On the crack opening and energy dissipation in a continuum based disconnected crack model

All crack models developed to date can be classified into discrete- and continuum-based approaches. While discrete models are advantageously capable of capturing the kinetics of fractures, continuum-based approaches still pique considerable interest due to their straightforward implementation within...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finite elements in analysis and design Jg. 170; S. 103333
Hauptverfasser: Zhang, Yiming, Gao, Zhiran, Li, Yanyan, Zhuang, Xiaoying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.03.2020
Elsevier BV
Schlagworte:
ISSN:0168-874X, 1872-6925
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract All crack models developed to date can be classified into discrete- and continuum-based approaches. While discrete models are advantageously capable of capturing the kinetics of fractures, continuum-based approaches still pique considerable interest due to their straightforward implementation within the finite element method (FEM) framework. The cracking element method (CEM), a recently developed numerical approach for simulating quasi-brittle fracturing, is based on the FEM and does not need remeshing, a nodal cover algorithm, nodal enrichment or a crack-tracking strategy. The CEM takes self-propagating disconnected cracking segments to represent crack paths and naturally captures crack initiation and propagation processes. However, as with other types of continuum-based approaches that employ discontinuous crack paths, one critical question remains: Can the crack openings can be reliably and accurately obtained? To answer this question, a detailed study on the released energy, kinetic model, and displacement between the upper and lower facets of a crack is required. Multiple tests are conducted in this paper, and the results of the CEM are compared with those of the interface element method (IEM), which explicitly describes the crack openings. For reference and comparison purposes, an a priori crack path obtained by using an equivalent crack path (cracked elements) previously obtained from the CEM is implemented for the IEM. The crack openings obtained by the CEM and IEM are subsequently compared, and the results indicate that the crack openings and dissipated energy obtained by the CEM generally agree well with those obtained by the IEM. These findings highlight the effectiveness of utilizing disconnected cracking segments and further demonstrate the robustness and reliability of the CEM. •Cracking elements method (CEM) and interface elements method (IEM) are built and compared.•For fair comparison, crack orientations are prescribed in all numerical examples.•Force-displacement responses and evolutions of dissipate energy of CEM and IEM are agreeable.•Distributions of dissipate energy and crack openings of CE and IE are generally agreeable.•Some deviations of crack openings obtained by CEM and IEM are observed.
AbstractList All crack models developed to date can be classified into discrete- and continuum-based approaches. While discrete models are advantageously capable of capturing the kinetics of fractures, continuum-based approaches still pique considerable interest due to their straightforward implementation within the finite element method (FEM) framework. The cracking element method (CEM), a recently developed numerical approach for simulating quasi-brittle fracturing, is based on the FEM and does not need remeshing, a nodal cover algorithm, nodal enrichment or a crack-tracking strategy. The CEM takes self-propagating disconnected cracking segments to represent crack paths and naturally captures crack initiation and propagation processes. However, as with other types of continuum-based approaches that employ discontinuous crack paths, one critical question remains: Can the crack openings can be reliably and accurately obtained? To answer this question, a detailed study on the released energy, kinetic model, and displacement between the upper and lower facets of a crack is required. Multiple tests are conducted in this paper, and the results of the CEM are compared with those of the interface element method (IEM), which explicitly describes the crack openings. For reference and comparison purposes, an a priori crack path obtained by using an equivalent crack path (cracked elements) previously obtained from the CEM is implemented for the IEM. The crack openings obtained by the CEM and IEM are subsequently compared, and the results indicate that the crack openings and dissipated energy obtained by the CEM generally agree well with those obtained by the IEM. These findings highlight the effectiveness of utilizing disconnected cracking segments and further demonstrate the robustness and reliability of the CEM. •Cracking elements method (CEM) and interface elements method (IEM) are built and compared.•For fair comparison, crack orientations are prescribed in all numerical examples.•Force-displacement responses and evolutions of dissipate energy of CEM and IEM are agreeable.•Distributions of dissipate energy and crack openings of CE and IE are generally agreeable.•Some deviations of crack openings obtained by CEM and IEM are observed.
All crack models developed to date can be classified into discrete- and continuum-based approaches. While discrete models are advantageously capable of capturing the kinetics of fractures, continuum-based approaches still pique considerable interest due to their straightforward implementation within the finite element method (FEM) framework. The cracking element method (CEM), a recently developed numerical approach for simulating quasi-brittle fracturing, is based on the FEM and does not need remeshing, a nodal cover algorithm, nodal enrichment or a crack-tracking strategy. The CEM takes self-propagating disconnected cracking segments to represent crack paths and naturally captures crack initiation and propagation processes. However, as with other types of continuum-based approaches that employ discontinuous crack paths, one critical question remains: Can the crack openings can be reliably and accurately obtained? To answer this question, a detailed study on the released energy, kinetic model, and displacement between the upper and lower facets of a crack is required. Multiple tests are conducted in this paper, and the results of the CEM are compared with those of the interface element method (IEM), which explicitly describes the crack openings. For reference and comparison purposes, an a priori crack path obtained by using an equivalent crack path (cracked elements) previously obtained from the CEM is implemented for the IEM. The crack openings obtained by the CEM and IEM are subsequently compared, and the results indicate that the crack openings and dissipated energy obtained by the CEM generally agree well with those obtained by the IEM. These findings highlight the effectiveness of utilizing disconnected cracking segments and further demonstrate the robustness and reliability of the CEM.
ArticleNumber 103333
Author Zhang, Yiming
Gao, Zhiran
Zhuang, Xiaoying
Li, Yanyan
Author_xml – sequence: 1
  givenname: Yiming
  surname: Zhang
  fullname: Zhang, Yiming
  organization: School of Civil and Transportation Engineering, Hebei University of Technology, Xiping Road 5340, 300401 Tianjin, PR China
– sequence: 2
  givenname: Zhiran
  surname: Gao
  fullname: Gao, Zhiran
  organization: School of Civil and Transportation Engineering, Hebei University of Technology, Xiping Road 5340, 300401 Tianjin, PR China
– sequence: 3
  givenname: Yanyan
  surname: Li
  fullname: Li, Yanyan
  organization: School of Civil and Transportation Engineering, Hebei University of Technology, Xiping Road 5340, 300401 Tianjin, PR China
– sequence: 4
  givenname: Xiaoying
  surname: Zhuang
  fullname: Zhuang, Xiaoying
  email: xiaoying.zhuang@ikm.uni-hannover.de
  organization: Department of Geotechnical Engineering, Tongji University, Siping Road 1239, 200092, Shanghai, PR China
BookMark eNqFkE9PwyAYh4mZidv0E3gh8dxJoaXtwYNZ_Jcs2WUHPRFK305qBxVak3176erJg3IhvPye94VngWbGGkDoOiarmMT8tlnV2kC7oiQuQoWFdYbmcZ7RiBc0naF5SOVRniWvF2jhfUMISSlP5uhta3D_Dlg5qT6w7cBos8fSVBgMuP0RV9p73cleW4O1wRIra3pthuGAS-mhGgOhZED14TC1OdgK2kt0XsvWw9XPvkS7x4fd-jnabJ9e1vebSDEW95GqJCk4LYGVqVLjk_O8LnmW0ESmCZW0pjxlLM8Ir5MYaC7DTQpScq7SumJLdDO17Zz9HMD3orGDM2GioCxNGMk5IyHFppRy1nsHteicPkh3FDERo0LRiJNCMSoUk8JAFb8opfuTit5J3f7D3k0shL9_aXDCKw1GQaVdcCUqq__kvwH4GI-P
CitedBy_id crossref_primary_10_1007_s10706_025_03071_9
crossref_primary_10_1016_j_ijimpeng_2024_105217
crossref_primary_10_1631_jzus_A2000397
crossref_primary_10_1002_pat_70093
crossref_primary_10_1016_j_undsp_2022_08_005
crossref_primary_10_1016_j_engfracmech_2021_107993
crossref_primary_10_1016_j_engfracmech_2021_108126
crossref_primary_10_1007_s11709_023_0953_2
crossref_primary_10_1016_j_ijimpeng_2022_104485
crossref_primary_10_3390_app10207335
crossref_primary_10_1016_j_finel_2021_103573
crossref_primary_10_1016_j_heliyon_2024_e41416
crossref_primary_10_1088_1755_1315_861_3_032024
crossref_primary_10_1016_j_tust_2022_104880
crossref_primary_10_1016_j_tust_2022_104834
crossref_primary_10_1007_s11709_022_0909_y
crossref_primary_10_1007_s00339_023_06609_x
crossref_primary_10_1016_j_compgeo_2021_104168
crossref_primary_10_1016_j_ijrmms_2023_105419
crossref_primary_10_1002_suco_202201066
crossref_primary_10_1002_suco_202201187
crossref_primary_10_1016_j_ijimpeng_2024_104969
crossref_primary_10_1016_j_cma_2022_115559
crossref_primary_10_1016_j_cma_2024_117416
crossref_primary_10_1007_s10904_025_03735_2
crossref_primary_10_1016_j_ijimpeng_2024_104923
crossref_primary_10_3390_en13020387
crossref_primary_10_1016_j_compgeo_2023_105607
crossref_primary_10_1016_j_engfracmech_2023_109100
crossref_primary_10_1016_j_ijmecsci_2023_108270
crossref_primary_10_1002_slct_202403847
crossref_primary_10_1061_IJGNAI_GMENG_10082
crossref_primary_10_1016_j_finel_2020_103421
crossref_primary_10_1016_j_cma_2025_118281
crossref_primary_10_1016_j_ijmecsci_2023_108907
crossref_primary_10_1016_j_dt_2020_02_015
crossref_primary_10_1016_j_undsp_2023_11_006
crossref_primary_10_1007_s11709_021_0763_3
crossref_primary_10_1002_pat_70021
crossref_primary_10_1002_pat_70020
crossref_primary_10_1007_s11709_025_1148_9
crossref_primary_10_1016_j_enggeo_2025_108245
crossref_primary_10_1007_s00707_024_04216_2
crossref_primary_10_1007_s12355_025_01536_y
crossref_primary_10_1016_j_cma_2023_116430
crossref_primary_10_1016_j_compgeo_2024_106808
crossref_primary_10_1016_j_ijimpeng_2024_105036
crossref_primary_10_1016_j_enggeo_2025_108160
crossref_primary_10_1016_j_jiec_2025_02_018
crossref_primary_10_1007_s11356_024_35819_w
crossref_primary_10_1007_s00339_023_06437_z
crossref_primary_10_1007_s10409_023_23022_x
crossref_primary_10_1007_s10999_022_09627_4
crossref_primary_10_3934_math_2025552
crossref_primary_10_1016_j_dt_2020_02_007
crossref_primary_10_1002_dug2_12127
crossref_primary_10_1007_s13202_023_01633_2
crossref_primary_10_1016_j_enganabound_2023_01_039
crossref_primary_10_1002_pat_70112
crossref_primary_10_1016_j_undsp_2024_04_006
crossref_primary_10_1016_j_cemconcomp_2023_105270
crossref_primary_10_1007_s43452_024_01109_y
crossref_primary_10_1016_j_dt_2020_06_018
crossref_primary_10_1002_nme_6315
crossref_primary_10_1016_j_enganabound_2022_03_015
crossref_primary_10_1016_j_finel_2024_104295
crossref_primary_10_1007_s42417_024_01745_x
crossref_primary_10_1007_s42417_024_01597_5
crossref_primary_10_1007_s00339_024_08058_6
crossref_primary_10_1002_pat_70009
crossref_primary_10_1007_s00339_023_06582_5
crossref_primary_10_1016_j_undsp_2022_07_005
crossref_primary_10_1002_pat_70008
crossref_primary_10_1016_j_undsp_2022_07_004
crossref_primary_10_1016_j_ijimpeng_2021_103866
crossref_primary_10_1007_s11709_023_0919_4
crossref_primary_10_1016_j_undsp_2022_11_003
crossref_primary_10_1002_suco_202000113
crossref_primary_10_1016_j_cma_2023_115904
crossref_primary_10_1016_j_tafmec_2023_103757
Cites_doi 10.1002/nme.1004
10.1016/j.cma.2004.11.015
10.1002/nme.5517
10.1002/nme.3063
10.1016/j.tafmec.2013.12.004
10.1016/j.jmps.2018.06.006
10.1016/j.cma.2008.02.021
10.1007/s00466-016-1351-6
10.1002/nme.1151
10.1016/S0045-7825(99)00154-1
10.1002/nag.2566
10.1016/j.cma.2017.09.027
10.1002/nme.4365
10.1002/nme.1326
10.1002/nag.374
10.1017/jfm.2018.436
10.1002/nag.518
10.1016/j.cma.2006.11.016
10.1016/j.engfracmech.2017.12.018
10.1016/j.compstruc.2011.10.021
10.1002/nme.1620360104
10.1007/s11012-013-9862-0
10.1016/S0045-7825(00)80002-X
10.1002/nag.542
10.1002/nag.2775
10.1016/j.finel.2017.09.003
10.1016/j.cma.2005.09.020
10.1016/j.cma.2005.01.028
10.1016/j.compstruc.2008.08.010
10.1007/s00466-015-1172-z
10.1016/S0013-7944(99)00118-6
10.1002/nme.1652
10.1016/j.engfracmech.2013.06.006
10.1016/j.finel.2017.10.007
10.1002/nag.560
10.1016/j.cma.2018.10.044
10.1016/S0013-7944(01)00060-1
10.1016/j.tafmec.2018.09.015
10.1016/j.cma.2010.04.011
10.1016/j.engstruct.2017.03.068
10.1002/nme.1620280214
10.1088/1748-3190/aacdd1
10.1016/j.advengsoft.2018.03.012
10.1002/nme.1797
10.1016/j.cma.2015.06.018
10.1016/0045-7825(88)90180-6
10.1016/j.cma.2018.06.007
10.1002/nme.761
10.1016/j.cma.2016.05.023
10.1016/j.cma.2006.06.020
10.1016/j.cma.2010.03.031
10.1002/nme.731
10.1016/j.engfracmech.2015.12.028
10.32604/cmc.2019.06641
10.1016/j.engstruct.2014.02.033
10.1016/j.cma.2015.02.001
10.1016/j.cma.2014.11.013
10.1016/j.cma.2003.09.022
10.1016/j.cma.2014.01.008
10.1016/j.engstruct.2012.08.015
10.1016/j.engfracmech.2015.10.039
10.1016/j.advengsoft.2014.04.002
10.1023/A:1007578814070
10.1016/0020-7683(95)00255-3
10.1016/j.apm.2018.03.046
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Mar 2020
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Mar 2020
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.finel.2019.103333
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-6925
ExternalDocumentID 10_1016_j_finel_2019_103333
S0168874X19303774
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c331t-cda0962be3b5cc187288fb67424a542a2f265338706f41e28a4245eaa66c5fd3
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502616500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-874X
IngestDate Fri Jul 25 02:13:47 EDT 2025
Tue Nov 18 21:26:23 EST 2025
Sat Nov 29 07:24:02 EST 2025
Fri Feb 23 02:49:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quasi-brittle fracture
Cracking elements method
Zero thickness interface elements
Crack opening model
Disconnected crack path approach
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-cda0962be3b5cc187288fb67424a542a2f265338706f41e28a4245eaa66c5fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2354308630
PQPubID 2045476
ParticipantIDs proquest_journals_2354308630
crossref_primary_10_1016_j_finel_2019_103333
crossref_citationtrail_10_1016_j_finel_2019_103333
elsevier_sciencedirect_doi_10_1016_j_finel_2019_103333
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Finite elements in analysis and design
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Mosler, Bruhns (bib29) 2004; 60
Wu, Qiu, Nguyen, Mandal, Zhuang (bib4) 2019; 345
Saloustros, Pel, Cervera (bib6) 2015; 150
Rabczuk, Belytschko (bib22) 2004; 61
Rabczuk, Belytschko (bib23) 2007; 196
Areias, Reinoso, Camanho, Rabczuk (bib16) 2015; 56
Mosler (bib30) 2005; 194
Camacho, Ortiz (bib37) 1996; 33
Zhang (bib58) 2017; 41
Zhang, Zhuang, Lackner (bib59) 2018; 42
Rabczuk, Bordas, Zi (bib21) 2010; 88
Zhang, Zeiml, Maier, Yuan, Lackner (bib57) 2017; 142
Bathe (bib53) 2014
Oliver (bib1) 1989; 28
Zhou, Rabczuk, Zhuang (bib10) 2018; 122
Rabczuk, Belytschko (bib18) 2005; 63
Wu, Li, Xu (bib26) 2015; 285
Dumstorff, Meschke (bib69) 2007; 31
Zhang, Zhuang (bib34) 2019; 102
Badnava, Msekh, Etemadi, Rabczuk (bib65) 2018; 138
Mosler, Meschke (bib32) 2004; 193
Cervera, Chiumenti (bib2) 2006; 30
Rabczuk, Areias, Belytschko (bib50) 2007; 69
Saloustros, Pel, Cervera, Roca (bib7) 2017; 59
Miehe, Hofacker, Welschinger (bib63) 2010; 199
Xiong, Cheng, Tong, An (bib60) 2018; 849
Feist, Hofstetter (bib47) 2007; 31
Wu, Li (bib12) 2015; 295
Wang, Waisman, Harari (bib15) 2017; 112
Ren, Li (bib49) 2018
Wu, Nguyen (bib8) 2018; 119
Zhang, Lackner, Zeiml, Mang (bib43) 2015; 287
Lin, Xie, Li, Huang, Zhang, Ma, Zhou (bib61) 2018; 13
Lloberas-Valls, Huerta, Oliver, Dias (bib11) 2016; 308
Yu, Yang, Yuan (bib62) 2018; 60
Meschke, Dumstorff (bib38) 2007; 196
Schellekens, de Borst (bib54) 1993; 36
Oliver, Dias, Huespe (bib27) 2014; 274
Oliver, Huespe, Sanchez (bib25) 2006; 195
Geers, Borst, Peerlings (bib5) 2000; 65
Sun, Zhuang, Zhang (bib35) 2019; 5
Zhang, Zeiml, Pichler, Lackner (bib56) 2014; 77
Mariani, Perego (bib39) 2003; 58
Winkler (bib70) 2001
Zhuang, Augarde, Bordas (bib20) 2011; 86
Chau-Dinh, Zi, Lee, Rabczuk, Song (bib14) 2012; 9293
Armero, Linder (bib28) 2008; 197
Anitescu, Atroshchenko, Alajlan, Rabczuk (bib71) 2019; 59
Vignollet, May, de Borst, Verhoosel (bib64) 2014; 49
Mosler, Meschke (bib31) 2003; 57
Dias, Oliver, Lemos, Lloberas-Valls (bib44) 2016; 154
Song, Areias, Belytschko (bib13) 2006; 67
Glvez, Elices, Guinea, Planas (bib68) 1998; 94
Budarapu, Gracie, Yang, Zhuang, Rabczuk (bib52) 2014; 69
Wu (bib67) 2018; 328
Zhuang, Augarde, Mathisen (bib19) 2012; 92
Jirsek (bib45) 2000; 188
Zhang, Zhuang (bib41) 2018; 192
Areias, Rabczuk, Dias-da-Costa (bib17) 2013; 110
Rabczuk, Zi, Bordas, Nguyen-Xuan (bib24) 2010; 199
Saloustros, Cervera, Pel (bib36) 2018
Belytschko, Organ, Gerlach (bib40) 2000; 187
Wu (bib9) 2018; 340
Belytschko, Fish, Engelmann (bib42) 1988; 70
Feist, Hofstetter (bib46) 2006; 195
Simo, Hughes (bib48) 1998
Zhang, Pichler, Yuan, Zeiml, Lackner (bib55) 2013; 47
de Borst, Remmers, Needleman, Abellan (bib3) 2004; 28
Zhang, Zhuang (bib33) 2018; 144
Nguyen (bib51) 2014; 74
Oliver, Huespe, Pulido, Chaves (bib66) 2002; 69
Miehe (10.1016/j.finel.2019.103333_bib63) 2010; 199
Meschke (10.1016/j.finel.2019.103333_bib38) 2007; 196
Wang (10.1016/j.finel.2019.103333_bib15) 2017; 112
Dumstorff (10.1016/j.finel.2019.103333_bib69) 2007; 31
Geers (10.1016/j.finel.2019.103333_bib5) 2000; 65
Wu (10.1016/j.finel.2019.103333_bib9) 2018; 340
Belytschko (10.1016/j.finel.2019.103333_bib42) 1988; 70
Winkler (10.1016/j.finel.2019.103333_bib70) 2001
Wu (10.1016/j.finel.2019.103333_bib4) 2019; 345
Rabczuk (10.1016/j.finel.2019.103333_bib50) 2007; 69
Anitescu (10.1016/j.finel.2019.103333_bib71) 2019; 59
Schellekens (10.1016/j.finel.2019.103333_bib54) 1993; 36
Wu (10.1016/j.finel.2019.103333_bib26) 2015; 285
Rabczuk (10.1016/j.finel.2019.103333_bib18) 2005; 63
Mosler (10.1016/j.finel.2019.103333_bib31) 2003; 57
Mosler (10.1016/j.finel.2019.103333_bib32) 2004; 193
Zhang (10.1016/j.finel.2019.103333_bib56) 2014; 77
Armero (10.1016/j.finel.2019.103333_bib28) 2008; 197
Belytschko (10.1016/j.finel.2019.103333_bib40) 2000; 187
Ren (10.1016/j.finel.2019.103333_bib49) 2018
Zhang (10.1016/j.finel.2019.103333_bib55) 2013; 47
Oliver (10.1016/j.finel.2019.103333_bib66) 2002; 69
Simo (10.1016/j.finel.2019.103333_bib48) 1998
Saloustros (10.1016/j.finel.2019.103333_bib7) 2017; 59
Rabczuk (10.1016/j.finel.2019.103333_bib22) 2004; 61
Oliver (10.1016/j.finel.2019.103333_bib25) 2006; 195
Badnava (10.1016/j.finel.2019.103333_bib65) 2018; 138
Saloustros (10.1016/j.finel.2019.103333_bib6) 2015; 150
Zhang (10.1016/j.finel.2019.103333_bib34) 2019; 102
Budarapu (10.1016/j.finel.2019.103333_bib52) 2014; 69
Zhuang (10.1016/j.finel.2019.103333_bib19) 2012; 92
Wu (10.1016/j.finel.2019.103333_bib12) 2015; 295
Bathe (10.1016/j.finel.2019.103333_bib53) 2014
Areias (10.1016/j.finel.2019.103333_bib16) 2015; 56
Zhou (10.1016/j.finel.2019.103333_bib10) 2018; 122
Areias (10.1016/j.finel.2019.103333_bib17) 2013; 110
Feist (10.1016/j.finel.2019.103333_bib46) 2006; 195
Camacho (10.1016/j.finel.2019.103333_bib37) 1996; 33
Lin (10.1016/j.finel.2019.103333_bib61) 2018; 13
Saloustros (10.1016/j.finel.2019.103333_bib36) 2018
Chau-Dinh (10.1016/j.finel.2019.103333_bib14) 2012; 9293
Vignollet (10.1016/j.finel.2019.103333_bib64) 2014; 49
Glvez (10.1016/j.finel.2019.103333_bib68) 1998; 94
Dias (10.1016/j.finel.2019.103333_bib44) 2016; 154
Cervera (10.1016/j.finel.2019.103333_bib2) 2006; 30
Zhang (10.1016/j.finel.2019.103333_bib58) 2017; 41
Nguyen (10.1016/j.finel.2019.103333_bib51) 2014; 74
Yu (10.1016/j.finel.2019.103333_bib62) 2018; 60
Rabczuk (10.1016/j.finel.2019.103333_bib24) 2010; 199
Zhang (10.1016/j.finel.2019.103333_bib43) 2015; 287
Wu (10.1016/j.finel.2019.103333_bib67) 2018; 328
Song (10.1016/j.finel.2019.103333_bib13) 2006; 67
Oliver (10.1016/j.finel.2019.103333_bib27) 2014; 274
Zhang (10.1016/j.finel.2019.103333_bib41) 2018; 192
Zhuang (10.1016/j.finel.2019.103333_bib20) 2011; 86
Mosler (10.1016/j.finel.2019.103333_bib29) 2004; 60
Zhang (10.1016/j.finel.2019.103333_bib33) 2018; 144
Rabczuk (10.1016/j.finel.2019.103333_bib23) 2007; 196
Zhang (10.1016/j.finel.2019.103333_bib57) 2017; 142
Oliver (10.1016/j.finel.2019.103333_bib1) 1989; 28
Zhang (10.1016/j.finel.2019.103333_bib59) 2018; 42
Lloberas-Valls (10.1016/j.finel.2019.103333_bib11) 2016; 308
Mariani (10.1016/j.finel.2019.103333_bib39) 2003; 58
de Borst (10.1016/j.finel.2019.103333_bib3) 2004; 28
Wu (10.1016/j.finel.2019.103333_bib8) 2018; 119
Rabczuk (10.1016/j.finel.2019.103333_bib21) 2010; 88
Jirsek (10.1016/j.finel.2019.103333_bib45) 2000; 188
Sun (10.1016/j.finel.2019.103333_bib35) 2019; 5
Mosler (10.1016/j.finel.2019.103333_bib30) 2005; 194
Xiong (10.1016/j.finel.2019.103333_bib60) 2018; 849
Feist (10.1016/j.finel.2019.103333_bib47) 2007; 31
References_xml – volume: 30
  start-page: 1173
  year: 2006
  end-page: 1199
  ident: bib2
  article-title: Smeared crack approach: back to the original track
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 33
  start-page: 2899
  year: 1996
  end-page: 2938
  ident: bib37
  article-title: Computational modelling of impact damage in brittle materials
  publication-title: Int. J. Solids Struct.
– volume: 13
  year: 2018
  ident: bib61
  article-title: Shell buckling: from morphogenesis of soft matter to prospective applications
  publication-title: Bioinspiration Biomim.
– volume: 70
  start-page: 59
  year: 1988
  end-page: 89
  ident: bib42
  article-title: A Finite element with embedded localization zones
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 92
  start-page: 969
  year: 2012
  end-page: 998
  ident: bib19
  article-title: Fracture modeling using meshless methods and level sets in 3D: framework and modeling
  publication-title: Int. J. Numer. Methods Eng.
– volume: 187
  start-page: 385
  year: 2000
  end-page: 399
  ident: bib40
  article-title: Element-free Galerkin methods for dynamic fracture in concrete
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 5
  start-page: 552
  year: 2019
  end-page: 562
  ident: bib35
  article-title: Cracking elements method for simulating complex crack growth
  publication-title: Journal of Applied and Computational Mechanics
– volume: 49
  start-page: 2587
  year: 2014
  end-page: 2601
  ident: bib64
  article-title: Phase-field models for brittle and cohesive fracture
  publication-title: Meccanica
– year: 2018
  ident: bib36
  article-title: Challenges, tools and applications of tracking algorithms in the numerical modelling of cracks in concrete and masonry structures
  publication-title: Arch. Comput. Methods Eng.
– volume: 274
  start-page: 289
  year: 2014
  end-page: 348
  ident: bib27
  article-title: Crack-path field and strain-injection techniques in computational modeling of propagating material failure
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 195
  start-page: 7115
  year: 2006
  end-page: 7138
  ident: bib46
  article-title: An embedded strong discontinuity model for cracking of plain concrete
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 59
  start-page: 299
  year: 2017
  end-page: 316
  ident: bib7
  article-title: Finite element modelling of internal and multiple localized cracks
  publication-title: Comput. Mech.
– volume: 196
  start-page: 2338
  year: 2007
  end-page: 2357
  ident: bib38
  article-title: Energy-based modeling of cohesive and cohesionless cracks via X-FEM
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 36
  start-page: 43
  year: 1993
  end-page: 66
  ident: bib54
  article-title: On the numerical integration of interface elements
  publication-title: Int. J. Numer. Methods Eng.
– volume: 59
  start-page: 345
  year: 2019
  end-page: 359
  ident: bib71
  article-title: Artificial neural network methods for the solution of second order boundary value problems
  publication-title: Comput. Mater. Continua (CMC)
– volume: 60
  start-page: 923
  year: 2004
  end-page: 948
  ident: bib29
  article-title: A 3D anisotropic elastoplastic-damage model using discontinuous displacement fields
  publication-title: Int. J. Numer. Methods Eng.
– year: 2001
  ident: bib70
  article-title: Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes fr Beton
– volume: 849
  start-page: 968
  year: 2018
  end-page: 1008
  ident: bib60
  article-title: On regime c flow around an oscillating circular cylinder
  publication-title: J. Fluid Mech.
– volume: 74
  start-page: 27
  year: 2014
  end-page: 39
  ident: bib51
  article-title: An open source program to generate zero-thickness cohesive interface elements
  publication-title: Adv. Eng. Software
– volume: 199
  start-page: 2437
  year: 2010
  end-page: 2455
  ident: bib24
  article-title: A simple and robust three-dimensional cracking-particle method without enrichment
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 41
  start-page: 488
  year: 2017
  end-page: 507
  ident: bib58
  article-title: Multi-slicing strategy for the three-dimensional discontinuity layout optimization (3D DLO)
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 192
  start-page: 290
  year: 2018
  end-page: 306
  ident: bib41
  article-title: A softening-healing law for self-healing quasi-brittle materials: analyzing with strong discontinuity embedded approach
  publication-title: Eng. Fract. Mech.
– year: 2014
  ident: bib53
  article-title: Finite Element Procedures
– volume: 119
  start-page: 20
  year: 2018
  end-page: 42
  ident: bib8
  article-title: A length scale insensitive phase-field damage model for brittle fracture
  publication-title: J. Mech. Phys. Solids
– volume: 31
  start-page: 239
  year: 2007
  end-page: 259
  ident: bib69
  article-title: Crack propagation criteria in the framework of X-FEM-based structural analyses
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 144
  start-page: 84
  year: 2018
  end-page: 100
  ident: bib33
  article-title: Cracking elements: a self-propagating strong discontinuity embedded approach for quasi-brittle fracture
  publication-title: Finite Elem. Anal. Des.
– volume: 28
  start-page: 461
  year: 1989
  end-page: 474
  ident: bib1
  article-title: A consistent characteristic length for smeared cracking models
  publication-title: Int. J. Numer. Methods Eng.
– volume: 285
  start-page: 346
  year: 2015
  end-page: 378
  ident: bib26
  article-title: Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2018
  ident: bib49
  article-title: Two-level consistent secant operators for cyclic loading of structures
  publication-title: J. Eng. Mech.
– volume: 287
  start-page: 335
  year: 2015
  end-page: 366
  ident: bib43
  article-title: Strong discontinuity embedded approach with standard SOS formulation: element formulation, energy-based crack-tracking strategy, and validations
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 61
  start-page: 2316
  year: 2004
  end-page: 2343
  ident: bib22
  article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks
  publication-title: Int. J. Numer. Methods Eng.
– volume: 188
  start-page: 307
  year: 2000
  end-page: 330
  ident: bib45
  article-title: Comparative study on finite elements with embedded discontinuities
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 193
  start-page: 3351
  year: 2004
  end-page: 3375
  ident: bib32
  article-title: Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 102
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib34
  article-title: Cracking elements method for dynamic brittle fracture
  publication-title: Theor. Appl. Fract. Mech.
– volume: 328
  start-page: 612
  year: 2018
  end-page: 637
  ident: bib67
  article-title: A geometrically regularized gradient-damage model with energetic equivalence
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 110
  start-page: 113
  year: 2013
  end-page: 137
  ident: bib17
  article-title: Element-wise fracture algorithm based on rotation of edges
  publication-title: Eng. Fract. Mech.
– volume: 94
  start-page: 267
  year: 1998
  end-page: 284
  ident: bib68
  article-title: Mixed mode fracture of concrete under proportional and nonproportional loading
  publication-title: Int. J. Fract.
– volume: 9293
  start-page: 242
  year: 2012
  end-page: 246
  ident: bib14
  article-title: Phantom-node method for shell models with arbitrary cracks
  publication-title: Comput. Struct.
– volume: 58
  start-page: 103
  year: 2003
  end-page: 126
  ident: bib39
  article-title: Extended finite element method for quasi-brittle fracture
  publication-title: Int. J. Numer. Methods Eng.
– volume: 195
  start-page: 4732
  year: 2006
  end-page: 4752
  ident: bib25
  article-title: A comparative study on finite elements for capturing strong discontinuities E-FEM vs X-FEM
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 47
  start-page: 16
  year: 2013
  end-page: 24
  ident: bib55
  article-title: Micromechanics-based multifield framework for early-age concrete
  publication-title: Eng. Struct.
– volume: 122
  start-page: 31
  year: 2018
  end-page: 49
  ident: bib10
  article-title: Phase field modeling of quasi-static and dynamic crack propagation: comsol implementation and case studies
  publication-title: Adv. Eng. Software
– volume: 69
  start-page: 126
  year: 2014
  end-page: 143
  ident: bib52
  article-title: Efficient coarse graining in multiscale modeling of fracture
  publication-title: Theor. Appl. Fract. Mech.
– volume: 142
  start-page: 1
  year: 2017
  end-page: 19
  ident: bib57
  article-title: Fast assessing spalling risk of tunnel linings under RABT fire: from a coupled thermo-hydro-chemo-mechanical model towards an estimation method
  publication-title: Eng. Struct.
– volume: 69
  start-page: 993
  year: 2007
  end-page: 1021
  ident: bib50
  article-title: A simplified mesh-free method for shear bands with cohesive surfaces
  publication-title: Int. J. Numer. Methods Eng.
– volume: 295
  start-page: 77
  year: 2015
  end-page: 107
  ident: bib12
  article-title: An improved stable XFEM (Is-XFEM) with a novel enrichment function for the computational modeling of cohesive cracks
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 28
  start-page: 583
  year: 2004
  end-page: 607
  ident: bib3
  article-title: Discrete vs smeared crack models for concrete fracture: bridging the gap
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 77
  start-page: 207
  year: 2014
  end-page: 215
  ident: bib56
  article-title: Model-based risk assessment of concrete spalling in tunnel linings under fire loading
  publication-title: Eng. Struct.
– volume: 31
  start-page: 189
  year: 2007
  end-page: 212
  ident: bib47
  article-title: Three-dimensional fracture simulations based on the SDA
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 197
  start-page: 3138
  year: 2008
  end-page: 3170
  ident: bib28
  article-title: New finite elements with embedded strong discontinuities in the finite deformation range
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 42
  start-page: 1199
  year: 2018
  end-page: 1216
  ident: bib59
  article-title: Stability analysis of shotcrete supported crown of NATM tunnels with discontinuity layout optimization
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 345
  start-page: 618
  year: 2019
  end-page: 643
  ident: bib4
  article-title: Computational modeling of localized failure in solids: Xfem vs pf-czm
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 154
  start-page: 288
  year: 2016
  end-page: 310
  ident: bib44
  article-title: Modeling tensile crack propagation in concrete gravity dams via crack-path-field and strain injection techniques
  publication-title: Eng. Fract. Mech.
– volume: 57
  start-page: 1553
  year: 2003
  end-page: 1576
  ident: bib31
  article-title: 3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations
  publication-title: Int. J. Numer. Methods Eng.
– volume: 199
  start-page: 2765
  year: 2010
  end-page: 2778
  ident: bib63
  article-title: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 69
  start-page: 113
  year: 2002
  end-page: 136
  ident: bib66
  article-title: From continuum mechanics to fracture mechanics: the strong discontinuity approach
  publication-title: Eng. Fract. Mech.
– volume: 194
  start-page: 4731
  year: 2005
  end-page: 4757
  ident: bib30
  article-title: A novel algorithmic framework for the numerical implementation of locally embedded strong discontinuities
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 88
  start-page: 1391
  year: 2010
  end-page: 1411
  ident: bib21
  article-title: On three-dimensional modelling of crack growth using partition of unity methods
  publication-title: Comput. Struct.
– volume: 60
  start-page: 571
  year: 2018
  end-page: 580
  ident: bib62
  article-title: Analytical solution for a finite euler-Bernoulli beam with single discontinuity in section under arbitrary dynamic loads
  publication-title: Appl. Math. Model.
– volume: 65
  start-page: 247
  year: 2000
  end-page: 261
  ident: bib5
  article-title: Damage and crack modeling in single-edge and double-edge notched concrete beams
  publication-title: Eng. Fract. Mech.
– volume: 150
  start-page: 96
  year: 2015
  end-page: 114
  ident: bib6
  article-title: A crack-tracking technique for localized cohesivefrictional damage
  publication-title: Eng. Fract. Mech.
– volume: 63
  start-page: 1559
  year: 2005
  end-page: 1582
  ident: bib18
  article-title: Adaptivity for structured meshfree particle methods in 2D and 3D
  publication-title: Int. J. Numer. Methods Eng.
– volume: 56
  start-page: 291
  year: 2015
  end-page: 315
  ident: bib16
  article-title: A constitutive-based element-by-element crack propagation algorithm with local mesh refinement
  publication-title: Comput. Mech.
– volume: 138
  start-page: 31
  year: 2018
  end-page: 47
  ident: bib65
  article-title: An h-adaptive thermo-mechanical phase field model for fracture
  publication-title: Finite Elem. Anal. Des.
– volume: 308
  start-page: 499
  year: 2016
  end-page: 534
  ident: bib11
  article-title: Strain injection techniques in dynamic fracture modeling
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 67
  start-page: 868
  year: 2006
  end-page: 893
  ident: bib13
  article-title: A method for dynamic crack and shear band propagation with phantom nodes
  publication-title: Int. J. Numer. Methods Eng.
– volume: 340
  start-page: 767
  year: 2018
  end-page: 797
  ident: bib9
  article-title: Robust numerical implementation of non-standard phase-field damage models for failure in solids
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 112
  start-page: 629
  year: 2017
  end-page: 654
  ident: bib15
  article-title: Direct evaluation of stress intensity factors for curved cracks using Irwin's integral and XFEM with high-order enrichment functions
  publication-title: Int. J. Numer. Methods Eng.
– year: 1998
  ident: bib48
  article-title: Computational Inelasticity
– volume: 86
  start-page: 249
  year: 2011
  end-page: 268
  ident: bib20
  article-title: Accurate fracture modelling using meshless methods, the visibility criterion and level sets: formulation and 2D modelling
  publication-title: Int. J. Numer. Methods Eng.
– volume: 196
  start-page: 2777
  year: 2007
  end-page: 2799
  ident: bib23
  article-title: A three-dimensional large deformation meshfree method for arbitrary evolving cracks
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 60
  start-page: 923
  year: 2004
  ident: 10.1016/j.finel.2019.103333_bib29
  article-title: A 3D anisotropic elastoplastic-damage model using discontinuous displacement fields
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1004
– volume: 194
  start-page: 4731
  year: 2005
  ident: 10.1016/j.finel.2019.103333_bib30
  article-title: A novel algorithmic framework for the numerical implementation of locally embedded strong discontinuities
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2004.11.015
– volume: 112
  start-page: 629
  issue: 7
  year: 2017
  ident: 10.1016/j.finel.2019.103333_bib15
  article-title: Direct evaluation of stress intensity factors for curved cracks using Irwin's integral and XFEM with high-order enrichment functions
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5517
– volume: 86
  start-page: 249
  year: 2011
  ident: 10.1016/j.finel.2019.103333_bib20
  article-title: Accurate fracture modelling using meshless methods, the visibility criterion and level sets: formulation and 2D modelling
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.3063
– volume: 69
  start-page: 126
  year: 2014
  ident: 10.1016/j.finel.2019.103333_bib52
  article-title: Efficient coarse graining in multiscale modeling of fracture
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2013.12.004
– volume: 119
  start-page: 20
  year: 2018
  ident: 10.1016/j.finel.2019.103333_bib8
  article-title: A length scale insensitive phase-field damage model for brittle fracture
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.06.006
– volume: 197
  start-page: 3138
  year: 2008
  ident: 10.1016/j.finel.2019.103333_bib28
  article-title: New finite elements with embedded strong discontinuities in the finite deformation range
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.02.021
– volume: 59
  start-page: 299
  year: 2017
  ident: 10.1016/j.finel.2019.103333_bib7
  article-title: Finite element modelling of internal and multiple localized cracks
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-016-1351-6
– volume: 61
  start-page: 2316
  year: 2004
  ident: 10.1016/j.finel.2019.103333_bib22
  article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1151
– volume: 5
  start-page: 552
  issue: Special Issue
  year: 2019
  ident: 10.1016/j.finel.2019.103333_bib35
  article-title: Cracking elements method for simulating complex crack growth
  publication-title: Journal of Applied and Computational Mechanics
– volume: 188
  start-page: 307
  year: 2000
  ident: 10.1016/j.finel.2019.103333_bib45
  article-title: Comparative study on finite elements with embedded discontinuities
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00154-1
– volume: 41
  start-page: 488
  year: 2017
  ident: 10.1016/j.finel.2019.103333_bib58
  article-title: Multi-slicing strategy for the three-dimensional discontinuity layout optimization (3D DLO)
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.2566
– volume: 328
  start-page: 612
  year: 2018
  ident: 10.1016/j.finel.2019.103333_bib67
  article-title: A geometrically regularized gradient-damage model with energetic equivalence
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.09.027
– volume: 92
  start-page: 969
  year: 2012
  ident: 10.1016/j.finel.2019.103333_bib19
  article-title: Fracture modeling using meshless methods and level sets in 3D: framework and modeling
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4365
– volume: 63
  start-page: 1559
  year: 2005
  ident: 10.1016/j.finel.2019.103333_bib18
  article-title: Adaptivity for structured meshfree particle methods in 2D and 3D
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1326
– year: 2014
  ident: 10.1016/j.finel.2019.103333_bib53
– volume: 28
  start-page: 583
  year: 2004
  ident: 10.1016/j.finel.2019.103333_bib3
  article-title: Discrete vs smeared crack models for concrete fracture: bridging the gap
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.374
– volume: 849
  start-page: 968
  year: 2018
  ident: 10.1016/j.finel.2019.103333_bib60
  article-title: On regime c flow around an oscillating circular cylinder
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.436
– volume: 30
  start-page: 1173
  year: 2006
  ident: 10.1016/j.finel.2019.103333_bib2
  article-title: Smeared crack approach: back to the original track
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.518
– volume: 196
  start-page: 2338
  year: 2007
  ident: 10.1016/j.finel.2019.103333_bib38
  article-title: Energy-based modeling of cohesive and cohesionless cracks via X-FEM
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2006.11.016
– volume: 192
  start-page: 290
  year: 2018
  ident: 10.1016/j.finel.2019.103333_bib41
  article-title: A softening-healing law for self-healing quasi-brittle materials: analyzing with strong discontinuity embedded approach
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.12.018
– volume: 9293
  start-page: 242
  year: 2012
  ident: 10.1016/j.finel.2019.103333_bib14
  article-title: Phantom-node method for shell models with arbitrary cracks
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2011.10.021
– volume: 36
  start-page: 43
  year: 1993
  ident: 10.1016/j.finel.2019.103333_bib54
  article-title: On the numerical integration of interface elements
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620360104
– volume: 49
  start-page: 2587
  year: 2014
  ident: 10.1016/j.finel.2019.103333_bib64
  article-title: Phase-field models for brittle and cohesive fracture
  publication-title: Meccanica
  doi: 10.1007/s11012-013-9862-0
– volume: 187
  start-page: 385
  year: 2000
  ident: 10.1016/j.finel.2019.103333_bib40
  article-title: Element-free Galerkin methods for dynamic fracture in concrete
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(00)80002-X
– volume: 31
  start-page: 189
  year: 2007
  ident: 10.1016/j.finel.2019.103333_bib47
  article-title: Three-dimensional fracture simulations based on the SDA
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.542
– volume: 42
  start-page: 1199
  year: 2018
  ident: 10.1016/j.finel.2019.103333_bib59
  article-title: Stability analysis of shotcrete supported crown of NATM tunnels with discontinuity layout optimization
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.2775
– volume: 138
  start-page: 31
  year: 2018
  ident: 10.1016/j.finel.2019.103333_bib65
  article-title: An h-adaptive thermo-mechanical phase field model for fracture
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2017.09.003
– volume: 195
  start-page: 4732
  year: 2006
  ident: 10.1016/j.finel.2019.103333_bib25
  article-title: A comparative study on finite elements for capturing strong discontinuities E-FEM vs X-FEM
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.09.020
– year: 2018
  ident: 10.1016/j.finel.2019.103333_bib36
  article-title: Challenges, tools and applications of tracking algorithms in the numerical modelling of cracks in concrete and masonry structures
  publication-title: Arch. Comput. Methods Eng.
– year: 2018
  ident: 10.1016/j.finel.2019.103333_bib49
  article-title: Two-level consistent secant operators for cyclic loading of structures
  publication-title: J. Eng. Mech.
– volume: 195
  start-page: 7115
  year: 2006
  ident: 10.1016/j.finel.2019.103333_bib46
  article-title: An embedded strong discontinuity model for cracking of plain concrete
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.01.028
– volume: 88
  start-page: 1391
  year: 2010
  ident: 10.1016/j.finel.2019.103333_bib21
  article-title: On three-dimensional modelling of crack growth using partition of unity methods
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2008.08.010
– volume: 56
  start-page: 291
  year: 2015
  ident: 10.1016/j.finel.2019.103333_bib16
  article-title: A constitutive-based element-by-element crack propagation algorithm with local mesh refinement
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-015-1172-z
– volume: 65
  start-page: 247
  year: 2000
  ident: 10.1016/j.finel.2019.103333_bib5
  article-title: Damage and crack modeling in single-edge and double-edge notched concrete beams
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/S0013-7944(99)00118-6
– volume: 67
  start-page: 868
  year: 2006
  ident: 10.1016/j.finel.2019.103333_bib13
  article-title: A method for dynamic crack and shear band propagation with phantom nodes
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1652
– volume: 110
  start-page: 113
  year: 2013
  ident: 10.1016/j.finel.2019.103333_bib17
  article-title: Element-wise fracture algorithm based on rotation of edges
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2013.06.006
– volume: 144
  start-page: 84
  year: 2018
  ident: 10.1016/j.finel.2019.103333_bib33
  article-title: Cracking elements: a self-propagating strong discontinuity embedded approach for quasi-brittle fracture
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2017.10.007
– volume: 31
  start-page: 239
  year: 2007
  ident: 10.1016/j.finel.2019.103333_bib69
  article-title: Crack propagation criteria in the framework of X-FEM-based structural analyses
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.560
– volume: 345
  start-page: 618
  year: 2019
  ident: 10.1016/j.finel.2019.103333_bib4
  article-title: Computational modeling of localized failure in solids: Xfem vs pf-czm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.10.044
– volume: 69
  start-page: 113
  year: 2002
  ident: 10.1016/j.finel.2019.103333_bib66
  article-title: From continuum mechanics to fracture mechanics: the strong discontinuity approach
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/S0013-7944(01)00060-1
– volume: 102
  start-page: 1
  year: 2019
  ident: 10.1016/j.finel.2019.103333_bib34
  article-title: Cracking elements method for dynamic brittle fracture
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2018.09.015
– volume: 199
  start-page: 2765
  year: 2010
  ident: 10.1016/j.finel.2019.103333_bib63
  article-title: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.04.011
– volume: 142
  start-page: 1
  year: 2017
  ident: 10.1016/j.finel.2019.103333_bib57
  article-title: Fast assessing spalling risk of tunnel linings under RABT fire: from a coupled thermo-hydro-chemo-mechanical model towards an estimation method
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.03.068
– volume: 28
  start-page: 461
  year: 1989
  ident: 10.1016/j.finel.2019.103333_bib1
  article-title: A consistent characteristic length for smeared cracking models
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620280214
– volume: 13
  year: 2018
  ident: 10.1016/j.finel.2019.103333_bib61
  article-title: Shell buckling: from morphogenesis of soft matter to prospective applications
  publication-title: Bioinspiration Biomim.
  doi: 10.1088/1748-3190/aacdd1
– volume: 122
  start-page: 31
  year: 2018
  ident: 10.1016/j.finel.2019.103333_bib10
  article-title: Phase field modeling of quasi-static and dynamic crack propagation: comsol implementation and case studies
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2018.03.012
– year: 2001
  ident: 10.1016/j.finel.2019.103333_bib70
– volume: 69
  start-page: 993
  year: 2007
  ident: 10.1016/j.finel.2019.103333_bib50
  article-title: A simplified mesh-free method for shear bands with cohesive surfaces
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1797
– volume: 295
  start-page: 77
  year: 2015
  ident: 10.1016/j.finel.2019.103333_bib12
  article-title: An improved stable XFEM (Is-XFEM) with a novel enrichment function for the computational modeling of cohesive cracks
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.06.018
– volume: 70
  start-page: 59
  year: 1988
  ident: 10.1016/j.finel.2019.103333_bib42
  article-title: A Finite element with embedded localization zones
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(88)90180-6
– volume: 340
  start-page: 767
  year: 2018
  ident: 10.1016/j.finel.2019.103333_bib9
  article-title: Robust numerical implementation of non-standard phase-field damage models for failure in solids
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.06.007
– volume: 58
  start-page: 103
  year: 2003
  ident: 10.1016/j.finel.2019.103333_bib39
  article-title: Extended finite element method for quasi-brittle fracture
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.761
– volume: 308
  start-page: 499
  year: 2016
  ident: 10.1016/j.finel.2019.103333_bib11
  article-title: Strain injection techniques in dynamic fracture modeling
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.05.023
– volume: 196
  start-page: 2777
  year: 2007
  ident: 10.1016/j.finel.2019.103333_bib23
  article-title: A three-dimensional large deformation meshfree method for arbitrary evolving cracks
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2006.06.020
– volume: 199
  start-page: 2437
  year: 2010
  ident: 10.1016/j.finel.2019.103333_bib24
  article-title: A simple and robust three-dimensional cracking-particle method without enrichment
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.03.031
– volume: 57
  start-page: 1553
  year: 2003
  ident: 10.1016/j.finel.2019.103333_bib31
  article-title: 3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.731
– volume: 154
  start-page: 288
  year: 2016
  ident: 10.1016/j.finel.2019.103333_bib44
  article-title: Modeling tensile crack propagation in concrete gravity dams via crack-path-field and strain injection techniques
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2015.12.028
– volume: 59
  start-page: 345
  year: 2019
  ident: 10.1016/j.finel.2019.103333_bib71
  article-title: Artificial neural network methods for the solution of second order boundary value problems
  publication-title: Comput. Mater. Continua (CMC)
  doi: 10.32604/cmc.2019.06641
– volume: 77
  start-page: 207
  year: 2014
  ident: 10.1016/j.finel.2019.103333_bib56
  article-title: Model-based risk assessment of concrete spalling in tunnel linings under fire loading
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2014.02.033
– volume: 287
  start-page: 335
  year: 2015
  ident: 10.1016/j.finel.2019.103333_bib43
  article-title: Strong discontinuity embedded approach with standard SOS formulation: element formulation, energy-based crack-tracking strategy, and validations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.02.001
– volume: 285
  start-page: 346
  year: 2015
  ident: 10.1016/j.finel.2019.103333_bib26
  article-title: Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.11.013
– year: 1998
  ident: 10.1016/j.finel.2019.103333_bib48
– volume: 193
  start-page: 3351
  year: 2004
  ident: 10.1016/j.finel.2019.103333_bib32
  article-title: Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2003.09.022
– volume: 274
  start-page: 289
  year: 2014
  ident: 10.1016/j.finel.2019.103333_bib27
  article-title: Crack-path field and strain-injection techniques in computational modeling of propagating material failure
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.01.008
– volume: 47
  start-page: 16
  year: 2013
  ident: 10.1016/j.finel.2019.103333_bib55
  article-title: Micromechanics-based multifield framework for early-age concrete
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2012.08.015
– volume: 150
  start-page: 96
  year: 2015
  ident: 10.1016/j.finel.2019.103333_bib6
  article-title: A crack-tracking technique for localized cohesivefrictional damage
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2015.10.039
– volume: 74
  start-page: 27
  year: 2014
  ident: 10.1016/j.finel.2019.103333_bib51
  article-title: An open source program to generate zero-thickness cohesive interface elements
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2014.04.002
– volume: 94
  start-page: 267
  issue: 3
  year: 1998
  ident: 10.1016/j.finel.2019.103333_bib68
  article-title: Mixed mode fracture of concrete under proportional and nonproportional loading
  publication-title: Int. J. Fract.
  doi: 10.1023/A:1007578814070
– volume: 33
  start-page: 2899
  year: 1996
  ident: 10.1016/j.finel.2019.103333_bib37
  article-title: Computational modelling of impact damage in brittle materials
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(95)00255-3
– volume: 60
  start-page: 571
  year: 2018
  ident: 10.1016/j.finel.2019.103333_bib62
  article-title: Analytical solution for a finite euler-Bernoulli beam with single discontinuity in section under arbitrary dynamic loads
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.03.046
SSID ssj0005264
Score 2.5375397
Snippet All crack models developed to date can be classified into discrete- and continuum-based approaches. While discrete models are advantageously capable of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103333
SubjectTerms Algorithms
Computer simulation
Crack initiation
Crack opening model
Crack propagation
Cracking (fracturing)
Cracking elements method
Disconnected crack path approach
Energy dissipation
Finite element method
Fractures
Mathematical models
Nonlinear programming
Quasi-brittle fracture
Questions
Robustness (mathematics)
Segments
Self propagation
Zero thickness interface elements
Title On the crack opening and energy dissipation in a continuum based disconnected crack model
URI https://dx.doi.org/10.1016/j.finel.2019.103333
https://www.proquest.com/docview/2354308630
Volume 170
WOSCitedRecordID wos000502616500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMceCwgFhbkA-JSghI7cZzjCrUCtGo5BNRysRwnhixLtvSxWi78dsaPhCyPCg5coiqNncjzZTKPzzMIPQlTVZUq1EEiCxnEacICGWlwVjJa8lJnPJShbTaRTqd8Ps_eDAbf2r0w56dp0_CLi2z5X0UN50DYZuvsP4i7mxROwG8QOhxB7HD8K8HPHHFRraT6NDLNsdptiJXb5mcy8J5HbYId0rLV62a7_Twyn7TSXKAM_UUZY9RNY_vl9O3YSW1s1VHlyOeWUyvb8ibmXuUlYkgXlV6YHmIfOs6PtHHa9x_rVY8ZZOkFC9BRsjd-6yeY1_LsazuFD1aAZ9qxtVwErdtF864f02QclLIjanZK2bUT8Wo1-q2yd3GHk-ca7HGTRYoyU0KAusIal0trT2di8vb4WOTjef50-SUwXcdMdt63YLmC9kiaZHyI9o5ejeeveyQh5qvDu0ds61ZZhuAv9_2TbfPTV96aLvktdMP7HPjIYeU2GlTNPrrp_Q_stft6H13vFae8gxazBgOQsEUA9kDCIFzsgIR7QMJ1gyXugIQtkHAfSH4aC6S7KJ-M8xcvA9-II1CURptAlRI8XVJUtEiUinhKONcFS2MSyyQmkmjCwG0wKXMdRxXh0uTTKykZU4ku6T00bM6a6j7CRQjDUlkqlfK4jHhWFBGlGvQETyTT4QEi7QoK5YvUm14pp6JlI54Iu-zCLLtwy36AnnWDlq5Gy-7LWSsa4c1MZz4KANbugYetIIV_4deC0CSmIWc0fLD774fo2o834hANN6tt9QhdVeeber167IH3HRACqVs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+crack+opening+and+energy+dissipation+in+a+continuum+based+disconnected+crack+model&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Zhang%2C+Yiming&rft.au=Gao%2C+Zhiran&rft.au=Li%2C+Yanyan&rft.au=Zhuang%2C+Xiaoying&rft.date=2020-03-01&rft.pub=Elsevier+BV&rft.issn=0168-874X&rft.volume=170&rft.spage=1&rft_id=info:doi/10.1016%2Fj.finel.2019.103333&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon