A Self-Organizing Multiobjective Evolutionary Algorithm

Under mild conditions, the Pareto front (Pareto set) of a continuous m-objective optimization problem forms an (m - 1)-dimensional piecewise continuous manifold. Based on this property, this paper proposes a self-organizing multiobjective evolutionary algorithm. At each generation, a self-organizing...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation Ročník 20; číslo 5; s. 792 - 806
Hlavní autori: Zhang, Hu, Zhou, Aimin, Song, Shenmin, Zhang, Qingfu, Gao, Xiao-Zhi, Zhang, Jun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2016
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Under mild conditions, the Pareto front (Pareto set) of a continuous m-objective optimization problem forms an (m - 1)-dimensional piecewise continuous manifold. Based on this property, this paper proposes a self-organizing multiobjective evolutionary algorithm. At each generation, a self-organizing mapping method with (m - 1) latent variables is applied to establish the neighborhood relationship among current solutions. A solution is only allowed to mate with its neighboring solutions to generate a new solution. To reduce the computational overhead, the self-organizing training step and the evolution step are conducted in an alternative manner. In other words, the self-organizing training is performed only one single step at each generation. The proposed algorithm has been applied to a number of test instances and compared with some state-of-the-art multiobjective evolutionary methods. The results have demonstrated its advantages over other approaches.
AbstractList Under mild conditions, the Pareto front (Pareto set) of a continuous m-objective optimization problem forms an (m - 1)-dimensional piecewise continuous manifold. Based on this property, this paper proposes a self-organizing multiobjective evolutionary algorithm. At each generation, a self-organizing mapping method with (m - 1) latent variables is applied to establish the neighborhood relationship among current solutions. A solution is only allowed to mate with its neighboring solutions to generate a new solution. To reduce the computational overhead, the self-organizing training step and the evolution step are conducted in an alternative manner. In other words, the self-organizing training is performed only one single step at each generation. The proposed algorithm has been applied to a number of test instances and compared with some state-of-the-art multiobjective evolutionary methods. The results have demonstrated its advantages over other approaches.
Author Jun Zhang
Shenmin Song
Xiao-Zhi Gao
Aimin Zhou
Hu Zhang
Qingfu Zhang
Author_xml – sequence: 1
  givenname: Hu
  surname: Zhang
  fullname: Zhang, Hu
– sequence: 2
  givenname: Aimin
  orcidid: 0000-0002-4768-5946
  surname: Zhou
  fullname: Zhou, Aimin
– sequence: 3
  givenname: Shenmin
  surname: Song
  fullname: Song, Shenmin
– sequence: 4
  givenname: Qingfu
  surname: Zhang
  fullname: Zhang, Qingfu
– sequence: 5
  givenname: Xiao-Zhi
  surname: Gao
  fullname: Gao, Xiao-Zhi
– sequence: 6
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
BookMark eNp9j01Lw0AQhhepYFv9AeIlfyB1J5PN7h5DqB9Q6cEq3sK6na1b0kQ2aUF_vQktHjx4mmHgeed9JmxUNzUxdg18BsD17Wr-WswSDtksEQmoTJ2xMegUYs6TbNTvXOlYSvV2wSZtu-UcUgF6zGQePVPl4mXYmNp_-3oTPe2rzjfvW7KdP1A0PzTVvj_UJnxFebVpgu8-dpfs3JmqpavTnLKXu_mqeIgXy_vHIl_EFhG6eO2IIEWntJUyVUKtk8xxy0kTEYK2KJRDQKczmxkBJIxChy4hJ6RINU4ZHHNtaNo2kCs_g9_1VUrg5WBeDublYF6ezHtG_mGs78yg0AXjq3_JmyPp-3q_nyRqFCjxB089aKg
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_ins_2023_02_043
crossref_primary_10_1016_j_swevo_2017_06_005
crossref_primary_10_1016_j_neucom_2020_12_065
crossref_primary_10_1016_j_eswa_2020_114299
crossref_primary_10_1109_TCYB_2024_3381084
crossref_primary_10_3390_e21050533
crossref_primary_10_1109_TCYB_2019_2952881
crossref_primary_10_1016_j_swevo_2025_101999
crossref_primary_10_1111_coin_12299
crossref_primary_10_1371_journal_pone_0223477
crossref_primary_10_1007_s00500_019_04518_x
crossref_primary_10_1016_j_eswa_2024_124782
crossref_primary_10_3390_su15032525
crossref_primary_10_1007_s00500_019_04175_0
crossref_primary_10_1016_j_swevo_2025_101892
crossref_primary_10_1016_j_swevo_2020_100818
crossref_primary_10_1109_TEVC_2024_3417978
crossref_primary_10_1016_j_swevo_2020_100815
crossref_primary_10_1016_j_swevo_2022_101073
crossref_primary_10_1007_s13042_024_02481_0
crossref_primary_10_1016_j_eswa_2023_121718
crossref_primary_10_1007_s10489_021_02665_z
crossref_primary_10_1007_s12559_021_09906_w
crossref_primary_10_1016_j_asoc_2025_112862
crossref_primary_10_3390_a10040123
crossref_primary_10_1108_IJICC_05_2023_0121
crossref_primary_10_1016_j_swevo_2024_101500
crossref_primary_10_7717_peerj_cs_1420
crossref_primary_10_1007_s10489_018_1350_8
crossref_primary_10_1007_s10489_018_1358_0
crossref_primary_10_1007_s12293_023_00387_y
crossref_primary_10_1109_ACCESS_2021_3131807
crossref_primary_10_1155_2021_4296642
crossref_primary_10_1007_s12065_019_00306_6
crossref_primary_10_1007_s13042_017_0668_6
crossref_primary_10_1016_j_swevo_2018_02_009
crossref_primary_10_1016_j_swevo_2023_101261
crossref_primary_10_1016_j_asoc_2018_06_023
crossref_primary_10_1016_j_knosys_2018_10_021
crossref_primary_10_1016_j_ejor_2021_04_032
crossref_primary_10_1109_TCSS_2019_2945172
crossref_primary_10_1109_TSMC_2021_3072357
crossref_primary_10_3390_app10031174
crossref_primary_10_1016_j_asoc_2024_112157
crossref_primary_10_1109_ACCESS_2021_3110853
crossref_primary_10_1016_j_ejor_2020_01_061
crossref_primary_10_1109_TEVC_2023_3306523
crossref_primary_10_1109_TCBB_2023_3307363
crossref_primary_10_1016_j_swevo_2023_101258
crossref_primary_10_1016_j_cie_2021_107198
crossref_primary_10_1007_s00500_023_09468_z
crossref_primary_10_1016_j_asoc_2022_109614
crossref_primary_10_1016_j_ins_2018_09_005
crossref_primary_10_1016_j_ins_2019_05_046
crossref_primary_10_3390_land14061159
crossref_primary_10_1007_s12559_025_10486_2
crossref_primary_10_1007_s00500_018_3499_9
crossref_primary_10_1016_j_ins_2020_02_066
crossref_primary_10_1016_j_eswa_2025_129460
crossref_primary_10_1109_MCI_2023_3304080
crossref_primary_10_3390_s24041050
crossref_primary_10_1007_s40747_022_00761_2
crossref_primary_10_1007_s44196_025_00891_8
crossref_primary_10_1109_TEVC_2017_2669638
crossref_primary_10_1007_s10489_020_02178_1
crossref_primary_10_1007_s12293_025_00458_2
crossref_primary_10_1109_MIS_2019_2954400
crossref_primary_10_1080_09540091_2025_2523960
crossref_primary_10_3390_math11132820
crossref_primary_10_1007_s12559_018_9611_8
crossref_primary_10_1007_s00500_021_06262_7
crossref_primary_10_1007_s13042_023_01918_2
crossref_primary_10_1016_j_eswa_2025_128709
crossref_primary_10_1109_TNNLS_2020_3027293
crossref_primary_10_1007_s10489_021_02376_5
crossref_primary_10_1016_j_patcog_2020_107449
crossref_primary_10_1109_TETCI_2022_3146882
crossref_primary_10_1109_TEVC_2017_2695579
crossref_primary_10_1016_j_neucom_2017_11_045
crossref_primary_10_1007_s10489_017_1133_7
crossref_primary_10_1016_j_asoc_2017_08_024
crossref_primary_10_1109_TEVC_2017_2744674
crossref_primary_10_1007_s11356_019_04434_5
crossref_primary_10_1016_j_ins_2021_04_011
crossref_primary_10_1016_j_swevo_2024_101703
crossref_primary_10_1007_s00500_020_05104_2
crossref_primary_10_1007_s00500_022_07492_z
crossref_primary_10_1016_j_egyr_2023_04_014
crossref_primary_10_1016_j_swevo_2020_100699
crossref_primary_10_1007_s00500_017_2990_z
crossref_primary_10_1109_TEVC_2019_2926151
crossref_primary_10_3390_electronics9101589
crossref_primary_10_1016_j_tre_2020_102069
crossref_primary_10_1007_s11432_018_9754_6
crossref_primary_10_1109_MCI_2023_3327892
crossref_primary_10_1109_JESTPE_2024_3444776
crossref_primary_10_1109_TEVC_2017_2671462
crossref_primary_10_1007_s00521_022_08133_0
crossref_primary_10_1088_1742_6596_2759_1_012004
crossref_primary_10_1007_s10489_020_01973_0
crossref_primary_10_1016_j_asoc_2022_109430
crossref_primary_10_1016_j_asoc_2024_111707
crossref_primary_10_1109_TEVC_2018_2865495
crossref_primary_10_1016_j_swevo_2025_102103
crossref_primary_10_1007_s10489_019_01554_w
crossref_primary_10_1109_TEVC_2018_2880458
crossref_primary_10_1109_TGRS_2017_2748701
crossref_primary_10_1016_j_eswa_2025_128173
crossref_primary_10_1109_ACCESS_2019_2941123
crossref_primary_10_1140_epjs_s11734_021_00206_w
crossref_primary_10_1016_j_eswa_2024_125684
crossref_primary_10_1016_j_ins_2022_08_030
Cites_doi 10.1109/TEVC.2007.892759
10.1162/EVCO_a_00109
10.1109/4235.797969
10.1109/TEVC.2014.2308305
10.1109/TEVC.2014.2312208
10.1162/neco.1997.9.7.1493
10.1080/03052150701821328
10.1016/j.asoc.2009.08.016
10.1109/TEVC.2014.2303783
10.1007/978-3-540-87700-4_66
10.1109/TEVC.2008.925798
10.1109/4235.996017
10.1109/TEVC.2015.2424251
10.1016/S0925-2312(98)00030-7
10.1007/s13042-014-0277-6
10.1007/978-0-387-84858-7
10.1007/978-3-0348-8280-4
10.1016/j.ejor.2006.08.008
10.1109/TEVC.2014.2315442
10.1109/TEVC.2009.2021467
10.1109/TEVC.2015.2457616
10.1109/TEVC.2013.2281524
10.1016/j.cie.2008.10.010
10.1007/3-540-45105-6_116
10.1109/TEVC.2009.2024143
10.1002/int.20358
10.1007/3-540-45712-7_12
10.1109/TEVC.2015.2433672
10.1162/EVCO_a_00009
10.1016/j.swevo.2011.03.001
10.1109/TEVC.2007.894202
10.1016/j.neucom.2014.03.070
10.1007/978-3-540-31880-4_20
10.1109/TEVC.2013.2293776
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2016.2521868
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 806
ExternalDocumentID 10_1109_TEVC_2016_2521868
7393537
Genre orig-research
GrantInformation_xml – fundername: Foundation for Creative Research Groups of the National Natural Science Foundation of China
  grantid: 61021002
  funderid: 10.13039/501100001809
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 14DZ2260800
  funderid: 10.13039/501100003399
– fundername: National Natural Science Foundation of China
  grantid: 51275274; 61174037; 61273313; 61473241; 61332002
  funderid: 10.13039/501100001809
– fundername: City University of Hong Kong
  grantid: 7200386
  funderid: 10.13039/100007567
– fundername: National Basic Research Program of China
  grantid: 2012CB821205
– fundername: Innovation Funds of the China Academy of Space Technology
  grantid: CAST20120602
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c331t-dfee143f89c774858d26f0c0e9eee319c358f313f96c6a51e5a83f3f2ef575493
IEDL.DBID RIE
ISICitedReferencesCount 130
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000385241600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Tue Nov 18 22:18:17 EST 2025
Sat Nov 29 03:13:47 EST 2025
Tue Aug 26 16:42:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-dfee143f89c774858d26f0c0e9eee319c358f313f96c6a51e5a83f3f2ef575493
ORCID 0000-0002-4768-5946
PageCount 15
ParticipantIDs crossref_primary_10_1109_TEVC_2016_2521868
crossref_citationtrail_10_1109_TEVC_2016_2521868
ieee_primary_7393537
PublicationCentury 2000
PublicationDate 2016-Oct.
2016-10-00
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-Oct.
PublicationDecade 2010
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref11
ref10
miettinen (ref1) 1999
zhou (ref44) 2005; 3
zhan (ref29) 2012; 4
norouzi (ref32) 2011; 35
ref16
ref19
deb (ref2) 2001
ref46
ref24
ref45
ref23
ref26
bishop (ref38) 2006
ref25
ref20
li (ref42) 2014; 18
ref41
murata (ref33) 2000
ref22
ref21
jin (ref18) 2003
ref28
price (ref40) 2006
ehrgott (ref17) 2005
ref8
gu (ref43) 2012; 8
ref7
huband (ref47) 2005
ref9
ref4
ref3
ref6
büche (ref27) 2002
ref5
haykin (ref39) 2009; 3
References_xml – year: 2006
  ident: ref38
  publication-title: Pattern Recognition and Machine Learning
– ident: ref12
  doi: 10.1109/TEVC.2007.892759
– volume: 4
  start-page: 250
  year: 2012
  ident: ref29
  article-title: Low earth orbit regional satellite constellation design via self organization feature maps
  publication-title: Int J Adv Comput Technol
– ident: ref34
  doi: 10.1162/EVCO_a_00109
– year: 1999
  ident: ref1
  publication-title: Nonlinear Multiobjective Optimization
– ident: ref45
  doi: 10.1109/4235.797969
– ident: ref7
  doi: 10.1109/TEVC.2014.2308305
– ident: ref9
  doi: 10.1109/TEVC.2014.2312208
– volume: 3
  start-page: 2568
  year: 2005
  ident: ref44
  article-title: A model-based evolutionary algorithm for bi-objective optimization
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref35
  doi: 10.1162/neco.1997.9.7.1493
– ident: ref21
  doi: 10.1080/03052150701821328
– ident: ref31
  doi: 10.1016/j.asoc.2009.08.016
– ident: ref6
  doi: 10.1109/TEVC.2014.2303783
– ident: ref24
  doi: 10.1007/978-3-540-87700-4_66
– ident: ref13
  doi: 10.1109/TEVC.2008.925798
– year: 2006
  ident: ref40
  publication-title: Differential Evolution A Practical Approach to Global Optimization
– ident: ref8
  doi: 10.1109/4235.996017
– volume: 8
  start-page: 3677
  year: 2012
  ident: ref43
  article-title: A multiobjective evolutionary algorithm using dynamic weight design method
  publication-title: Int J Innov Comput Inf Control
– ident: ref15
  doi: 10.1109/TEVC.2015.2424251
– ident: ref26
  doi: 10.1016/S0925-2312(98)00030-7
– volume: 3
  year: 2009
  ident: ref39
  publication-title: Neural Networks and Learning Machines
– volume: 35
  start-page: 105
  year: 2011
  ident: ref32
  article-title: A self organizing map based hybrid multi-objective optimization of water distribution networks
  publication-title: IJST Transactions of Civil Engineering
– ident: ref25
  doi: 10.1007/s13042-014-0277-6
– ident: ref37
  doi: 10.1007/978-0-387-84858-7
– ident: ref16
  doi: 10.1007/978-3-0348-8280-4
– start-page: 307
  year: 2000
  ident: ref33
  article-title: Cellular genetic local search for multi-objective optimization
  publication-title: Proc Genet Evol Comput Conf (GECCO)
– ident: ref10
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref4
  doi: 10.1109/TEVC.2014.2315442
– ident: ref20
  doi: 10.1109/TEVC.2009.2021467
– ident: ref14
  doi: 10.1109/TEVC.2015.2457616
– ident: ref5
  doi: 10.1109/TEVC.2013.2281524
– ident: ref30
  doi: 10.1016/j.cie.2008.10.010
– start-page: 152
  year: 2002
  ident: ref27
  article-title: Self-organizing maps for multi-objective optimization
  publication-title: Proc Genet Evol Comput Conf (GECCO)
– ident: ref46
  doi: 10.1007/3-540-45105-6_116
– ident: ref22
  doi: 10.1109/TEVC.2009.2024143
– ident: ref23
  doi: 10.1002/int.20358
– ident: ref28
  doi: 10.1007/3-540-45712-7_12
– year: 2005
  ident: ref17
  publication-title: Multicriteria Optimization
– year: 2001
  ident: ref2
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref41
  doi: 10.1109/TEVC.2015.2433672
– start-page: 1910
  year: 2003
  ident: ref18
  article-title: Connectedness, regularity and the success of local search in evolutionary multi-objective optimization
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref11
  doi: 10.1162/EVCO_a_00009
– ident: ref3
  doi: 10.1016/j.swevo.2011.03.001
– ident: ref19
  doi: 10.1109/TEVC.2007.894202
– ident: ref36
  doi: 10.1016/j.neucom.2014.03.070
– start-page: 280
  year: 2005
  ident: ref47
  article-title: A scalable multi-objective test problem toolkit
  publication-title: Proc Int Conf Evolutionary Multi-Criterion Optimization (EMO)
  doi: 10.1007/978-3-540-31880-4_20
– volume: 18
  start-page: 909
  year: 2014
  ident: ref42
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2293776
SSID ssj0014519
Score 2.5377133
Snippet Under mild conditions, the Pareto front (Pareto set) of a continuous m-objective optimization problem forms an (m - 1)-dimensional piecewise continuous...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 792
SubjectTerms Algorithm design and analysis
Clustering algorithm
Electronic mail
evolutionary algorithms
Evolutionary computation
multiobjective optimization
self-organizing map (SOM)
Shape
Sociology
Statistics
Training
Title A Self-Organizing Multiobjective Evolutionary Algorithm
URI https://ieeexplore.ieee.org/document/7393537
Volume 20
WOSCitedRecordID wos000385241600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da8IwED9U9uAe5qYbc1_0YU9j0bZp0uRRRNnDkMGc-FbaNNkHakdRYf_9kjYWB2Owt1Iu0N4lvd_17n4HcMskpq52fCj2E4kCXyUoJl6KYh2JYVcIkhbF47PHcDJh8zl_qsF91QsjpSyKz2TPXBa5_DQTG_OrrG_Y2wgO61APQ1r2alUZA0OTUhbTc40Y2dxmMD2X96ej2dAUcdGeT8wIJvbDB-0NVSl8yrj1v6c5hiOLHZ1BaewTqMlVG1q7uQyOPaZtONwjGWxD0-DJko65A-HAeZYLhWwLphZwihbcLPkov3zOaGs3Y5x_OYPFa5a_r9-Wp_AyHk2HD8jOTkACY2-NUiWlhkKKcaEBHiMs9alyhSu5fg997AQmTGEPK04F1daRJGZYYeVLpQFcwPEZNFbZSp6DozQIDxTWoU1ADZ0Zw5QkTIWcmmhG4C64O21GwhKLm_kWi6gIMFweGQNExgCRNUAX7qolnyWrxl_CHaP8StDq_eL325fQNIvLersraKzzjbyGA7HVms5vij3zDWrrvRI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFJwPTjfF-dkHn8RuadO0yeMYGxPnEJxjb6VLEz-Yq5Rt4H9v0mZlggi-lXIt7V3S-13v7ncA11RgHynHZ0fuVNieK6d2RJzYjlQkhhHnJM6Kx8eDYDikkwl7LMFt0QsjhMiKz0RTH2a5_DjhS_2rrKXZ2wgOtmCbeJ6L8m6tImegiVLycnqmMCOdmBymg1hr1B13dBmX33SJHsJEf3ihjbEqmVfpVf_3PAewb9Cj1c7NfQglMa9BdT2ZwTIbtQZ7GzSDNahoRJkTMtchaFtPYiZt04SpBKysCTeZvuffPqu7MssxSr-s9uwlSd8Wrx9H8Nzrjjp920xPsDnGzsKOpRAKDEnKuIJ4lNDY9SXiSDD1HmrjcUyoxA6WzOe-so8gEcUSS1dIBeE8ho-hPE_m4gQsqWC4J7EKbjxfE5pR7JMplQHzdTzDcQPQWpshN9TiesLFLMxCDMRCbYBQGyA0BmjATXHJZ86r8ZdwXSu_EDR6P_399BXs9kcPg3BwN7w_g4q-UV59dw7lRboUF7DDV0rr6WW2fr4Bb4fAWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Self-Organizing+Multiobjective+Evolutionary+Algorithm&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Hu+Zhang&rft.au=Aimin+Zhou&rft.au=Shenmin+Song&rft.au=Qingfu+Zhang&rft.date=2016-10-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=20&rft.issue=5&rft.spage=792&rft.epage=806&rft_id=info:doi/10.1109%2FTEVC.2016.2521868&rft.externalDocID=7393537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon