High Accuracy Microcalcifications Detection of Breast Cancer Using Wiener LTI Tophat Model

In order to avoid cancer, it is imperative that microcalcification in the breast be found. It is sufficiently small to be difficult to discern with the unassisted eye. Computer-based detection output is modest and tends to stay concealed from the radiologist doing the examination, which might help t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; pp. 153316 - 153329
Main Authors: Jamil, Razia, Dong, Min, Rashid, Javed, Orken, Mamyrbayev, Sholpan Pernebaykyzy, Zhumagulova, Kymbat Ragytovna, Momynzhanova
Format: Journal Article
Language:English
Published: IEEE 2024
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In order to avoid cancer, it is imperative that microcalcification in the breast be found. It is sufficiently small to be difficult to discern with the unassisted eye. Computer-based detection output is modest and tends to stay concealed from the radiologist doing the examination, which might help the radiologist increase diagnostic accuracy. According to this study, the best Wiener Linear Time Invariant Filter method with Tophat Transformation (LFWT) can identify microcalcification in the breast with an accuracy rate of 99.5%. In this work, we focused on the identification of microcalcifications in images, an essential initial step towards precisely identifying all the indicators in a mammography-based early breast cancer diagnosis. To make the cancer region visible and prominent, the Wiener and CLAHE filters are used. Tophat morphological operators were applied to mask detection, and edges were extracted. The analytical performance of the proposed model for microcalcification identification in mammograms was evaluated and compared with other approaches using Mammographic Image Analysis Society (MIAS) and Mini-Mammographic imaging datasets. Additionally, three techniques- The Local Contrast Method (LCM), the Local Relative Contrast Measure Method (LRCMM), and the High-Boost-Based Multiscale Local Contrast Measure (HBBMLCM) are used to identify microcalcification linked to cancer on mammography images. Performance Evaluation of the Proposed Model: the LFWT methodology had the best level of efficacy in detecting microcalcification linked to breast cancer. The suggested LFWT technique finds each and every tiny point on the MIAS dataset's mammography.
AbstractList In order to avoid cancer, it is imperative that microcalcification in the breast be found. It is sufficiently small to be difficult to discern with the unassisted eye. Computer-based detection output is modest and tends to stay concealed from the radiologist doing the examination, which might help the radiologist increase diagnostic accuracy. According to this study, the best Wiener Linear Time Invariant Filter method with Tophat Transformation (LFWT) can identify microcalcification in the breast with an accuracy rate of 99.5%. In this work, we focused on the identification of microcalcifications in images, an essential initial step towards precisely identifying all the indicators in a mammography-based early breast cancer diagnosis. To make the cancer region visible and prominent, the Wiener and CLAHE filters are used. Tophat morphological operators were applied to mask detection, and edges were extracted. The analytical performance of the proposed model for microcalcification identification in mammograms was evaluated and compared with other approaches using Mammographic Image Analysis Society (MIAS) and Mini-Mammographic imaging datasets. Additionally, three techniques- The Local Contrast Method (LCM), the Local Relative Contrast Measure Method (LRCMM), and the High-Boost-Based Multiscale Local Contrast Measure (HBBMLCM) are used to identify microcalcification linked to cancer on mammography images. Performance Evaluation of the Proposed Model: the LFWT methodology had the best level of efficacy in detecting microcalcification linked to breast cancer. The suggested LFWT technique finds each and every tiny point on the MIAS dataset's mammography.
Author Sholpan Pernebaykyzy, Zhumagulova
Orken, Mamyrbayev
Jamil, Razia
Kymbat Ragytovna, Momynzhanova
Rashid, Javed
Dong, Min
Author_xml – sequence: 1
  givenname: Razia
  orcidid: 0000-0002-8849-5356
  surname: Jamil
  fullname: Jamil, Razia
  organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, China
– sequence: 2
  givenname: Min
  orcidid: 0000-0001-7758-7856
  surname: Dong
  fullname: Dong, Min
  email: dm880612dm@163.com
  organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, China
– sequence: 3
  givenname: Javed
  orcidid: 0000-0003-3416-9720
  surname: Rashid
  fullname: Rashid, Javed
  organization: Information Technology Services, University of Okara, Okara, Pakistan
– sequence: 4
  givenname: Mamyrbayev
  orcidid: 0000-0001-8318-3794
  surname: Orken
  fullname: Orken, Mamyrbayev
  email: morkenj@mail.ru
  organization: Institute Information and Computation Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
– sequence: 5
  givenname: Zhumagulova
  orcidid: 0009-0006-3696-0021
  surname: Sholpan Pernebaykyzy
  fullname: Sholpan Pernebaykyzy, Zhumagulova
  organization: Institute Information and Computation Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
– sequence: 6
  givenname: Momynzhanova
  orcidid: 0000-0002-9981-5706
  surname: Kymbat Ragytovna
  fullname: Kymbat Ragytovna, Momynzhanova
  organization: Institute Information and Computation Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
BookMark eNpNkEtPwzAQhC0EEs9fAAf_gRY7fiQ-lvCqVMSBIiQu1ma9KUYlRk449N-TUoTYy8yONHP4jtl-lzpi7FyKqZTCXc7q-ubpaVqIQk-VVk65co8dFdK6iTLK7v_zh-ys79_FeNUYmfKIvd7H1RufIX5lwA1_iJgTwhpjGxGGmLqeX9NAuLU8tfwqE_QDr6FDyvy5j92Kv0TqxmexnPNl-nyDgT-kQOtTdtDCuqezXz1hz7c3y_p-sni8m9ezxQSVksMkAIEodWO1sqNa07jQkqSqAdeAAUcCADWWAbFoNEpqXTC6KkxVCsSgTth8txsSvPvPHD8gb3yC6H-ClFce8hBxTb4EEoVp0QkMuhKmsU2lG0TpCsIgzLildlsjhr7P1P7tSeG3tP2Ott_S9r-0x9bFrhWJ6F_DFspapb4BjpR-iA
CODEN IAECCG
Cites_doi 10.1007/s11045-020-00756-7
10.1155/2019/9360941
10.3390/s21144854
10.1002/cncr.31551
10.1109/TCBB.2018.2806438
10.1016/j.ipm.2018.10.014
10.3390/cancers13235916
10.1007/978-981-13-3765-9_8
10.1007/s40846-018-0415-9
10.1155/2019/2717454
10.1016/j.diii.2013.12.011
10.1371/journal.pone.0256500
10.1016/j.ejmp.2019.05.022
10.1109/EIT48999.2020.9208290
10.1109/TBME.2021.3059869
10.3390/jimaging5030037
10.1016/j.jksuci.2019.10.014
10.3892/mco.2022.2514
10.1109/BHI.2019.8834517
10.1109/ACCESS.2019.2892795
10.1016/j.bspc.2022.104360
10.4258/hir.2021.27.3.222
10.13053/cys-22-1-2560
10.5812/iranjradiol-120758
10.1109/TMI.2023.3345008
10.1007/978-3-030-18058-4_18
10.1055/s-0032-1313102
10.1016/j.ijrobp.2018.08.032
10.1109/TAP.2020.3016407
10.1007/s10911-015-9349-9
10.1007/978-3-319-95921-4_24
10.7567/1882-0786/ab265d
10.1049/iet-ipr.2017.0536
10.1007/s10278-019-00192-5
10.1186/s41747-023-00384-3
10.1007/s11760-021-01882-w
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2024.3439397
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 153329
ExternalDocumentID oai_doaj_org_article_7ae025fc90cd4805b6b84bcc192ecd05
10_1109_ACCESS_2024_3439397
10623663
Genre orig-research
GrantInformation_xml – fundername: Committee of Science of the Ministry of Science and Higher Education of Kazakhstan
  grantid: AP19675574
  funderid: 10.13039/501100004561
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c331t-daea074b643607465b9dfe1e8ba9ba5a9e0aac4c7dcc2b4c1ef9d54825870ccd3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001340689000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:21 EDT 2025
Sat Nov 29 04:27:00 EST 2025
Wed Aug 27 02:14:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-daea074b643607465b9dfe1e8ba9ba5a9e0aac4c7dcc2b4c1ef9d54825870ccd3
ORCID 0009-0006-3696-0021
0000-0002-8849-5356
0000-0001-8318-3794
0000-0002-9981-5706
0000-0003-3416-9720
0000-0001-7758-7856
OpenAccessLink https://ieeexplore.ieee.org/document/10623663
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_7ae025fc90cd4805b6b84bcc192ecd05
crossref_primary_10_1109_ACCESS_2024_3439397
ieee_primary_10623663
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
Saravanan (ref22) 2017; 5
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
Gülsün (ref6) 2004; 28
ref24
ref26
ref25
ref20
ref42
ref41
ref21
ref28
ref27
ref29
ref8
ref7
Suckling (ref43) 2015
ref9
ref3
(ref1) 2024
ref5
Leborgne (ref4) 1951; 65
ref40
Gaikwad (ref23) 2015; 10
References_xml – volume: 28
  start-page: 153
  issue: 2
  volume-title: Clin. Imag.
  year: 2004
  ident: ref6
  article-title: Evaluation of breast microcalcifications according to breast imaging reporting and data system criteria and le Gal’s classification
– ident: ref35
  doi: 10.1007/s11045-020-00756-7
– ident: ref28
  doi: 10.1155/2019/9360941
– ident: ref34
  doi: 10.3390/s21144854
– ident: ref31
  doi: 10.1002/cncr.31551
– volume: 10
  start-page: 19
  issue: 1
  year: 2015
  ident: ref23
  article-title: Detection of breast cancer in mammogram using support vector machine
  publication-title: Int. J. Sci. Eng. Res.
– ident: ref14
  doi: 10.1109/TCBB.2018.2806438
– ident: ref19
  doi: 10.1016/j.ipm.2018.10.014
– ident: ref3
  doi: 10.3390/cancers13235916
– ident: ref16
  doi: 10.1007/978-981-13-3765-9_8
– ident: ref18
  doi: 10.1007/s40846-018-0415-9
– ident: ref29
  doi: 10.1155/2019/2717454
– volume: 5
  start-page: 173
  year: 2017
  ident: ref22
  article-title: Images segmentation using k-means clustering based thresholding algorithm
  publication-title: Int. J. Adv. Technol. Eng. Sci.
– volume: 65
  start-page: 1
  issue: 1
  year: 1951
  ident: ref4
  article-title: Diagnosis of tumors of the breast by simple roentgenography; calcifications in carcinomas
  publication-title: Amer. J. Roentgenol. Radium Ther.
– ident: ref9
  doi: 10.1016/j.diii.2013.12.011
– ident: ref36
  doi: 10.1371/journal.pone.0256500
– ident: ref27
  doi: 10.1016/j.ejmp.2019.05.022
– ident: ref32
  doi: 10.1109/EIT48999.2020.9208290
– ident: ref41
  doi: 10.1109/TBME.2021.3059869
– ident: ref33
  doi: 10.3390/jimaging5030037
– ident: ref15
  doi: 10.1016/j.jksuci.2019.10.014
– ident: ref11
  doi: 10.3892/mco.2022.2514
– ident: ref13
  doi: 10.1109/BHI.2019.8834517
– ident: ref20
  doi: 10.1109/ACCESS.2019.2892795
– ident: ref38
  doi: 10.1016/j.bspc.2022.104360
– year: 2015
  ident: ref43
  article-title: Mammographic image analysis society (MIAS) database v1.21
– volume-title: Breast Cancer. Updated 12 July 2023
  year: 2024
  ident: ref1
– volume-title: Breast Cancer Screening Guidelines. American Cancer Society Recommendations for the Early Detection of Breast Cancer
  ident: ref2
– ident: ref39
  doi: 10.4258/hir.2021.27.3.222
– ident: ref5
  doi: 10.13053/cys-22-1-2560
– ident: ref8
  doi: 10.5812/iranjradiol-120758
– ident: ref42
  doi: 10.1109/TMI.2023.3345008
– ident: ref17
  doi: 10.1007/978-3-030-18058-4_18
– ident: ref7
  doi: 10.1055/s-0032-1313102
– ident: ref21
  doi: 10.1016/j.ijrobp.2018.08.032
– ident: ref40
  doi: 10.1109/TAP.2020.3016407
– ident: ref10
  doi: 10.1007/s10911-015-9349-9
– ident: ref25
  doi: 10.1007/978-3-319-95921-4_24
– ident: ref30
  doi: 10.7567/1882-0786/ab265d
– ident: ref24
  doi: 10.1049/iet-ipr.2017.0536
– ident: ref26
  doi: 10.1007/s10278-019-00192-5
– ident: ref12
  doi: 10.1186/s41747-023-00384-3
– ident: ref37
  doi: 10.1007/s11760-021-01882-w
SSID ssj0000816957
Score 2.306871
Snippet In order to avoid cancer, it is imperative that microcalcification in the breast be found. It is sufficiently small to be difficult to discern with the...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 153316
SubjectTerms Accuracy
Biomedical image processing
Breast cancer
Calcium
computer-aided design
Design automation
Mammography
microcalcifications
Microwave imaging
Radiology
wiener filter
Wiener filters
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4qOI8iUPjITmw0nssS1UIJWKoUDFEtlnW1RCbVVSJP49ZyegMLGwWlbivHN876ynd4RcWCvTUOVxwBjWJkxzG-BAFECcKmRJaWa8HcPTKB-P-XQqHhqtvpwmrLIHroDr5tJgWrYgQtCMh6nKFGcKAJmJAV25lyLraRRT_gzmUSbSvLYZikLR7Q0G-EVYEMbsKsEsnDibp0Yq8o79v1qs-Awz3CU7NTWkvWpJe2TDzPfJdsMw8IC8OFkG7QGsVxI-6b1T0yHIXldXXb3Ra1N6ddWcLiztO8l5SQcutCvq5QH0eeacpulockcni-WrLKnrh_bWJo_Dm8ngNqi7IwSQJFEZaGkk5n-FlCJzTUNSJbQ1keFKCiVTKUwoJTDINUCsGETGCo31SZziLwqgk0PSmi_m5ojQjHMjtJbc2XuZOJdZxC3PILQGbB6xDrn8BqpYViYYhS8eQlFUuBYO16LGtUP6Dsyfqc7B2g9gXIs6rsVfce2QtgtF431I1JAeHf_Hw0_IlltwdZVySlrlam3OyCZ8lLP31bnfSl8Mnczb
  priority: 102
  providerName: Directory of Open Access Journals
Title High Accuracy Microcalcifications Detection of Breast Cancer Using Wiener LTI Tophat Model
URI https://ieeexplore.ieee.org/document/10623663
https://doaj.org/article/7ae025fc90cd4805b6b84bcc192ecd05
Volume 12
WOSCitedRecordID wos001340689000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZN6KE99JWUbh9Bhxzr1A_Jko6bTUILSchh86AXI41GNFB2w9Zb6KW_vTOyG7aHHHoxRhgsz2cxD336Roj9lLwug6kLpSg3UdGmggaqAmodKErSLWY5hqtTc35ub27cxXhYPZ-FQcRMPsMDvs17-XEJay6V0QonZ00ucktsGWOGw1r3BRXuIOG0GZWFqtJ9ms5m9BGUA9bqoCHH27Cy04b3ySL9_3RVyU7l5Pl_TueFeDZGj3I6wP1SPMLFK_F0Q1NwR3xl5oacAqxXHn7JMybcEQ6ZejdU5-QR9pmAtZDLJA-Zld7LGaO_kplBIK9vWYxans6_yPny7pvvJbdM-74rLk-O57PPxdhAoYCmqfoievQUIgSKOlruK6KDiwkrtMG74LV3WHoPCkwEqIOCCpOLlMLUmlYxQGxei-3FcoFvhGytRRejt6wAhrXxbWWTbaFMCMlUaiI-_jVsdzfoZHQ5vyhdN-DQMQ7diMNEHLLx7x9lkes8QAbuxjXTGY8UkSVwJURlSx3aYFUAoKAUIZZ6InYZlI33DXi8fWD8nXjCcxgKKO_Fdr9a4wfxGH72tz9Wezkbp-vZ7-O9_Gf9Aeb-y9w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKiwQ9lFdRl_LwgSMpediJfdwuVK3YrjgsUHGJ7PFYVEK71TZbqf--M06olgMHbpEVJc58sebhz98I8T5Gp3PflJlSlJuoYGJGA0UGpfYUJekakxzD92kzm5mLC_t1OKyezsIgYiKf4RFfpr38sIQ1l8pohZOzJhf5QOxoenbRH9e6L6lwDwmrm0FbqMjtx_FkQp9BWWCpjipyvRVrO234nyTT_1dfleRWTp7854Seir0hfpTjHvBnYgsXz8XuhqrgC_GTuRtyDLBeObiV50y5IyQS-a6vz8lP2CUK1kIuozxmXnonJ4z_SiYOgfxxyXLUcjo_k_Pl1S_XSW6a9ntffDv5PJ-cZkMLhQyqquiy4NBRkOAp7qi5s4j2NkQs0HhnvdPOYu4cKGgCQOkVFBhtoCSm1LSOAUL1Umwvlgs8ELI2Bm0IzrAGGJaNqwsTTQ15RIhNoUbiwx_Dtle9UkabMozctj0OLePQDjiMxDEb__5WlrlOA2Tgdlg1beOQYrIINoegTK597Y3yABSWIoRcj8Q-g7Lxvh6PV_8Yfycenc7Pp-30bPblUDzm-fTllNdiu1ut8Y14CDfd5fXqbfqz7gAL08z9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Accuracy+Microcalcifications+Detection+of+Breast+Cancer+Using+Wiener+LTI+Tophat+Model&rft.jtitle=IEEE+access&rft.au=Jamil%2C+Razia&rft.au=Dong%2C+Min&rft.au=Rashid%2C+Javed&rft.au=Orken%2C+Mamyrbayev&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=153316&rft.epage=153329&rft_id=info:doi/10.1109%2FACCESS.2024.3439397&rft.externalDocID=10623663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon