publication-title: Commun Nonlinear Sci Numer Simul – year: 2014 ident: bib0006 article-title: Green’s functions in the theory of ordinary differential equations publication-title: Springer briefs in mathematics – volume: 56 start-page: 49 year: 2016 end-page: 55 ident: bib0014 article-title: Positive solutions for a fractional boundary value problem publication-title: Appl Math Lett – volume: 367 start-page: 260 year: 2010 end-page: 272 ident: bib0039 article-title: Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative publication-title: J Math Anal Appl – volume: 2014 start-page: 16 year: 2014 ident: bib0045 article-title: Existence of multiple positive solutions for singular boundary value problems of nonlinear fractional differential equations publication-title: Adv Difference Equ – volume: 21 start-page: 635 year: 2016 end-page: 650 ident: bib0015 article-title: Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions publication-title: Nonlinear Anal Model Control – volume: 2015 start-page: 15 year: 2015 ident: bib0024 article-title: Positive solutions for singular nonlinear fractional differential equation with integral boundary conditions publication-title: Bound Value Probl – volume: 190 start-page: 643 year: 2003 end-page: 662 ident: bib0036 article-title: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel’skiĭ fixed point theorem publication-title: J Differ Equ – volume: 22 start-page: 13 year: 2015 end-page: 23 ident: bib0028 article-title: Monotone technique for finite system of caputo fractional differential equations with periodic boundary conditions publication-title: Dyn Contin Discrete Impuls Syst Ser-A Math Anal – volume: 18 start-page: 1277 year: 2015 end-page: 1290 ident: bib0034 article-title: Periodic problem for the generalized basset fractional differential equation publication-title: Fract Calc Appl Anal – volume: 109 start-page: 973 year: 2010 end-page: 1033 ident: bib0001 article-title: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions publication-title: Acta Appl Math – volume: 25 start-page: 1019 issue: 6 year: 2012 ident: 10.1016/j.cnsns.2017.02.010_bib0038 article-title: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations publication-title: Appl Math Lett doi: 10.1016/j.aml.2011.09.078 – volume: 21 start-page: 225 issue: 2 year: 2015 ident: 10.1016/j.cnsns.2017.02.010_bib0026 article-title: Positive solutions of multi-point boundary value problem of fractional differential equation publication-title: Arab J Math Sci doi: 10.1016/j.ajmsc.2014.11.001 – year: 1986 ident: 10.1016/j.cnsns.2017.02.010_bib0040 article-title: Nonlinear functional analysis and its applications – volume: 2014 start-page: 21 issue: 69 year: 2014 ident: 10.1016/j.cnsns.2017.02.010_bib0043 article-title: Green’s function for Sturm-Liouville-type boundary value problems of fractional order impulsive differential equations and its application publication-title: Bound Value Probl – volume: 14 start-page: 157 issue: 1 year: 2015 ident: 10.1016/j.cnsns.2017.02.010_bib0042 article-title: Existence of positive solutions for a class of higher-order caputo fractional differential equation publication-title: Qual Theory Dyn Syst doi: 10.1007/s12346-014-0121-0 – volume: 12 start-page: 309 issue: no. 3 year: 1999 ident: 10.1016/j.cnsns.2017.02.010_bib0012 article-title: Monotone iterative methods for boundary value problems publication-title: Differ Integral Equ – volume: 21 start-page: 635 issue: 5 year: 2016 ident: 10.1016/j.cnsns.2017.02.010_bib0015 article-title: Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions publication-title: Nonlinear Anal Model Control doi: 10.15388/NA.2016.5.5 – volume: 17 start-page: 1142 year: 2012 ident: 10.1016/j.cnsns.2017.02.010_bib0044 article-title: Existence of solutions for fractional differential equations with multi-point boundary conditions publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2011.07.019 – volume: 2017 start-page: 8 year: 2017 ident: 10.1016/j.cnsns.2017.02.010_bib0031 article-title: Existence of positive solutions of singular fractional differential equations with infinite-point boundary conditions publication-title: Adv Difference Equ doi: 10.1186/s13662-016-1042-9 – year: 2014 ident: 10.1016/j.cnsns.2017.02.010_bib0006 article-title: Green’s functions in the theory of ordinary differential equations doi: 10.1007/978-1-4614-9506-2_1 – volume: 24 start-page: 429 issue: 4 year: 2015 ident: 10.1016/j.cnsns.2017.02.010_bib0037 article-title: Generalized monotone method for ordinary and caputo fractional differential equations publication-title: Dynam Syst Appl – year: 1999 ident: 10.1016/j.cnsns.2017.02.010_bib0029 – volume: 228 start-page: 251 year: 2014 ident: 10.1016/j.cnsns.2017.02.010_bib0009 article-title: Nonlinear fractional differential equations with integral boundary value conditions publication-title: Appl Math Comput – ident: 10.1016/j.cnsns.2017.02.010_bib0030 doi: 10.1186/s13661-016-0745-x – volume: 21 start-page: 289 year: 2014 ident: 10.1016/j.cnsns.2017.02.010_bib0019 article-title: Numerical extremal solutions for a mixed problem with singular ϕ-laplacian publication-title: Nonlinear Differ Equ Appl doi: 10.1007/s00030-013-0247-9 – volume: 9 start-page: 3310 issue: no. 5 year: 2016 ident: 10.1016/j.cnsns.2017.02.010_bib0025 article-title: Extremal system of solutions for a coupled system of nonlinear fractional differential equations by monotone iterative method publication-title: J Nonlinear Sci Appl doi: 10.22436/jnsa.009.05.117 – volume: 35 start-page: 1059 issue: 6 year: 2015 ident: 10.1016/j.cnsns.2017.02.010_bib0013 article-title: Shou, existence and uniqueness results for periodic boundary value problems for fractional differential equations with singular nonlinearities publication-title: Acta Math Sci Ser-A Chin Ed – volume: 18 start-page: 1277 issue: 5 year: 2015 ident: 10.1016/j.cnsns.2017.02.010_bib0034 article-title: Periodic problem for the generalized basset fractional differential equation publication-title: Fract Calc Appl Anal doi: 10.1515/fca-2015-0073 – volume: 170 start-page: 1085 year: 2005 ident: 10.1016/j.cnsns.2017.02.010_bib0035 article-title: Numerical solution of singularly perturbed fifth order two point boundary value problem publication-title: Appl Math Comput – ident: 10.1016/j.cnsns.2017.02.010_bib0007 – volume: 36 start-page: 189 issue: 2 year: 2016 ident: 10.1016/j.cnsns.2017.02.010_bib0011 article-title: Monotone method for Riemann-Liouville multi-order fractional differential systems publication-title: Opuscula Math doi: 10.7494/OpMath.2016.36.2.189 – year: 1993 ident: 10.1016/j.cnsns.2017.02.010_bib0033 – volume: 2009 start-page: 11 year: 2009 ident: 10.1016/j.cnsns.2017.02.010_bib0005 article-title: An existence result for nonlinear fractional differential equations on Banach spaces publication-title: Boundary Value Prob – volume: 2014 start-page: 16 issue: 97 year: 2014 ident: 10.1016/j.cnsns.2017.02.010_bib0045 article-title: Existence of multiple positive solutions for singular boundary value problems of nonlinear fractional differential equations publication-title: Adv Difference Equ – start-page: 8 year: 2016 ident: 10.1016/j.cnsns.2017.02.010_sbref0003 article-title: Monotone iterative method for fractional differential equations publication-title: Electron J Differ Equ – year: 1994 ident: 10.1016/j.cnsns.2017.02.010_bib0022 article-title: Generalized fractional calculus and applications. Pitman Resemdl notes in mathematics series – year: 2006 ident: 10.1016/j.cnsns.2017.02.010_bib0021 – volume: 45 start-page: 1823 year: 2003 ident: 10.1016/j.cnsns.2017.02.010_bib0018 article-title: Monotone and numerical-analytic methods for differential equations publication-title: Comput Math Appl doi: 10.1016/S0898-1221(03)90003-4 – year: 1993 ident: 10.1016/j.cnsns.2017.02.010_bib0027 – volume: 2015 start-page: 15 issue: 232 year: 2015 ident: 10.1016/j.cnsns.2017.02.010_bib0024 article-title: Positive solutions for singular nonlinear fractional differential equation with integral boundary conditions publication-title: Bound Value Probl – volume: 2015 start-page: 11 issue: 144 year: 2015 ident: 10.1016/j.cnsns.2017.02.010_bib0020 article-title: On the periodic boundary value problem for duffing type fractional differential equation with p-laplacian operator publication-title: Bound Value Prob – volume: 367 start-page: 260 year: 2010 ident: 10.1016/j.cnsns.2017.02.010_bib0039 article-title: Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2010.01.023 – volume: 13 start-page: 599 year: 2012 ident: 10.1016/j.cnsns.2017.02.010_bib0002 article-title: A study of nonlinear Langevin equation involving two fractional orders in different intervals publication-title: Nonlinear Anal Real World Appl doi: 10.1016/j.nonrwa.2011.07.052 – volume: 190 start-page: 643 year: 2003 ident: 10.1016/j.cnsns.2017.02.010_bib0036 article-title: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel’skiĭ fixed point theorem publication-title: J Differ Equ doi: 10.1016/S0022-0396(02)00152-3 – volume: 389 start-page: 403 year: 2012 ident: 10.1016/j.cnsns.2017.02.010_bib0010 article-title: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2011.11.065 – year: 1985 ident: 10.1016/j.cnsns.2017.02.010_bib0023 article-title: Monotone iterative techniques for nonlinear differential equations – volume: 22 start-page: 13 issue: 1 year: 2015 ident: 10.1016/j.cnsns.2017.02.010_bib0028 article-title: Monotone technique for finite system of caputo fractional differential equations with periodic boundary conditions publication-title: Dyn Contin Discrete Impuls Syst Ser-A Math Anal – volume: 109 start-page: 973 year: 2010 ident: 10.1016/j.cnsns.2017.02.010_bib0001 article-title: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions publication-title: Acta Appl Math doi: 10.1007/s10440-008-9356-6 – start-page: 125 year: 2013 ident: 10.1016/j.cnsns.2017.02.010_bib0008 article-title: New criteria for the existence of non-trivial fixed points in cones publication-title: Fixed Point Theory Appl doi: 10.1186/1687-1812-2013-125 – volume: 2011 start-page: 51 year: 2011 ident: 10.1016/j.cnsns.2017.02.010_bib0016 article-title: Mittag-Leffler functions and their applications publication-title: J Appl Math doi: 10.1155/2011/298628 – volume: 23 start-page: 219 issue: 2–4 year: 2015 ident: 10.1016/j.cnsns.2017.02.010_bib0032 article-title: Generalized monotone iterative techniques for caputo fractional integro-differential equations with initial condition publication-title: Neural Parallel Sci Comput – year: 2000 ident: 10.1016/j.cnsns.2017.02.010_bib0017 – volume: 2009 start-page: 18 year: 2009 ident: 10.1016/j.cnsns.2017.02.010_bib0004 article-title: Existence of periodic solution for a nonlinear fractional differential equation publication-title: Boundary Value Probl – volume: 56 start-page: 49 year: 2016 ident: 10.1016/j.cnsns.2017.02.010_bib0014 article-title: Positive solutions for a fractional boundary value problem publication-title: Appl Math Lett doi: 10.1016/j.aml.2015.12.006 – volume: 2016 start-page: 13 issue: 3 year: 2016 ident: 10.1016/j.cnsns.2017.02.010_bib0041 article-title: Iterative solutions for fractional nonlocal boundary value problems involving integral conditions publication-title: Bound Value Probl |
| SSID | ssj0016954 |
| Score | 2.3317919 |
| Snippet | •Are considered nonlinear fractional differential equations coupled to periodic boundary value conditions.•The right-hand side of the equation contains certain... The paper is devoted to study of existence and uniqueness of periodic solutions for a particular class of nonlinear fractional differential equations admitting... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 51 |
| SubjectTerms | Differential equations Fixed points (mathematics) Green's functions Green’s function Iterative methods Krasnosel’skiĭ fixed point Mathematical analysis Monotone Iterative Methods Nonlinear equations Ordinary differential equations Periodic Fractional Equation Singularities |
| Title | Existence of positive periodic solutions of some nonlinear fractional differential equations |
| URI | https://dx.doi.org/10.1016/j.cnsns.2017.02.010 https://www.proquest.com/docview/2021995680 |
| Volume | 50 |
| WOSCitedRecordID | wos000399513200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-7274 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016954 issn: 1007-5704 databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLWqDgs2vBEDA_ICViWodmInWY5GRcBixKJIXSBFjh9SR20y06RVP4APx--UGVExCzZRGzeu23P8ur73XADec6TXDHgqkpIrlWSZ6VJc8ITVlNZcEE0xl2wiv7wsFovy-2j0K8TC7FZ50xT7fXn9X6HW9zTYJnT2HnDHSvUN_VqDrq8adn39J-Bne4Oc6a_Gmdn6ZO2kkSdetmLJJ_HLTXHXruWkcWoZbDNRGxfmYA9uXOKU3ljU5c32wLAXdA0OQ0usV-1QUQgWMrxqtu5QaDXplmufLGw4-aiZcJZdo7XVt4NLQCdXtmDeru1hPvpwQfT10EqhZ77ghhUGVmMSJblLNRxGXic564dOrzvrJmGXouPO8O4sDVefeNM1Rmsd5VZw1TvG_iGmfWuSi66HwavtqrKVVKaSaoorG6d3gnNSFmNwcv51tvgWT6NoabPpxd8Q1Kusn-CdtvxthXNrrrcLmPkT8MjvPOC5Y8xTMJLNM_DY70KgH-O75-BnJBBsFQwEgoFAMBLIFBsCwYg7HAgEDwkEI4FegB-fZ_OLL4nPwZHwNEV9IhHmaaF3nZRNJWcZqkWtdwCCpyzLqCC1ShEvaK2kEgrp90RhxOpMFiXhrCbpSzDWrZCvAKRYSCxTqusgWa5nN4WYJIwzJQgrZXkKcPjfKu4F6k2elFV1BLNT8DE-dO30WY5_nAZAKt8V3NKx0hQ7_uBZgK_ynd2UY6NwQIvp6_s14w14OHSSMzDuN1v5Fjzgu37Zbd55-v0GaOWueg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+of+positive+periodic+solutions+of+some+nonlinear+fractional+differential+equations&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Cabada%2C+Alberto&rft.au=Kisela%2C+Tom%C3%A1%C5%A1&rft.date=2017-09-01&rft.issn=1007-5704&rft.volume=50&rft.spage=51&rft.epage=67&rft_id=info:doi/10.1016%2Fj.cnsns.2017.02.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cnsns_2017_02_010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon |