Construction and application of exact solutions of the diffusive Lotka–Volterra system: A review and new results

This review summarizes all known results (up to this date) about methods of integration of the classical Lotka–Volterra systems with diffusion and presents a wide range of exact solutions, which are the most important from applicability point of view. It is the first attempt in this direction. Becau...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications in nonlinear science & numerical simulation Ročník 113; s. 106579
Hlavní autori: Cherniha, Roman, Davydovych, Vasyl’
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.10.2022
Elsevier Science Ltd
Predmet:
ISSN:1007-5704, 1878-7274
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This review summarizes all known results (up to this date) about methods of integration of the classical Lotka–Volterra systems with diffusion and presents a wide range of exact solutions, which are the most important from applicability point of view. It is the first attempt in this direction. Because the diffusive Lotka–Volterra systems are used for mathematical modeling enormous variety of processes in ecology, biology, medicine, physics and chemistry, the review should be interesting not only for specialists from Applied Mathematics but also those from other branches of Science. The obtained exact solutions can also be used as test problems for estimating the accuracy of approximate analytical and numerical methods for solving relevant boundary value problems. •All known results about integration methods of the diffusive Lotka–Volterra systems are summarized.•Wide sets of exact solutions, including traveling fronts, are presented.•Plots and biological interpretation of the most interesting solutions are presented.•Some unsolved problems are highlighted.
AbstractList This review summarizes all known results (up to this date) about methods of integration of the classical Lotka–Volterra systems with diffusion and presents a wide range of exact solutions, which are the most important from applicability point of view. It is the first attempt in this direction. Because the diffusive Lotka–Volterra systems are used for mathematical modeling enormous variety of processes in ecology, biology, medicine, physics and chemistry, the review should be interesting not only for specialists from Applied Mathematics but also those from other branches of Science. The obtained exact solutions can also be used as test problems for estimating the accuracy of approximate analytical and numerical methods for solving relevant boundary value problems. •All known results about integration methods of the diffusive Lotka–Volterra systems are summarized.•Wide sets of exact solutions, including traveling fronts, are presented.•Plots and biological interpretation of the most interesting solutions are presented.•Some unsolved problems are highlighted.
This review summarizes all known results (up to this date) about methods of integration of the classical Lotka–Volterra systems with diffusion and presents a wide range of exact solutions, which are the most important from applicability point of view. It is the first attempt in this direction. Because the diffusive Lotka–Volterra systems are used for mathematical modeling enormous variety of processes in ecology, biology, medicine, physics and chemistry, the review should be interesting not only for specialists from Applied Mathematics but also those from other branches of Science. The obtained exact solutions can also be used as test problems for estimating the accuracy of approximate analytical and numerical methods for solving relevant boundary value problems.
ArticleNumber 106579
Author Davydovych, Vasyl
Cherniha, Roman
Author_xml – sequence: 1
  givenname: Roman
  orcidid: 0000-0002-1733-5240
  surname: Cherniha
  fullname: Cherniha, Roman
  email: r.m.cherniha@gmail.com
– sequence: 2
  givenname: Vasyl’
  surname: Davydovych
  fullname: Davydovych, Vasyl’
BookMark eNqFkL9uFDEQhy0UJJLAE9BYot7D9tq7t0gU0Yk_kU6iAVrLGY-Fj419eLyBdLwDb8iT4LujSgHVzPw031j-LthZygkZey7FSgo5vNytIFGilRJKtWQw4_SIncv1uO5GNeqz1gsxdmYU-gm7INqJRk1Gn7OyyYlqWaDGnLhLnrv9fo7gjnMOHH84qJzyvBwSOkT1C3IfQ1go3iHf5vrV_f7563OeK5biON1TxdtX_IoXvIv4_Xg1tVqQlrnSU_Y4uJnw2d96yT69ffNx877bfnh3vbnadtD3snYetBLOB6cMADqPblAezA3K3rteDc5g8CiU1wrgJngRdBBhPSo0OIEw_SV7cbq7L_nbglTtLi8ltSetGiZp5KC1blv9aQtKJioY7L7EW1furRT2INfu7FGuPci1J7mNmh5QEOvRWS0uzv9hX59YbJ9vgooliJgAfSwI1foc_8n_AV6rnZI
CitedBy_id crossref_primary_10_1063_5_0222213
crossref_primary_10_3390_math13020197
crossref_primary_10_3934_dcdss_2025030
crossref_primary_10_1016_j_cnsns_2024_107905
crossref_primary_10_37251_ijome_v2i2_1366
crossref_primary_10_1016_j_chaos_2023_113468
crossref_primary_10_3390_sym14122520
crossref_primary_10_1088_1402_4896_ad8846
crossref_primary_10_1016_j_health_2023_100283
crossref_primary_10_1016_j_cnsns_2022_107068
crossref_primary_10_3390_sym15112025
crossref_primary_10_1016_j_cnsns_2023_107313
crossref_primary_10_3390_math11010160
crossref_primary_10_1017_S095679252200033X
crossref_primary_10_1007_s11144_024_02700_3
crossref_primary_10_1007_s41478_023_00690_4
crossref_primary_10_3390_axioms14090655
Cites_doi 10.1515/zpch-1911-7549
10.1017/S0956792520000121
10.1111/j.1469-1809.1937.tb02153.x
10.1016/j.mcm.2011.03.035
10.1088/0031-8949/54/6/003
10.1007/BF02450786
10.1016/j.jmaa.2010.06.026
10.1016/j.jde.2018.12.003
10.1088/1751-8113/43/40/405207
10.1007/s13160-012-0056-2
10.1016/j.nonrwa.2010.12.004
10.1016/0025-5564(77)90077-3
10.1007/BF00275064
10.1016/j.jde.2020.07.006
10.1016/S0092-8240(79)80020-8
10.3934/dcdsb.2012.17.2653
10.1515/zpch-1910-7229
10.1016/S0377-0427(03)00645-9
10.1016/j.nonrwa.2007.07.007
10.1088/1751-8113/46/18/185204
10.1016/j.aml.2021.107731
10.3934/cpaa.2016.15.1451
10.3390/math9161984
10.1006/jdeq.1996.0157
10.3390/sym7041841
10.1021/ja01453a010
10.1007/s11253-005-0142-6
10.3390/bioengineering8030031
10.1016/j.nonrwa.2011.07.002
10.1016/S0167-2789(98)00191-2
10.1137/0133047
10.1007/BF03167410
10.32917/hmj/1206124686
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. Oct 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Oct 2022
DBID AAYXX
CITATION
DOI 10.1016/j.cnsns.2022.106579
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-7274
ExternalDocumentID 10_1016_j_cnsns_2022_106579
S1007570422001861
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
SSH
ID FETCH-LOGICAL-c331t-dc420adfa25cceadea62dc5be13da326a5efde02d42ccbfd0f4f0f872e5e9c053
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000812961600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1007-5704
IngestDate Fri Jul 25 08:07:52 EDT 2025
Sat Nov 29 07:09:02 EST 2025
Tue Nov 18 22:45:25 EST 2025
Fri Feb 23 02:41:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lie and conditional symmetry
Traveling front
Population dynamics
Diffusive Lotka–Volterra system
Exact solution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-dc420adfa25cceadea62dc5be13da326a5efde02d42ccbfd0f4f0f872e5e9c053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1733-5240
PQID 2691516444
PQPubID 2047477
ParticipantIDs proquest_journals_2691516444
crossref_primary_10_1016_j_cnsns_2022_106579
crossref_citationtrail_10_1016_j_cnsns_2022_106579
elsevier_sciencedirect_doi_10_1016_j_cnsns_2022_106579
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Gudkov (b54) 1997; 353
Beteman (b57) 1955
Fife (b11) 1975
Fisher (b53) 1937; 7
Cherniha (b44) 2010; 43
Britton (b6) 2003
Cherniha, Davydovych (b49) 2017; vol. 2196
Aris (b12) 1975
Hung (b35) 2016; 8
Ablowitz, Zeppetella (b23) 1979; 41
Cherniha, Davydovych (b33) 2021; 9
Malfliet (b21) 2004; 164
Lotka (b5) 1910; 72
Zhdanov, Lahno (b56) 1998; 122
Polyanin, Zaitsev (b52) 2018
Rothe (b16) 1976; 3
Hung (b27) 2011; 12
Hirniak (b4) 1911; 75
Cherniha, Davydovych (b34) 2013; 46
Cherniha, Davydovych (b46) 2015; 268
Jorné, Carmi (b15) 1977; 37
Cherniha, Davydovych (b47) 2021; 32
Rodrigo, Mimura (b24) 2001; 18
Okubo, Levin (b9) 2001
Lou, Ni (b55) 1996; 131
Polyanin, Sorokin (b59) 2022; 125
Arrigo, Ekrut, Fliss, Le (b43) 2010; 371
Hou, Leung (b30) 2008; 9
Cherniha, Dutka (b22) 2004; 56
Hung (b25) 2012; 29
Leung, Hou, Feng (b31) 2011; 15
Malfliet, W. (b20) 1996; 54
Gilding, Kersner (b48) 2004
Kudryashov, Zakharchenko (b26) 2015; 254
Chen, Hung, Mimura, Ueyama (b28) 2012; 17
Pliukhin (b36) 2015; 7
Ugalde-Salas, Ramirez, Harm (b58) 2021; 8
Cherniha, Davydovych (b32) 2011; 54
Murray (b8) 2003
Murray (b7) 1989
Hastings (b14) 1978; 6
Conway, Smoller (b13) 1977; 33
Chen, Hung (b29) 2016; 15
Volterra (b2) 1926; 2
Kuang, Nagy, Eikenberry (b10) 2016
Polyanin, Zaitsev (b37) 2012
Cherniha, Serov, Pliukhin (b39) 2018
Lam, Salako, Wu (b18) 2020; 269
Bluman, Cheviakov, Anco (b38) 2010
Fushchych, Shtelen, Serov (b42) 1993
Rodrigo, Mimura (b19) 2000; 30
Bluman, Cole (b40) 1969; 18
Alhasanat, Ou (b17) 2019; 266
Bluman, Anco (b50) 2002
Hirniak (b3) 1908; 12
Fushchych, Serov, Chopyk (b41) 1988; 9
Torrisi, Tracina (b45) 2011; 12
Arrigo (b51) 2015
Lotka (b1) 1920; 42
Cherniha (10.1016/j.cnsns.2022.106579_b22) 2004; 56
Fushchych (10.1016/j.cnsns.2022.106579_b42) 1993
Lotka (10.1016/j.cnsns.2022.106579_b1) 1920; 42
Ugalde-Salas (10.1016/j.cnsns.2022.106579_b58) 2021; 8
Gudkov (10.1016/j.cnsns.2022.106579_b54) 1997; 353
Fisher (10.1016/j.cnsns.2022.106579_b53) 1937; 7
Cherniha (10.1016/j.cnsns.2022.106579_b46) 2015; 268
Cherniha (10.1016/j.cnsns.2022.106579_b44) 2010; 43
Hastings (10.1016/j.cnsns.2022.106579_b14) 1978; 6
Gilding (10.1016/j.cnsns.2022.106579_b48) 2004
Chen (10.1016/j.cnsns.2022.106579_b28) 2012; 17
Fushchych (10.1016/j.cnsns.2022.106579_b41) 1988; 9
Volterra (10.1016/j.cnsns.2022.106579_b2) 1926; 2
Bluman (10.1016/j.cnsns.2022.106579_b50) 2002
Ablowitz (10.1016/j.cnsns.2022.106579_b23) 1979; 41
Polyanin (10.1016/j.cnsns.2022.106579_b52) 2018
Cherniha (10.1016/j.cnsns.2022.106579_b49) 2017; vol. 2196
Kudryashov (10.1016/j.cnsns.2022.106579_b26) 2015; 254
Cherniha (10.1016/j.cnsns.2022.106579_b39) 2018
Malfliet (10.1016/j.cnsns.2022.106579_b21) 2004; 164
Hou (10.1016/j.cnsns.2022.106579_b30) 2008; 9
Murray (10.1016/j.cnsns.2022.106579_b8) 2003
Chen (10.1016/j.cnsns.2022.106579_b29) 2016; 15
Lotka (10.1016/j.cnsns.2022.106579_b5) 1910; 72
Zhdanov (10.1016/j.cnsns.2022.106579_b56) 1998; 122
Pliukhin (10.1016/j.cnsns.2022.106579_b36) 2015; 7
Britton (10.1016/j.cnsns.2022.106579_b6) 2003
Aris (10.1016/j.cnsns.2022.106579_b12) 1975
Cherniha (10.1016/j.cnsns.2022.106579_b34) 2013; 46
Cherniha (10.1016/j.cnsns.2022.106579_b32) 2011; 54
Bluman (10.1016/j.cnsns.2022.106579_b40) 1969; 18
Torrisi (10.1016/j.cnsns.2022.106579_b45) 2011; 12
Rothe (10.1016/j.cnsns.2022.106579_b16) 1976; 3
Rodrigo (10.1016/j.cnsns.2022.106579_b24) 2001; 18
Arrigo (10.1016/j.cnsns.2022.106579_b51) 2015
Hirniak (10.1016/j.cnsns.2022.106579_b3) 1908; 12
Okubo (10.1016/j.cnsns.2022.106579_b9) 2001
Leung (10.1016/j.cnsns.2022.106579_b31) 2011; 15
Hung (10.1016/j.cnsns.2022.106579_b27) 2011; 12
Hirniak (10.1016/j.cnsns.2022.106579_b4) 1911; 75
Cherniha (10.1016/j.cnsns.2022.106579_b33) 2021; 9
Fife (10.1016/j.cnsns.2022.106579_b11) 1975
Rodrigo (10.1016/j.cnsns.2022.106579_b19) 2000; 30
Polyanin (10.1016/j.cnsns.2022.106579_b37) 2012
Cherniha (10.1016/j.cnsns.2022.106579_b47) 2021; 32
Malfliet (10.1016/j.cnsns.2022.106579_b20) 1996; 54
Bluman (10.1016/j.cnsns.2022.106579_b38) 2010
Lam (10.1016/j.cnsns.2022.106579_b18) 2020; 269
Arrigo (10.1016/j.cnsns.2022.106579_b43) 2010; 371
Alhasanat (10.1016/j.cnsns.2022.106579_b17) 2019; 266
Lou (10.1016/j.cnsns.2022.106579_b55) 1996; 131
Murray (10.1016/j.cnsns.2022.106579_b7) 1989
Hung (10.1016/j.cnsns.2022.106579_b35) 2016; 8
Beteman (10.1016/j.cnsns.2022.106579_b57) 1955
Conway (10.1016/j.cnsns.2022.106579_b13) 1977; 33
Polyanin (10.1016/j.cnsns.2022.106579_b59) 2022; 125
Jorné (10.1016/j.cnsns.2022.106579_b15) 1977; 37
Kuang (10.1016/j.cnsns.2022.106579_b10) 2016
Hung (10.1016/j.cnsns.2022.106579_b25) 2012; 29
References_xml – volume: 371
  start-page: 813
  year: 2010
  end-page: 820
  ident: b43
  article-title: Nonclassical symmetries of a class of Burgers’ systems
  publication-title: J Math Anal Appl
– year: 2004
  ident: b48
  article-title: Travelling Waves in Nonlinear Reaction-Convection–Diffusion
– volume: 122
  start-page: 178
  year: 1998
  end-page: 186
  ident: b56
  article-title: Conditional symmetry of a porous medium equation
  publication-title: Physica D
– volume: 7
  start-page: 353
  year: 1937
  end-page: 369
  ident: b53
  article-title: The wave of advance of advantageous genes
  publication-title: Ann Eugenics
– volume: 17
  start-page: 2653
  year: 2012
  end-page: 2669
  ident: b28
  article-title: Exact travelling wave solutions of three-species competition-diffusion systems
  publication-title: Discrete Contin Dyn Syst Ser B
– volume: 37
  start-page: 51
  year: 1977
  end-page: 61
  ident: b15
  article-title: Liapunov stability of the diffusive Lotka–Volterra equations
  publication-title: Math Biosci
– volume: 15
  start-page: 1451
  year: 2016
  ident: b29
  article-title: Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka–Volterra systems of three competing species
  publication-title: Commun Pure Appl Anal
– volume: 56
  start-page: 1665
  year: 2004
  end-page: 1675
  ident: b22
  article-title: A diffusive Lotka–Volterra system: Lie symmetries, exact and numerical solutions
  publication-title: Ukr Math J
– volume: 42
  start-page: 1595
  year: 1920
  end-page: 1599
  ident: b1
  article-title: Undamped oscillations derived from the law of mass action
  publication-title: J Am Chem Soc
– volume: 72
  start-page: 508
  year: 1910
  end-page: 511
  ident: b5
  article-title: Zur Theorie der periodischen Reaktion (in German)
  publication-title: Z Phys Chem
– volume: 54
  start-page: 563
  year: 1996
  end-page: 568
  ident: b20
  article-title: The tanh method: I. exact solutions of nonlinear evolution and wave equations
  publication-title: Phys Scripta
– volume: 164
  start-page: 529
  year: 2004
  end-page: 541
  ident: b21
  article-title: The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations
  publication-title: J Comp Appl Math
– volume: 54
  start-page: 1238
  year: 2011
  end-page: 1251
  ident: b32
  article-title: Conditional symmetries and exact solutions of the diffusive Lotka–Volterra system
  publication-title: Math Comput Modelling
– volume: 125
  year: 2022
  ident: b59
  article-title: Reductions and exact solutions of Lotka–Volterra and more complex reaction–diffusion systems with delays
  publication-title: Appl Math Lett
– volume: 254
  start-page: 219
  year: 2015
  end-page: 228
  ident: b26
  article-title: Analytical properties and exact solutions of the Lotka–Volterra competition system
  publication-title: Appl Math Comput
– year: 1975
  ident: b12
  article-title: The mathematical theory of diffusion and reaction in permeable catalysts: the theory of the steady state
– volume: 43
  year: 2010
  ident: b44
  article-title: Conditional symmetries for systems of PDEs: new definition and their application for reaction–diffusion systems
  publication-title: J Phys A Math Theor
– volume: 8
  start-page: 31
  year: 2021
  ident: b58
  article-title: Microbial interactions as drivers of a nitrification process in a chemostat
  publication-title: Bioengineering
– volume: 9
  start-page: 1984
  year: 2021
  ident: b33
  article-title: New conditional symmetries and exact solutions of the diffusive two-component Lotka–Volterra system
  publication-title: Mathematics
– volume: 18
  start-page: 657
  year: 2001
  end-page: 696
  ident: b24
  article-title: Exact solutions of reaction–diffusion systems and nonlinear wave equations
  publication-title: Japan J Indu Appl Math
– volume: 15
  start-page: 171
  year: 2011
  end-page: 196
  ident: b31
  article-title: Traveling wave solutions for Lotka–Volterra system re-visited
  publication-title: Discrete Contin Dyn Syst Ser B
– volume: 46
  year: 2013
  ident: b34
  article-title: Lie and conditional symmetries of the three-component diffusive Lotka–Volterra system
  publication-title: J Phys A Math Theor
– volume: 33
  start-page: 673
  year: 1977
  end-page: 686
  ident: b13
  article-title: Diffusion and the predator–prey interaction
  publication-title: SIAM J Appl Math
– volume: 30
  start-page: 257
  year: 2000
  end-page: 270
  ident: b19
  article-title: Exact solutions of a competition-diffusion system
  publication-title: Hiroshima Math J
– volume: vol. 2196
  year: 2017
  ident: b49
  publication-title: Nonlinear reaction–diffusion systems — conditional symmetry, exact solutions and their applications in biology
– year: 2003
  ident: b6
  article-title: Essential mathematical biology
– year: 1955
  ident: b57
  article-title: Higher transcendental functions
– volume: 75
  start-page: 675
  year: 1911
  end-page: 680
  ident: b4
  article-title: Zur frage der periodischen reaktionen (in German)
  publication-title: Z Phys Chem
– volume: 131
  start-page: 79
  year: 1996
  end-page: 131
  ident: b55
  article-title: Diffusion, self-diffusion and cross-diffusion
  publication-title: J Differ Equ
– volume: 3
  start-page: 319
  year: 1976
  end-page: 324
  ident: b16
  article-title: Convergence to the equilibrium state in the Volterra–Lotka diffusion equations
  publication-title: J Math Biol
– volume: 269
  start-page: 10758
  year: 2020
  end-page: 10791
  ident: b18
  article-title: Entire solutions of diffusive Lotka–Volterra system
  publication-title: J Differ Equ
– volume: 41
  start-page: 835
  year: 1979
  end-page: 840
  ident: b23
  article-title: Explicit solutions of Fisher’s equation for a special wave speed
  publication-title: Bull Math Biol
– volume: 18
  start-page: 1025
  year: 1969
  end-page: 1042
  ident: b40
  article-title: The general similarity solution of the heat equation
  publication-title: J Math Mech
– year: 2003
  ident: b8
  article-title: Mathematical biology II
– volume: 2
  start-page: 31
  year: 1926
  end-page: 113
  ident: b2
  article-title: Variazioni e fluttuazioni del numero d‘individui in specie animali conviventi
  publication-title: Mem Acad Lincei
– year: 1975
  ident: b11
  article-title: Mathematical aspects of reacting and diffusing systems
– year: 2016
  ident: b10
  article-title: Introduction to mathematical oncology
– year: 2012
  ident: b37
  article-title: Handbook of nonlinear partial differential equations
– volume: 32
  start-page: 280
  year: 2021
  end-page: 300
  ident: b47
  article-title: Conditional symmetries and exact solutions of a nonlinear three-component reaction–diffusion model
  publication-title: Euro J Appl Math
– volume: 268
  start-page: 23
  year: 2015
  end-page: 34
  ident: b46
  article-title: Nonlinear reaction–diffusion systems with a non-constant diffusivity: conditional symmetries in no-go case
  publication-title: Appl Math Comput
– year: 2010
  ident: b38
  article-title: Applications of symmetry methods to partial differential equations
– year: 2018
  ident: b52
  article-title: Handbook of ordinary differential equations: exact solutions, methods, and problems
– year: 2018
  ident: b39
  article-title: Nonlinear reaction–diffusion-convection equations: lie and conditional symmetry, exact solutions and their applications
– volume: 6
  start-page: 163
  year: 1978
  end-page: 168
  ident: b14
  article-title: Global stability in Lotka–Volterra systems with diffusion
  publication-title: J Math Biol
– volume: 9
  start-page: 17
  year: 1988
  end-page: 21
  ident: b41
  article-title: Conditional invariance and nonlinear heat equations (in Ukrainian)
  publication-title: Proc Acad Sci Ukraine
– volume: 12
  start-page: 1
  year: 1908
  end-page: 8
  ident: b3
  article-title: About periodical chemical reactions (in Ukrainian), Shevchenko Scientific Society in Lviv
  publication-title: Section Math-Nat-Med
– year: 1993
  ident: b42
  article-title: Symmetry analysis and exact solutions of equations of nonlinear mathematical physics
– year: 1989
  ident: b7
  article-title: Mathematical biology
– year: 2001
  ident: b9
  article-title: Diffusion and ecological problems
  publication-title: Modern perspectives
– volume: 8
  start-page: 501
  year: 2016
  end-page: 520
  ident: b35
  article-title: Diffusive solutions of the competitive Lotka–Volterra system
  publication-title: J Difference Equ Appl
– year: 2002
  ident: b50
  article-title: Symmetry and integration methods for differential equations
– volume: 12
  start-page: 700
  year: 2011
  end-page: 3691
  ident: b27
  article-title: Traveling wave solutions of competitive-cooperative Lotka–Volterra systems of three species
  publication-title: Nonlinear Anal RWA
– year: 2015
  ident: b51
  article-title: Symmetry analysis of differential equations
– volume: 353
  start-page: 439
  year: 1997
  end-page: 441
  ident: b54
  article-title: Exact solutions of the type of propagating waves for certain evolution equations
  publication-title: Dokl Ros Akad Nauk
– volume: 7
  start-page: 1841
  year: 2015
  end-page: 1855
  ident: b36
  article-title: -Conditional symmetries and exact solutions of nonlinear reaction–diffusion systems
  publication-title: Symmetry
– volume: 29
  start-page: 237
  year: 2012
  end-page: 251
  ident: b25
  article-title: Exact traveling wave solutions for diffusive Lotka–Volterra systems of two competing species
  publication-title: Jpn J Indust Appl Math
– volume: 12
  start-page: 1865
  year: 2011
  end-page: 1874
  ident: b45
  article-title: Exact solutions of a reaction–diffusion system for proteus mirabilis bacterial colonies
  publication-title: Nonlinear Anal RWA
– volume: 9
  start-page: 213
  year: 2008
  end-page: 2196
  ident: b30
  article-title: Traveling wave solutions for a competitive reaction–diffusion system and their asymptotics
  publication-title: Nonlinear Anal RWA
– volume: 266
  start-page: 7357
  year: 2019
  end-page: 7378
  ident: b17
  article-title: Minimal-speed selection of travelling waves to the Lotka–Volterra competition model
  publication-title: J Differ Equ
– year: 1975
  ident: 10.1016/j.cnsns.2022.106579_b11
– volume: 75
  start-page: 675
  year: 1911
  ident: 10.1016/j.cnsns.2022.106579_b4
  article-title: Zur frage der periodischen reaktionen (in German)
  publication-title: Z Phys Chem
  doi: 10.1515/zpch-1911-7549
– year: 2003
  ident: 10.1016/j.cnsns.2022.106579_b8
– volume: 32
  start-page: 280
  year: 2021
  ident: 10.1016/j.cnsns.2022.106579_b47
  article-title: Conditional symmetries and exact solutions of a nonlinear three-component reaction–diffusion model
  publication-title: Euro J Appl Math
  doi: 10.1017/S0956792520000121
– year: 2004
  ident: 10.1016/j.cnsns.2022.106579_b48
– volume: 7
  start-page: 353
  year: 1937
  ident: 10.1016/j.cnsns.2022.106579_b53
  article-title: The wave of advance of advantageous genes
  publication-title: Ann Eugenics
  doi: 10.1111/j.1469-1809.1937.tb02153.x
– year: 1989
  ident: 10.1016/j.cnsns.2022.106579_b7
– volume: vol. 2196
  year: 2017
  ident: 10.1016/j.cnsns.2022.106579_b49
– year: 1993
  ident: 10.1016/j.cnsns.2022.106579_b42
– volume: 8
  start-page: 501
  year: 2016
  ident: 10.1016/j.cnsns.2022.106579_b35
  article-title: Diffusive solutions of the competitive Lotka–Volterra system
  publication-title: J Difference Equ Appl
– volume: 54
  start-page: 1238
  year: 2011
  ident: 10.1016/j.cnsns.2022.106579_b32
  article-title: Conditional symmetries and exact solutions of the diffusive Lotka–Volterra system
  publication-title: Math Comput Modelling
  doi: 10.1016/j.mcm.2011.03.035
– volume: 54
  start-page: 563
  year: 1996
  ident: 10.1016/j.cnsns.2022.106579_b20
  article-title: The tanh method: I. exact solutions of nonlinear evolution and wave equations
  publication-title: Phys Scripta
  doi: 10.1088/0031-8949/54/6/003
– year: 2001
  ident: 10.1016/j.cnsns.2022.106579_b9
  article-title: Diffusion and ecological problems
– volume: 6
  start-page: 163
  year: 1978
  ident: 10.1016/j.cnsns.2022.106579_b14
  article-title: Global stability in Lotka–Volterra systems with diffusion
  publication-title: J Math Biol
  doi: 10.1007/BF02450786
– volume: 353
  start-page: 439
  year: 1997
  ident: 10.1016/j.cnsns.2022.106579_b54
  article-title: Exact solutions of the type of propagating waves for certain evolution equations
  publication-title: Dokl Ros Akad Nauk
– volume: 254
  start-page: 219
  year: 2015
  ident: 10.1016/j.cnsns.2022.106579_b26
  article-title: Analytical properties and exact solutions of the Lotka–Volterra competition system
  publication-title: Appl Math Comput
– year: 2003
  ident: 10.1016/j.cnsns.2022.106579_b6
– volume: 371
  start-page: 813
  year: 2010
  ident: 10.1016/j.cnsns.2022.106579_b43
  article-title: Nonclassical symmetries of a class of Burgers’ systems
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2010.06.026
– volume: 266
  start-page: 7357
  year: 2019
  ident: 10.1016/j.cnsns.2022.106579_b17
  article-title: Minimal-speed selection of travelling waves to the Lotka–Volterra competition model
  publication-title: J Differ Equ
  doi: 10.1016/j.jde.2018.12.003
– year: 2002
  ident: 10.1016/j.cnsns.2022.106579_b50
– volume: 43
  year: 2010
  ident: 10.1016/j.cnsns.2022.106579_b44
  article-title: Conditional symmetries for systems of PDEs: new definition and their application for reaction–diffusion systems
  publication-title: J Phys A Math Theor
  doi: 10.1088/1751-8113/43/40/405207
– volume: 29
  start-page: 237
  year: 2012
  ident: 10.1016/j.cnsns.2022.106579_b25
  article-title: Exact traveling wave solutions for diffusive Lotka–Volterra systems of two competing species
  publication-title: Jpn J Indust Appl Math
  doi: 10.1007/s13160-012-0056-2
– volume: 12
  start-page: 1865
  year: 2011
  ident: 10.1016/j.cnsns.2022.106579_b45
  article-title: Exact solutions of a reaction–diffusion system for proteus mirabilis bacterial colonies
  publication-title: Nonlinear Anal RWA
  doi: 10.1016/j.nonrwa.2010.12.004
– year: 2016
  ident: 10.1016/j.cnsns.2022.106579_b10
– volume: 37
  start-page: 51
  year: 1977
  ident: 10.1016/j.cnsns.2022.106579_b15
  article-title: Liapunov stability of the diffusive Lotka–Volterra equations
  publication-title: Math Biosci
  doi: 10.1016/0025-5564(77)90077-3
– volume: 9
  start-page: 17
  year: 1988
  ident: 10.1016/j.cnsns.2022.106579_b41
  article-title: Conditional invariance and nonlinear heat equations (in Ukrainian)
  publication-title: Proc Acad Sci Ukraine
– year: 1975
  ident: 10.1016/j.cnsns.2022.106579_b12
– volume: 12
  start-page: 1
  year: 1908
  ident: 10.1016/j.cnsns.2022.106579_b3
  article-title: About periodical chemical reactions (in Ukrainian), Shevchenko Scientific Society in Lviv
  publication-title: Section Math-Nat-Med
– volume: 3
  start-page: 319
  year: 1976
  ident: 10.1016/j.cnsns.2022.106579_b16
  article-title: Convergence to the equilibrium state in the Volterra–Lotka diffusion equations
  publication-title: J Math Biol
  doi: 10.1007/BF00275064
– year: 2012
  ident: 10.1016/j.cnsns.2022.106579_b37
– volume: 269
  start-page: 10758
  year: 2020
  ident: 10.1016/j.cnsns.2022.106579_b18
  article-title: Entire solutions of diffusive Lotka–Volterra system
  publication-title: J Differ Equ
  doi: 10.1016/j.jde.2020.07.006
– volume: 18
  start-page: 1025
  year: 1969
  ident: 10.1016/j.cnsns.2022.106579_b40
  article-title: The general similarity solution of the heat equation
  publication-title: J Math Mech
– volume: 41
  start-page: 835
  year: 1979
  ident: 10.1016/j.cnsns.2022.106579_b23
  article-title: Explicit solutions of Fisher’s equation for a special wave speed
  publication-title: Bull Math Biol
  doi: 10.1016/S0092-8240(79)80020-8
– volume: 17
  start-page: 2653
  year: 2012
  ident: 10.1016/j.cnsns.2022.106579_b28
  article-title: Exact travelling wave solutions of three-species competition-diffusion systems
  publication-title: Discrete Contin Dyn Syst Ser B
  doi: 10.3934/dcdsb.2012.17.2653
– volume: 72
  start-page: 508
  year: 1910
  ident: 10.1016/j.cnsns.2022.106579_b5
  article-title: Zur Theorie der periodischen Reaktion (in German)
  publication-title: Z Phys Chem
  doi: 10.1515/zpch-1910-7229
– volume: 164
  start-page: 529
  year: 2004
  ident: 10.1016/j.cnsns.2022.106579_b21
  article-title: The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations
  publication-title: J Comp Appl Math
  doi: 10.1016/S0377-0427(03)00645-9
– volume: 9
  start-page: 213
  year: 2008
  ident: 10.1016/j.cnsns.2022.106579_b30
  article-title: Traveling wave solutions for a competitive reaction–diffusion system and their asymptotics
  publication-title: Nonlinear Anal RWA
  doi: 10.1016/j.nonrwa.2007.07.007
– volume: 46
  year: 2013
  ident: 10.1016/j.cnsns.2022.106579_b34
  article-title: Lie and conditional symmetries of the three-component diffusive Lotka–Volterra system
  publication-title: J Phys A Math Theor
  doi: 10.1088/1751-8113/46/18/185204
– volume: 125
  year: 2022
  ident: 10.1016/j.cnsns.2022.106579_b59
  article-title: Reductions and exact solutions of Lotka–Volterra and more complex reaction–diffusion systems with delays
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2021.107731
– volume: 268
  start-page: 23
  year: 2015
  ident: 10.1016/j.cnsns.2022.106579_b46
  article-title: Nonlinear reaction–diffusion systems with a non-constant diffusivity: conditional symmetries in no-go case
  publication-title: Appl Math Comput
– volume: 15
  start-page: 1451
  year: 2016
  ident: 10.1016/j.cnsns.2022.106579_b29
  article-title: Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka–Volterra systems of three competing species
  publication-title: Commun Pure Appl Anal
  doi: 10.3934/cpaa.2016.15.1451
– volume: 9
  start-page: 1984
  year: 2021
  ident: 10.1016/j.cnsns.2022.106579_b33
  article-title: New conditional symmetries and exact solutions of the diffusive two-component Lotka–Volterra system
  publication-title: Mathematics
  doi: 10.3390/math9161984
– volume: 131
  start-page: 79
  year: 1996
  ident: 10.1016/j.cnsns.2022.106579_b55
  article-title: Diffusion, self-diffusion and cross-diffusion
  publication-title: J Differ Equ
  doi: 10.1006/jdeq.1996.0157
– volume: 7
  start-page: 1841
  year: 2015
  ident: 10.1016/j.cnsns.2022.106579_b36
  article-title: Q-Conditional symmetries and exact solutions of nonlinear reaction–diffusion systems
  publication-title: Symmetry
  doi: 10.3390/sym7041841
– volume: 42
  start-page: 1595
  year: 1920
  ident: 10.1016/j.cnsns.2022.106579_b1
  article-title: Undamped oscillations derived from the law of mass action
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01453a010
– volume: 56
  start-page: 1665
  year: 2004
  ident: 10.1016/j.cnsns.2022.106579_b22
  article-title: A diffusive Lotka–Volterra system: Lie symmetries, exact and numerical solutions
  publication-title: Ukr Math J
  doi: 10.1007/s11253-005-0142-6
– volume: 15
  start-page: 171
  year: 2011
  ident: 10.1016/j.cnsns.2022.106579_b31
  article-title: Traveling wave solutions for Lotka–Volterra system re-visited
  publication-title: Discrete Contin Dyn Syst Ser B
– year: 2018
  ident: 10.1016/j.cnsns.2022.106579_b52
– volume: 8
  start-page: 31
  year: 2021
  ident: 10.1016/j.cnsns.2022.106579_b58
  article-title: Microbial interactions as drivers of a nitrification process in a chemostat
  publication-title: Bioengineering
  doi: 10.3390/bioengineering8030031
– year: 2018
  ident: 10.1016/j.cnsns.2022.106579_b39
– year: 2015
  ident: 10.1016/j.cnsns.2022.106579_b51
– year: 1955
  ident: 10.1016/j.cnsns.2022.106579_b57
– year: 2010
  ident: 10.1016/j.cnsns.2022.106579_b38
– volume: 12
  start-page: 700
  year: 2011
  ident: 10.1016/j.cnsns.2022.106579_b27
  article-title: Traveling wave solutions of competitive-cooperative Lotka–Volterra systems of three species
  publication-title: Nonlinear Anal RWA
  doi: 10.1016/j.nonrwa.2011.07.002
– volume: 122
  start-page: 178
  year: 1998
  ident: 10.1016/j.cnsns.2022.106579_b56
  article-title: Conditional symmetry of a porous medium equation
  publication-title: Physica D
  doi: 10.1016/S0167-2789(98)00191-2
– volume: 33
  start-page: 673
  year: 1977
  ident: 10.1016/j.cnsns.2022.106579_b13
  article-title: Diffusion and the predator–prey interaction
  publication-title: SIAM J Appl Math
  doi: 10.1137/0133047
– volume: 2
  start-page: 31
  year: 1926
  ident: 10.1016/j.cnsns.2022.106579_b2
  article-title: Variazioni e fluttuazioni del numero d‘individui in specie animali conviventi
  publication-title: Mem Acad Lincei
– volume: 18
  start-page: 657
  year: 2001
  ident: 10.1016/j.cnsns.2022.106579_b24
  article-title: Exact solutions of reaction–diffusion systems and nonlinear wave equations
  publication-title: Japan J Indu Appl Math
  doi: 10.1007/BF03167410
– volume: 30
  start-page: 257
  year: 2000
  ident: 10.1016/j.cnsns.2022.106579_b19
  article-title: Exact solutions of a competition-diffusion system
  publication-title: Hiroshima Math J
  doi: 10.32917/hmj/1206124686
SSID ssj0016954
Score 2.470189
SecondaryResourceType review_article
Snippet This review summarizes all known results (up to this date) about methods of integration of the classical Lotka–Volterra systems with diffusion and presents a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106579
SubjectTerms Applications of mathematics
Approximation
Boundary value problems
Diffusive Lotka–Volterra system
Exact solution
Exact solutions
Lie and conditional symmetry
Mathematical models
Numerical analysis
Numerical methods
Population dynamics
Traveling front
Title Construction and application of exact solutions of the diffusive Lotka–Volterra system: A review and new results
URI https://dx.doi.org/10.1016/j.cnsns.2022.106579
https://www.proquest.com/docview/2691516444
Volume 113
WOSCitedRecordID wos000812961600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-7274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016954
  issn: 1007-5704
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3ohCQXvgVlzFazu2uUVQBKiqECpVbtZmH1KKa1d2EiW3_oee-XP8EmafNq2I6IGLlWzs0Srz7Xhmd-YbhN5koZCUMBnwOBVBzMMoyBkXAVFka4kUJOFa00fp8XE2neZfB4OfrhZmVaZVla3X-cV_VTWMgbJV6ewt1O2FwgB8BqXDFdQO139SvGrB6UhhDRVrd0atXEOxVmWRfg4uSUB1SlnqXPajevGDuiSI6LRW5-kNtZzPppLdFrwo6eCWw9d2WRpKKM960C880Tm3lSHloM2-KyVSqKuW5sio3G_n57aVWJdyIJpqbk6kvtXnHY4_0NWG16uNaWN1SttN6eab97cxIAJ2CXHO8qo90yQ1vYi9aQ6jnnGF6DUxnWdu2H2zBXF2wKq2UiTshBx0d__Jsn3t7edzEl2621mhhRRKSGGE3EE7gN08G6KdyefD6Rd_TDXOdZs9P3dHa6UTCG_M5W-uzzUnQHs2Jw_RfRuS4ImB0iM0ENVj9MCGJ9ga__YJavrIwqB73EMWriXWyMIeWWoIkIU9srBG1q_LK4cpbDD1Dk-wQZSWCojCFlFP0fePhyfvPwW2ZUfAoihcBJzFZEQ5LP-EMZWLT8eEs2QmwohTiBRoIiQXI8JjwthM8pGM5UhmKRGJyBm8EJ6hIcBRPEcY4vKYkVCGNI5iPqKZykCkjGVslkcJo7uIuH-zYJbPXrVVKYstmtxFb_1DF4bOZfvtY6emwq4N42kWALztD-45pRbWNsDv4xz8awhA4he3m8ZLdK9bMntoCKoWr9BdtlrM2-a1BeVvXba-sg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+and+application+of+exact+solutions+of+the+diffusive+Lotka%E2%80%93Volterra+system%3A+A+review+and+new+results&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Cherniha%2C+Roman&rft.au=Davydovych%2C+Vasyl%E2%80%99&rft.date=2022-10-01&rft.issn=1007-5704&rft.volume=113&rft.spage=106579&rft_id=info:doi/10.1016%2Fj.cnsns.2022.106579&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cnsns_2022_106579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon