High Accuracy Microcalcifications Detection of Breast Cancer Using Wiener LTI Tophat Model
In order to avoid cancer, it is imperative that microcalcification in the breast be found. It is sufficiently small to be difficult to discern with the unassisted eye. Computer-based detection output is modest and tends to stay concealed from the radiologist doing the examination, which might help t...
Saved in:
| Published in: | IEEE access Vol. 12; pp. 153316 - 153329 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2024
|
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In order to avoid cancer, it is imperative that microcalcification in the breast be found. It is sufficiently small to be difficult to discern with the unassisted eye. Computer-based detection output is modest and tends to stay concealed from the radiologist doing the examination, which might help the radiologist increase diagnostic accuracy. According to this study, the best Wiener Linear Time Invariant Filter method with Tophat Transformation (LFWT) can identify microcalcification in the breast with an accuracy rate of 99.5%. In this work, we focused on the identification of microcalcifications in images, an essential initial step towards precisely identifying all the indicators in a mammography-based early breast cancer diagnosis. To make the cancer region visible and prominent, the Wiener and CLAHE filters are used. Tophat morphological operators were applied to mask detection, and edges were extracted. The analytical performance of the proposed model for microcalcification identification in mammograms was evaluated and compared with other approaches using Mammographic Image Analysis Society (MIAS) and Mini-Mammographic imaging datasets. Additionally, three techniques- The Local Contrast Method (LCM), the Local Relative Contrast Measure Method (LRCMM), and the High-Boost-Based Multiscale Local Contrast Measure (HBBMLCM) are used to identify microcalcification linked to cancer on mammography images. Performance Evaluation of the Proposed Model: the LFWT methodology had the best level of efficacy in detecting microcalcification linked to breast cancer. The suggested LFWT technique finds each and every tiny point on the MIAS dataset's mammography. |
|---|---|
| AbstractList | In order to avoid cancer, it is imperative that microcalcification in the breast be found. It is sufficiently small to be difficult to discern with the unassisted eye. Computer-based detection output is modest and tends to stay concealed from the radiologist doing the examination, which might help the radiologist increase diagnostic accuracy. According to this study, the best Wiener Linear Time Invariant Filter method with Tophat Transformation (LFWT) can identify microcalcification in the breast with an accuracy rate of 99.5%. In this work, we focused on the identification of microcalcifications in images, an essential initial step towards precisely identifying all the indicators in a mammography-based early breast cancer diagnosis. To make the cancer region visible and prominent, the Wiener and CLAHE filters are used. Tophat morphological operators were applied to mask detection, and edges were extracted. The analytical performance of the proposed model for microcalcification identification in mammograms was evaluated and compared with other approaches using Mammographic Image Analysis Society (MIAS) and Mini-Mammographic imaging datasets. Additionally, three techniques- The Local Contrast Method (LCM), the Local Relative Contrast Measure Method (LRCMM), and the High-Boost-Based Multiscale Local Contrast Measure (HBBMLCM) are used to identify microcalcification linked to cancer on mammography images. Performance Evaluation of the Proposed Model: the LFWT methodology had the best level of efficacy in detecting microcalcification linked to breast cancer. The suggested LFWT technique finds each and every tiny point on the MIAS dataset's mammography. |
| Author | Sholpan Pernebaykyzy, Zhumagulova Orken, Mamyrbayev Jamil, Razia Kymbat Ragytovna, Momynzhanova Rashid, Javed Dong, Min |
| Author_xml | – sequence: 1 givenname: Razia orcidid: 0000-0002-8849-5356 surname: Jamil fullname: Jamil, Razia organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, China – sequence: 2 givenname: Min orcidid: 0000-0001-7758-7856 surname: Dong fullname: Dong, Min email: dm880612dm@163.com organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, China – sequence: 3 givenname: Javed orcidid: 0000-0003-3416-9720 surname: Rashid fullname: Rashid, Javed organization: Information Technology Services, University of Okara, Okara, Pakistan – sequence: 4 givenname: Mamyrbayev orcidid: 0000-0001-8318-3794 surname: Orken fullname: Orken, Mamyrbayev email: morkenj@mail.ru organization: Institute Information and Computation Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan – sequence: 5 givenname: Zhumagulova orcidid: 0009-0006-3696-0021 surname: Sholpan Pernebaykyzy fullname: Sholpan Pernebaykyzy, Zhumagulova organization: Institute Information and Computation Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan – sequence: 6 givenname: Momynzhanova orcidid: 0000-0002-9981-5706 surname: Kymbat Ragytovna fullname: Kymbat Ragytovna, Momynzhanova organization: Institute Information and Computation Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan |
| BookMark | eNpNkEtPwzAQhC0EEs9fAAf_gRY7fiQ-lvCqVMSBIiQu1ma9KUYlRk449N-TUoTYy8yONHP4jtl-lzpi7FyKqZTCXc7q-ubpaVqIQk-VVk65co8dFdK6iTLK7v_zh-ys79_FeNUYmfKIvd7H1RufIX5lwA1_iJgTwhpjGxGGmLqeX9NAuLU8tfwqE_QDr6FDyvy5j92Kv0TqxmexnPNl-nyDgT-kQOtTdtDCuqezXz1hz7c3y_p-sni8m9ezxQSVksMkAIEodWO1sqNa07jQkqSqAdeAAUcCADWWAbFoNEpqXTC6KkxVCsSgTth8txsSvPvPHD8gb3yC6H-ClFce8hBxTb4EEoVp0QkMuhKmsU2lG0TpCsIgzLildlsjhr7P1P7tSeG3tP2Ott_S9r-0x9bFrhWJ6F_DFspapb4BjpR-iA |
| CODEN | IAECCG |
| Cites_doi | 10.1007/s11045-020-00756-7 10.1155/2019/9360941 10.3390/s21144854 10.1002/cncr.31551 10.1109/TCBB.2018.2806438 10.1016/j.ipm.2018.10.014 10.3390/cancers13235916 10.1007/978-981-13-3765-9_8 10.1007/s40846-018-0415-9 10.1155/2019/2717454 10.1016/j.diii.2013.12.011 10.1371/journal.pone.0256500 10.1016/j.ejmp.2019.05.022 10.1109/EIT48999.2020.9208290 10.1109/TBME.2021.3059869 10.3390/jimaging5030037 10.1016/j.jksuci.2019.10.014 10.3892/mco.2022.2514 10.1109/BHI.2019.8834517 10.1109/ACCESS.2019.2892795 10.1016/j.bspc.2022.104360 10.4258/hir.2021.27.3.222 10.13053/cys-22-1-2560 10.5812/iranjradiol-120758 10.1109/TMI.2023.3345008 10.1007/978-3-030-18058-4_18 10.1055/s-0032-1313102 10.1016/j.ijrobp.2018.08.032 10.1109/TAP.2020.3016407 10.1007/s10911-015-9349-9 10.1007/978-3-319-95921-4_24 10.7567/1882-0786/ab265d 10.1049/iet-ipr.2017.0536 10.1007/s10278-019-00192-5 10.1186/s41747-023-00384-3 10.1007/s11760-021-01882-w |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
| DOI | 10.1109/ACCESS.2024.3439397 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 153329 |
| ExternalDocumentID | oai_doaj_org_article_7ae025fc90cd4805b6b84bcc192ecd05 10_1109_ACCESS_2024_3439397 10623663 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Committee of Science of the Ministry of Science and Higher Education of Kazakhstan grantid: AP19675574 funderid: 10.13039/501100004561 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c331t-daea074b643607465b9dfe1e8ba9ba5a9e0aac4c7dcc2b4c1ef9d54825870ccd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001340689000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:21 EDT 2025 Sat Nov 29 04:27:00 EST 2025 Wed Aug 27 02:14:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-daea074b643607465b9dfe1e8ba9ba5a9e0aac4c7dcc2b4c1ef9d54825870ccd3 |
| ORCID | 0009-0006-3696-0021 0000-0002-8849-5356 0000-0001-8318-3794 0000-0002-9981-5706 0000-0003-3416-9720 0000-0001-7758-7856 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10623663 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7ae025fc90cd4805b6b84bcc192ecd05 crossref_primary_10_1109_ACCESS_2024_3439397 ieee_primary_10623663 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 Saravanan (ref22) 2017; 5 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref17 ref39 ref16 ref38 ref19 ref18 Gülsün (ref6) 2004; 28 ref24 ref26 ref25 ref20 ref42 ref41 ref21 ref28 ref27 ref29 ref8 ref7 Suckling (ref43) 2015 ref9 ref3 (ref1) 2024 ref5 Leborgne (ref4) 1951; 65 ref40 Gaikwad (ref23) 2015; 10 |
| References_xml | – volume: 28 start-page: 153 issue: 2 volume-title: Clin. Imag. year: 2004 ident: ref6 article-title: Evaluation of breast microcalcifications according to breast imaging reporting and data system criteria and le Gal’s classification – ident: ref35 doi: 10.1007/s11045-020-00756-7 – ident: ref28 doi: 10.1155/2019/9360941 – ident: ref34 doi: 10.3390/s21144854 – ident: ref31 doi: 10.1002/cncr.31551 – volume: 10 start-page: 19 issue: 1 year: 2015 ident: ref23 article-title: Detection of breast cancer in mammogram using support vector machine publication-title: Int. J. Sci. Eng. Res. – ident: ref14 doi: 10.1109/TCBB.2018.2806438 – ident: ref19 doi: 10.1016/j.ipm.2018.10.014 – ident: ref3 doi: 10.3390/cancers13235916 – ident: ref16 doi: 10.1007/978-981-13-3765-9_8 – ident: ref18 doi: 10.1007/s40846-018-0415-9 – ident: ref29 doi: 10.1155/2019/2717454 – volume: 5 start-page: 173 year: 2017 ident: ref22 article-title: Images segmentation using k-means clustering based thresholding algorithm publication-title: Int. J. Adv. Technol. Eng. Sci. – volume: 65 start-page: 1 issue: 1 year: 1951 ident: ref4 article-title: Diagnosis of tumors of the breast by simple roentgenography; calcifications in carcinomas publication-title: Amer. J. Roentgenol. Radium Ther. – ident: ref9 doi: 10.1016/j.diii.2013.12.011 – ident: ref36 doi: 10.1371/journal.pone.0256500 – ident: ref27 doi: 10.1016/j.ejmp.2019.05.022 – ident: ref32 doi: 10.1109/EIT48999.2020.9208290 – ident: ref41 doi: 10.1109/TBME.2021.3059869 – ident: ref33 doi: 10.3390/jimaging5030037 – ident: ref15 doi: 10.1016/j.jksuci.2019.10.014 – ident: ref11 doi: 10.3892/mco.2022.2514 – ident: ref13 doi: 10.1109/BHI.2019.8834517 – ident: ref20 doi: 10.1109/ACCESS.2019.2892795 – ident: ref38 doi: 10.1016/j.bspc.2022.104360 – year: 2015 ident: ref43 article-title: Mammographic image analysis society (MIAS) database v1.21 – volume-title: Breast Cancer. Updated 12 July 2023 year: 2024 ident: ref1 – volume-title: Breast Cancer Screening Guidelines. American Cancer Society Recommendations for the Early Detection of Breast Cancer ident: ref2 – ident: ref39 doi: 10.4258/hir.2021.27.3.222 – ident: ref5 doi: 10.13053/cys-22-1-2560 – ident: ref8 doi: 10.5812/iranjradiol-120758 – ident: ref42 doi: 10.1109/TMI.2023.3345008 – ident: ref17 doi: 10.1007/978-3-030-18058-4_18 – ident: ref7 doi: 10.1055/s-0032-1313102 – ident: ref21 doi: 10.1016/j.ijrobp.2018.08.032 – ident: ref40 doi: 10.1109/TAP.2020.3016407 – ident: ref10 doi: 10.1007/s10911-015-9349-9 – ident: ref25 doi: 10.1007/978-3-319-95921-4_24 – ident: ref30 doi: 10.7567/1882-0786/ab265d – ident: ref24 doi: 10.1049/iet-ipr.2017.0536 – ident: ref26 doi: 10.1007/s10278-019-00192-5 – ident: ref12 doi: 10.1186/s41747-023-00384-3 – ident: ref37 doi: 10.1007/s11760-021-01882-w |
| SSID | ssj0000816957 |
| Score | 2.306871 |
| Snippet | In order to avoid cancer, it is imperative that microcalcification in the breast be found. It is sufficiently small to be difficult to discern with the... |
| SourceID | doaj crossref ieee |
| SourceType | Open Website Index Database Publisher |
| StartPage | 153316 |
| SubjectTerms | Accuracy Biomedical image processing Breast cancer Calcium computer-aided design Design automation Mammography microcalcifications Microwave imaging Radiology wiener filter Wiener filters |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4qOI8iUPjITmw0nssS1UIJWKoUDFEtlnW1RCbVVSJP49ZyegMLGwWlbivHN876ynd4RcWCvTUOVxwBjWJkxzG-BAFECcKmRJaWa8HcPTKB-P-XQqHhqtvpwmrLIHroDr5tJgWrYgQtCMh6nKFGcKAJmJAV25lyLraRRT_gzmUSbSvLYZikLR7Q0G-EVYEMbsKsEsnDibp0Yq8o79v1qs-Awz3CU7NTWkvWpJe2TDzPfJdsMw8IC8OFkG7QGsVxI-6b1T0yHIXldXXb3Ra1N6ddWcLiztO8l5SQcutCvq5QH0eeacpulockcni-WrLKnrh_bWJo_Dm8ngNqi7IwSQJFEZaGkk5n-FlCJzTUNSJbQ1keFKCiVTKUwoJTDINUCsGETGCo31SZziLwqgk0PSmi_m5ojQjHMjtJbc2XuZOJdZxC3PILQGbB6xDrn8BqpYViYYhS8eQlFUuBYO16LGtUP6Dsyfqc7B2g9gXIs6rsVfce2QtgtF431I1JAeHf_Hw0_IlltwdZVySlrlam3OyCZ8lLP31bnfSl8Mnczb priority: 102 providerName: Directory of Open Access Journals |
| Title | High Accuracy Microcalcifications Detection of Breast Cancer Using Wiener LTI Tophat Model |
| URI | https://ieeexplore.ieee.org/document/10623663 https://doaj.org/article/7ae025fc90cd4805b6b84bcc192ecd05 |
| Volume | 12 |
| WOSCitedRecordID | wos001340689000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZN6KE99JWUbh9Bhxzr1A_Jko6bTUILSchh86AXI41GNFB2w9Zb6KW_vTOyG7aHHHoxRhgsz2cxD336Roj9lLwug6kLpSg3UdGmggaqAmodKErSLWY5hqtTc35ub27cxXhYPZ-FQcRMPsMDvs17-XEJay6V0QonZ00ucktsGWOGw1r3BRXuIOG0GZWFqtJ9ms5m9BGUA9bqoCHH27Cy04b3ySL9_3RVyU7l5Pl_TueFeDZGj3I6wP1SPMLFK_F0Q1NwR3xl5oacAqxXHn7JMybcEQ6ZejdU5-QR9pmAtZDLJA-Zld7LGaO_kplBIK9vWYxans6_yPny7pvvJbdM-74rLk-O57PPxdhAoYCmqfoievQUIgSKOlruK6KDiwkrtMG74LV3WHoPCkwEqIOCCpOLlMLUmlYxQGxei-3FcoFvhGytRRejt6wAhrXxbWWTbaFMCMlUaiI-_jVsdzfoZHQ5vyhdN-DQMQ7diMNEHLLx7x9lkes8QAbuxjXTGY8UkSVwJURlSx3aYFUAoKAUIZZ6InYZlI33DXi8fWD8nXjCcxgKKO_Fdr9a4wfxGH72tz9Wezkbp-vZ7-O9_Gf9Aeb-y9w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKiwQ9lFdRl_LwgSMpediJfdwuVK3YrjgsUHGJ7PFYVEK71TZbqf--M06olgMHbpEVJc58sebhz98I8T5Gp3PflJlSlJuoYGJGA0UGpfYUJekakxzD92kzm5mLC_t1OKyezsIgYiKf4RFfpr38sIQ1l8pohZOzJhf5QOxoenbRH9e6L6lwDwmrm0FbqMjtx_FkQp9BWWCpjipyvRVrO234nyTT_1dfleRWTp7854Seir0hfpTjHvBnYgsXz8XuhqrgC_GTuRtyDLBeObiV50y5IyQS-a6vz8lP2CUK1kIuozxmXnonJ4z_SiYOgfxxyXLUcjo_k_Pl1S_XSW6a9ntffDv5PJ-cZkMLhQyqquiy4NBRkOAp7qi5s4j2NkQs0HhnvdPOYu4cKGgCQOkVFBhtoCSm1LSOAUL1Umwvlgs8ELI2Bm0IzrAGGJaNqwsTTQ15RIhNoUbiwx_Dtle9UkabMozctj0OLePQDjiMxDEb__5WlrlOA2Tgdlg1beOQYrIINoegTK597Y3yABSWIoRcj8Q-g7Lxvh6PV_8Yfycenc7Pp-30bPblUDzm-fTllNdiu1ut8Y14CDfd5fXqbfqz7gAL08z9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Accuracy+Microcalcifications+Detection+of+Breast+Cancer+Using+Wiener+LTI+Tophat+Model&rft.jtitle=IEEE+access&rft.au=Jamil%2C+Razia&rft.au=Dong%2C+Min&rft.au=Rashid%2C+Javed&rft.au=Orken%2C+Mamyrbayev&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=153316&rft.epage=153329&rft_id=info:doi/10.1109%2FACCESS.2024.3439397&rft.externalDocID=10623663 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |