A Self-Organizing Multiobjective Evolutionary Algorithm
Under mild conditions, the Pareto front (Pareto set) of a continuous m-objective optimization problem forms an (m - 1)-dimensional piecewise continuous manifold. Based on this property, this paper proposes a self-organizing multiobjective evolutionary algorithm. At each generation, a self-organizing...
Uložené v:
| Vydané v: | IEEE transactions on evolutionary computation Ročník 20; číslo 5; s. 792 - 806 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.10.2016
|
| Predmet: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Under mild conditions, the Pareto front (Pareto set) of a continuous m-objective optimization problem forms an (m - 1)-dimensional piecewise continuous manifold. Based on this property, this paper proposes a self-organizing multiobjective evolutionary algorithm. At each generation, a self-organizing mapping method with (m - 1) latent variables is applied to establish the neighborhood relationship among current solutions. A solution is only allowed to mate with its neighboring solutions to generate a new solution. To reduce the computational overhead, the self-organizing training step and the evolution step are conducted in an alternative manner. In other words, the self-organizing training is performed only one single step at each generation. The proposed algorithm has been applied to a number of test instances and compared with some state-of-the-art multiobjective evolutionary methods. The results have demonstrated its advantages over other approaches. |
|---|---|
| AbstractList | Under mild conditions, the Pareto front (Pareto set) of a continuous m-objective optimization problem forms an (m - 1)-dimensional piecewise continuous manifold. Based on this property, this paper proposes a self-organizing multiobjective evolutionary algorithm. At each generation, a self-organizing mapping method with (m - 1) latent variables is applied to establish the neighborhood relationship among current solutions. A solution is only allowed to mate with its neighboring solutions to generate a new solution. To reduce the computational overhead, the self-organizing training step and the evolution step are conducted in an alternative manner. In other words, the self-organizing training is performed only one single step at each generation. The proposed algorithm has been applied to a number of test instances and compared with some state-of-the-art multiobjective evolutionary methods. The results have demonstrated its advantages over other approaches. |
| Author | Jun Zhang Shenmin Song Xiao-Zhi Gao Aimin Zhou Hu Zhang Qingfu Zhang |
| Author_xml | – sequence: 1 givenname: Hu surname: Zhang fullname: Zhang, Hu – sequence: 2 givenname: Aimin orcidid: 0000-0002-4768-5946 surname: Zhou fullname: Zhou, Aimin – sequence: 3 givenname: Shenmin surname: Song fullname: Song, Shenmin – sequence: 4 givenname: Qingfu surname: Zhang fullname: Zhang, Qingfu – sequence: 5 givenname: Xiao-Zhi surname: Gao fullname: Gao, Xiao-Zhi – sequence: 6 givenname: Jun surname: Zhang fullname: Zhang, Jun |
| BookMark | eNp9j01Lw0AQhhepYFv9AeIlfyB1J5PN7h5DqB9Q6cEq3sK6na1b0kQ2aUF_vQktHjx4mmHgeed9JmxUNzUxdg18BsD17Wr-WswSDtksEQmoTJ2xMegUYs6TbNTvXOlYSvV2wSZtu-UcUgF6zGQePVPl4mXYmNp_-3oTPe2rzjfvW7KdP1A0PzTVvj_UJnxFebVpgu8-dpfs3JmqpavTnLKXu_mqeIgXy_vHIl_EFhG6eO2IIEWntJUyVUKtk8xxy0kTEYK2KJRDQKczmxkBJIxChy4hJ6RINU4ZHHNtaNo2kCs_g9_1VUrg5WBeDublYF6ezHtG_mGs78yg0AXjq3_JmyPp-3q_nyRqFCjxB089aKg |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_ins_2023_02_043 crossref_primary_10_1016_j_swevo_2017_06_005 crossref_primary_10_1016_j_neucom_2020_12_065 crossref_primary_10_1016_j_eswa_2020_114299 crossref_primary_10_1109_TCYB_2024_3381084 crossref_primary_10_3390_e21050533 crossref_primary_10_1109_TCYB_2019_2952881 crossref_primary_10_1016_j_swevo_2025_101999 crossref_primary_10_1111_coin_12299 crossref_primary_10_1371_journal_pone_0223477 crossref_primary_10_1007_s00500_019_04518_x crossref_primary_10_1016_j_eswa_2024_124782 crossref_primary_10_3390_su15032525 crossref_primary_10_1007_s00500_019_04175_0 crossref_primary_10_1016_j_swevo_2025_101892 crossref_primary_10_1016_j_swevo_2020_100818 crossref_primary_10_1109_TEVC_2024_3417978 crossref_primary_10_1016_j_swevo_2020_100815 crossref_primary_10_1016_j_swevo_2022_101073 crossref_primary_10_1007_s13042_024_02481_0 crossref_primary_10_1016_j_eswa_2023_121718 crossref_primary_10_1007_s10489_021_02665_z crossref_primary_10_1007_s12559_021_09906_w crossref_primary_10_1016_j_asoc_2025_112862 crossref_primary_10_3390_a10040123 crossref_primary_10_1108_IJICC_05_2023_0121 crossref_primary_10_1016_j_swevo_2024_101500 crossref_primary_10_7717_peerj_cs_1420 crossref_primary_10_1007_s10489_018_1350_8 crossref_primary_10_1007_s10489_018_1358_0 crossref_primary_10_1007_s12293_023_00387_y crossref_primary_10_1109_ACCESS_2021_3131807 crossref_primary_10_1155_2021_4296642 crossref_primary_10_1007_s12065_019_00306_6 crossref_primary_10_1007_s13042_017_0668_6 crossref_primary_10_1016_j_swevo_2018_02_009 crossref_primary_10_1016_j_swevo_2023_101261 crossref_primary_10_1016_j_asoc_2018_06_023 crossref_primary_10_1016_j_knosys_2018_10_021 crossref_primary_10_1016_j_ejor_2021_04_032 crossref_primary_10_1109_TCSS_2019_2945172 crossref_primary_10_1109_TSMC_2021_3072357 crossref_primary_10_3390_app10031174 crossref_primary_10_1016_j_asoc_2024_112157 crossref_primary_10_1109_ACCESS_2021_3110853 crossref_primary_10_1016_j_ejor_2020_01_061 crossref_primary_10_1109_TEVC_2023_3306523 crossref_primary_10_1109_TCBB_2023_3307363 crossref_primary_10_1016_j_swevo_2023_101258 crossref_primary_10_1016_j_cie_2021_107198 crossref_primary_10_1007_s00500_023_09468_z crossref_primary_10_1016_j_asoc_2022_109614 crossref_primary_10_1016_j_ins_2018_09_005 crossref_primary_10_1016_j_ins_2019_05_046 crossref_primary_10_3390_land14061159 crossref_primary_10_1007_s12559_025_10486_2 crossref_primary_10_1007_s00500_018_3499_9 crossref_primary_10_1016_j_ins_2020_02_066 crossref_primary_10_1016_j_eswa_2025_129460 crossref_primary_10_1109_MCI_2023_3304080 crossref_primary_10_3390_s24041050 crossref_primary_10_1007_s40747_022_00761_2 crossref_primary_10_1007_s44196_025_00891_8 crossref_primary_10_1109_TEVC_2017_2669638 crossref_primary_10_1007_s10489_020_02178_1 crossref_primary_10_1007_s12293_025_00458_2 crossref_primary_10_1109_MIS_2019_2954400 crossref_primary_10_1080_09540091_2025_2523960 crossref_primary_10_3390_math11132820 crossref_primary_10_1007_s12559_018_9611_8 crossref_primary_10_1007_s00500_021_06262_7 crossref_primary_10_1007_s13042_023_01918_2 crossref_primary_10_1016_j_eswa_2025_128709 crossref_primary_10_1109_TNNLS_2020_3027293 crossref_primary_10_1007_s10489_021_02376_5 crossref_primary_10_1016_j_patcog_2020_107449 crossref_primary_10_1109_TETCI_2022_3146882 crossref_primary_10_1109_TEVC_2017_2695579 crossref_primary_10_1016_j_neucom_2017_11_045 crossref_primary_10_1007_s10489_017_1133_7 crossref_primary_10_1016_j_asoc_2017_08_024 crossref_primary_10_1109_TEVC_2017_2744674 crossref_primary_10_1007_s11356_019_04434_5 crossref_primary_10_1016_j_ins_2021_04_011 crossref_primary_10_1016_j_swevo_2024_101703 crossref_primary_10_1007_s00500_020_05104_2 crossref_primary_10_1007_s00500_022_07492_z crossref_primary_10_1016_j_egyr_2023_04_014 crossref_primary_10_1016_j_swevo_2020_100699 crossref_primary_10_1007_s00500_017_2990_z crossref_primary_10_1109_TEVC_2019_2926151 crossref_primary_10_3390_electronics9101589 crossref_primary_10_1016_j_tre_2020_102069 crossref_primary_10_1007_s11432_018_9754_6 crossref_primary_10_1109_MCI_2023_3327892 crossref_primary_10_1109_JESTPE_2024_3444776 crossref_primary_10_1109_TEVC_2017_2671462 crossref_primary_10_1007_s00521_022_08133_0 crossref_primary_10_1088_1742_6596_2759_1_012004 crossref_primary_10_1007_s10489_020_01973_0 crossref_primary_10_1016_j_asoc_2022_109430 crossref_primary_10_1016_j_asoc_2024_111707 crossref_primary_10_1109_TEVC_2018_2865495 crossref_primary_10_1016_j_swevo_2025_102103 crossref_primary_10_1007_s10489_019_01554_w crossref_primary_10_1109_TEVC_2018_2880458 crossref_primary_10_1109_TGRS_2017_2748701 crossref_primary_10_1016_j_eswa_2025_128173 crossref_primary_10_1109_ACCESS_2019_2941123 crossref_primary_10_1140_epjs_s11734_021_00206_w crossref_primary_10_1016_j_eswa_2024_125684 crossref_primary_10_1016_j_ins_2022_08_030 |
| Cites_doi | 10.1109/TEVC.2007.892759 10.1162/EVCO_a_00109 10.1109/4235.797969 10.1109/TEVC.2014.2308305 10.1109/TEVC.2014.2312208 10.1162/neco.1997.9.7.1493 10.1080/03052150701821328 10.1016/j.asoc.2009.08.016 10.1109/TEVC.2014.2303783 10.1007/978-3-540-87700-4_66 10.1109/TEVC.2008.925798 10.1109/4235.996017 10.1109/TEVC.2015.2424251 10.1016/S0925-2312(98)00030-7 10.1007/s13042-014-0277-6 10.1007/978-0-387-84858-7 10.1007/978-3-0348-8280-4 10.1016/j.ejor.2006.08.008 10.1109/TEVC.2014.2315442 10.1109/TEVC.2009.2021467 10.1109/TEVC.2015.2457616 10.1109/TEVC.2013.2281524 10.1016/j.cie.2008.10.010 10.1007/3-540-45105-6_116 10.1109/TEVC.2009.2024143 10.1002/int.20358 10.1007/3-540-45712-7_12 10.1109/TEVC.2015.2433672 10.1162/EVCO_a_00009 10.1016/j.swevo.2011.03.001 10.1109/TEVC.2007.894202 10.1016/j.neucom.2014.03.070 10.1007/978-3-540-31880-4_20 10.1109/TEVC.2013.2293776 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TEVC.2016.2521868 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 806 |
| ExternalDocumentID | 10_1109_TEVC_2016_2521868 7393537 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Foundation for Creative Research Groups of the National Natural Science Foundation of China grantid: 61021002 funderid: 10.13039/501100001809 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 14DZ2260800 funderid: 10.13039/501100003399 – fundername: National Natural Science Foundation of China grantid: 51275274; 61174037; 61273313; 61473241; 61332002 funderid: 10.13039/501100001809 – fundername: City University of Hong Kong grantid: 7200386 funderid: 10.13039/100007567 – fundername: National Basic Research Program of China grantid: 2012CB821205 – fundername: Innovation Funds of the China Academy of Space Technology grantid: CAST20120602 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c331t-dfee143f89c774858d26f0c0e9eee319c358f313f96c6a51e5a83f3f2ef575493 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000385241600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Tue Nov 18 22:18:17 EST 2025 Sat Nov 29 03:13:47 EST 2025 Tue Aug 26 16:42:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-dfee143f89c774858d26f0c0e9eee319c358f313f96c6a51e5a83f3f2ef575493 |
| ORCID | 0000-0002-4768-5946 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2016_2521868 crossref_citationtrail_10_1109_TEVC_2016_2521868 ieee_primary_7393537 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Oct. 2016-10-00 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-Oct. |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref11 ref10 miettinen (ref1) 1999 zhou (ref44) 2005; 3 zhan (ref29) 2012; 4 norouzi (ref32) 2011; 35 ref16 ref19 deb (ref2) 2001 ref46 ref24 ref45 ref23 ref26 bishop (ref38) 2006 ref25 ref20 li (ref42) 2014; 18 ref41 murata (ref33) 2000 ref22 ref21 jin (ref18) 2003 ref28 price (ref40) 2006 ehrgott (ref17) 2005 ref8 gu (ref43) 2012; 8 ref7 huband (ref47) 2005 ref9 ref4 ref3 ref6 büche (ref27) 2002 ref5 haykin (ref39) 2009; 3 |
| References_xml | – year: 2006 ident: ref38 publication-title: Pattern Recognition and Machine Learning – ident: ref12 doi: 10.1109/TEVC.2007.892759 – volume: 4 start-page: 250 year: 2012 ident: ref29 article-title: Low earth orbit regional satellite constellation design via self organization feature maps publication-title: Int J Adv Comput Technol – ident: ref34 doi: 10.1162/EVCO_a_00109 – year: 1999 ident: ref1 publication-title: Nonlinear Multiobjective Optimization – ident: ref45 doi: 10.1109/4235.797969 – ident: ref7 doi: 10.1109/TEVC.2014.2308305 – ident: ref9 doi: 10.1109/TEVC.2014.2312208 – volume: 3 start-page: 2568 year: 2005 ident: ref44 article-title: A model-based evolutionary algorithm for bi-objective optimization publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref35 doi: 10.1162/neco.1997.9.7.1493 – ident: ref21 doi: 10.1080/03052150701821328 – ident: ref31 doi: 10.1016/j.asoc.2009.08.016 – ident: ref6 doi: 10.1109/TEVC.2014.2303783 – ident: ref24 doi: 10.1007/978-3-540-87700-4_66 – ident: ref13 doi: 10.1109/TEVC.2008.925798 – year: 2006 ident: ref40 publication-title: Differential Evolution A Practical Approach to Global Optimization – ident: ref8 doi: 10.1109/4235.996017 – volume: 8 start-page: 3677 year: 2012 ident: ref43 article-title: A multiobjective evolutionary algorithm using dynamic weight design method publication-title: Int J Innov Comput Inf Control – ident: ref15 doi: 10.1109/TEVC.2015.2424251 – ident: ref26 doi: 10.1016/S0925-2312(98)00030-7 – volume: 3 year: 2009 ident: ref39 publication-title: Neural Networks and Learning Machines – volume: 35 start-page: 105 year: 2011 ident: ref32 article-title: A self organizing map based hybrid multi-objective optimization of water distribution networks publication-title: IJST Transactions of Civil Engineering – ident: ref25 doi: 10.1007/s13042-014-0277-6 – ident: ref37 doi: 10.1007/978-0-387-84858-7 – ident: ref16 doi: 10.1007/978-3-0348-8280-4 – start-page: 307 year: 2000 ident: ref33 article-title: Cellular genetic local search for multi-objective optimization publication-title: Proc Genet Evol Comput Conf (GECCO) – ident: ref10 doi: 10.1016/j.ejor.2006.08.008 – ident: ref4 doi: 10.1109/TEVC.2014.2315442 – ident: ref20 doi: 10.1109/TEVC.2009.2021467 – ident: ref14 doi: 10.1109/TEVC.2015.2457616 – ident: ref5 doi: 10.1109/TEVC.2013.2281524 – ident: ref30 doi: 10.1016/j.cie.2008.10.010 – start-page: 152 year: 2002 ident: ref27 article-title: Self-organizing maps for multi-objective optimization publication-title: Proc Genet Evol Comput Conf (GECCO) – ident: ref46 doi: 10.1007/3-540-45105-6_116 – ident: ref22 doi: 10.1109/TEVC.2009.2024143 – ident: ref23 doi: 10.1002/int.20358 – ident: ref28 doi: 10.1007/3-540-45712-7_12 – year: 2005 ident: ref17 publication-title: Multicriteria Optimization – year: 2001 ident: ref2 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – ident: ref41 doi: 10.1109/TEVC.2015.2433672 – start-page: 1910 year: 2003 ident: ref18 article-title: Connectedness, regularity and the success of local search in evolutionary multi-objective optimization publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref11 doi: 10.1162/EVCO_a_00009 – ident: ref3 doi: 10.1016/j.swevo.2011.03.001 – ident: ref19 doi: 10.1109/TEVC.2007.894202 – ident: ref36 doi: 10.1016/j.neucom.2014.03.070 – start-page: 280 year: 2005 ident: ref47 article-title: A scalable multi-objective test problem toolkit publication-title: Proc Int Conf Evolutionary Multi-Criterion Optimization (EMO) doi: 10.1007/978-3-540-31880-4_20 – volume: 18 start-page: 909 year: 2014 ident: ref42 article-title: Stable matching-based selection in evolutionary multiobjective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2293776 |
| SSID | ssj0014519 |
| Score | 2.5377133 |
| Snippet | Under mild conditions, the Pareto front (Pareto set) of a continuous m-objective optimization problem forms an (m - 1)-dimensional piecewise continuous... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 792 |
| SubjectTerms | Algorithm design and analysis Clustering algorithm Electronic mail evolutionary algorithms Evolutionary computation multiobjective optimization self-organizing map (SOM) Shape Sociology Statistics Training |
| Title | A Self-Organizing Multiobjective Evolutionary Algorithm |
| URI | https://ieeexplore.ieee.org/document/7393537 |
| Volume | 20 |
| WOSCitedRecordID | wos000385241600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da8IwED9U9uAe5qYbc1_0YU9j0bZp0uRRRNnDkMGc-FbaNNkHakdRYf_9kjYWB2Owt1Iu0N4lvd_17n4HcMskpq52fCj2E4kCXyUoJl6KYh2JYVcIkhbF47PHcDJh8zl_qsF91QsjpSyKz2TPXBa5_DQTG_OrrG_Y2wgO61APQ1r2alUZA0OTUhbTc40Y2dxmMD2X96ej2dAUcdGeT8wIJvbDB-0NVSl8yrj1v6c5hiOLHZ1BaewTqMlVG1q7uQyOPaZtONwjGWxD0-DJko65A-HAeZYLhWwLphZwihbcLPkov3zOaGs3Y5x_OYPFa5a_r9-Wp_AyHk2HD8jOTkACY2-NUiWlhkKKcaEBHiMs9alyhSu5fg997AQmTGEPK04F1daRJGZYYeVLpQFcwPEZNFbZSp6DozQIDxTWoU1ADZ0Zw5QkTIWcmmhG4C64O21GwhKLm_kWi6gIMFweGQNExgCRNUAX7qolnyWrxl_CHaP8StDq_eL325fQNIvLersraKzzjbyGA7HVms5vij3zDWrrvRI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFJwPTjfF-dkHn8RuadO0yeMYGxPnEJxjb6VLEz-Yq5Rt4H9v0mZlggi-lXIt7V3S-13v7ncA11RgHynHZ0fuVNieK6d2RJzYjlQkhhHnJM6Kx8eDYDikkwl7LMFt0QsjhMiKz0RTH2a5_DjhS_2rrKXZ2wgOtmCbeJ6L8m6tImegiVLycnqmMCOdmBymg1hr1B13dBmX33SJHsJEf3ihjbEqmVfpVf_3PAewb9Cj1c7NfQglMa9BdT2ZwTIbtQZ7GzSDNahoRJkTMtchaFtPYiZt04SpBKysCTeZvuffPqu7MssxSr-s9uwlSd8Wrx9H8Nzrjjp920xPsDnGzsKOpRAKDEnKuIJ4lNDY9SXiSDD1HmrjcUyoxA6WzOe-so8gEcUSS1dIBeE8ho-hPE_m4gQsqWC4J7EKbjxfE5pR7JMplQHzdTzDcQPQWpshN9TiesLFLMxCDMRCbYBQGyA0BmjATXHJZ86r8ZdwXSu_EDR6P_399BXs9kcPg3BwN7w_g4q-UV59dw7lRboUF7DDV0rr6WW2fr4Bb4fAWQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Self-Organizing+Multiobjective+Evolutionary+Algorithm&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Hu+Zhang&rft.au=Aimin+Zhou&rft.au=Shenmin+Song&rft.au=Qingfu+Zhang&rft.date=2016-10-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=20&rft.issue=5&rft.spage=792&rft.epage=806&rft_id=info:doi/10.1109%2FTEVC.2016.2521868&rft.externalDocID=7393537 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |