An adaptive sensor placement algorithm for structural health monitoring based on multi-objective iterative optimization using weight factor updating

A single method that does not consider all performances of mode testing is typically inadequate for determining the optimal sensor placement. However, if different sensor placement methods are applied together, the multi-objective optimization problem will incur high computational costs. Although tr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mechanical systems and signal processing Ročník 151; s. 107363
Hlavní autor: Yang, Chen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin Elsevier Ltd 01.04.2021
Elsevier BV
Témata:
ISSN:0888-3270, 1096-1216
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A single method that does not consider all performances of mode testing is typically inadequate for determining the optimal sensor placement. However, if different sensor placement methods are applied together, the multi-objective optimization problem will incur high computational costs. Although transforming multi-objective optimization into single-objective optimization by defining weight factors is convenient, this artificial setting disturbs the inherent characteristics of different methods in combined optimization. To overcome these shortcomings in solving a multi-objective problem for sensor locations, a sensor placement algorithm for structural health monitoring based on an iterative updating process is proposed. This method can be applied to different structures owing to the use of adaptive weight factors in the combined objective. In this study, considering different optimal sensor placement methods from their own perspectives, a novel combined fitness function using weight factors and normalization is constructed and solved by a genetic algorithm. Instead of comparison formats, first, the equivalent formats of six well-known sensor placement methods are used for optimization. Considering the effects of the order differences of different objectives, the multi-objective function is transformed into a single-objective optimization problem. Furthermore, an adaptive algorithm using an iterative process involving weight-factor updating is established; thus, the influence of the disturbance originating from directly deciding the weight factor is reduced to the greatest extent. The weight-factor updating process that allows this algorithm to achieve high accuracy and rapid convergence is described in detail. Finally, three engineering numerical examples are considered to demonstrate the effectiveness and feasibility of the proposed algorithm under five sensor placement criteria, including the sensor distribution index and the ratio of the same positions.
AbstractList A single method that does not consider all performances of mode testing is typically inadequate for determining the optimal sensor placement. However, if different sensor placement methods are applied together, the multi-objective optimization problem will incur high computational costs. Although transforming multi-objective optimization into single-objective optimization by defining weight factors is convenient, this artificial setting disturbs the inherent characteristics of different methods in combined optimization. To overcome these shortcomings in solving a multi-objective problem for sensor locations, a sensor placement algorithm for structural health monitoring based on an iterative updating process is proposed. This method can be applied to different structures owing to the use of adaptive weight factors in the combined objective. In this study, considering different optimal sensor placement methods from their own perspectives, a novel combined fitness function using weight factors and normalization is constructed and solved by a genetic algorithm. Instead of comparison formats, first, the equivalent formats of six well-known sensor placement methods are used for optimization. Considering the effects of the order differences of different objectives, the multi-objective function is transformed into a single-objective optimization problem. Furthermore, an adaptive algorithm using an iterative process involving weight-factor updating is established; thus, the influence of the disturbance originating from directly deciding the weight factor is reduced to the greatest extent. The weight-factor updating process that allows this algorithm to achieve high accuracy and rapid convergence is described in detail. Finally, three engineering numerical examples are considered to demonstrate the effectiveness and feasibility of the proposed algorithm under five sensor placement criteria, including the sensor distribution index and the ratio of the same positions.
ArticleNumber 107363
Author Yang, Chen
Author_xml – sequence: 1
  givenname: Chen
  surname: Yang
  fullname: Yang, Chen
  email: yangchen@qxslab.cn
  organization: Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
BookMark eNqFkc9u3CAQxlGVSN1N8wS9IOXszWC82D7kEEX9EylSLu0ZYRjvYtngAk61eY48cNndnnpIT8Dw_b7RzLcmF847JOQzgw0DJm6HzWGKcd6UUB4rNRf8A1kxaEXBSiYuyAqapil4WcNHso5xAIC2ArEib_eOKqPmZF-QRnTRBzqPSuOELlE17nywaT_RPtdjCotOS1Aj3aMa055O3tmUFW5HOxXRUO_otIzJFr4bUJ9MbcKgTjefu0z2NT-ybIlH6jfa3T7RXulsQ5fZ5E-3-0QuezVGvP57XpGfX7_8ePhePD1_e3y4fyo05ywVuhW6LCvWgMIatlyokplKm65jokctqh5Es201dMIAqxVnuoa2E1g3Ztt2hl-Rm7PvHPyvBWOSg1-Cyy1lWTWiESK7ZlV7VungYwzYS23TaYgUlB0lA3kMQQ7yFII8hiDPIWSW_8POwU4qHP5D3Z0pzMO_WAwyaotOo7Ehb1Uab9_l_wCmAKjS
CitedBy_id crossref_primary_10_1177_13694332241267935
crossref_primary_10_1016_j_ymssp_2021_107914
crossref_primary_10_1016_j_measurement_2024_115830
crossref_primary_10_1016_j_measurement_2024_116289
crossref_primary_10_1016_j_autcon_2022_104256
crossref_primary_10_1016_j_ymssp_2022_109581
crossref_primary_10_1109_TMC_2024_3402080
crossref_primary_10_1109_ACCESS_2023_3239265
crossref_primary_10_1080_00207543_2022_2149873
crossref_primary_10_1016_j_ymssp_2022_109930
crossref_primary_10_3390_s24051423
crossref_primary_10_1016_j_apacoust_2022_108728
crossref_primary_10_1016_j_cma_2021_114107
crossref_primary_10_1016_j_measurement_2021_110370
crossref_primary_10_1177_10775463211030754
crossref_primary_10_3390_app132011149
crossref_primary_10_3390_s22103867
crossref_primary_10_3390_s23063293
crossref_primary_10_1016_j_measurement_2024_114895
crossref_primary_10_1016_j_jobe_2025_112929
crossref_primary_10_3390_ma14174953
crossref_primary_10_1007_s00158_021_03159_9
crossref_primary_10_1016_j_compstruct_2022_115359
crossref_primary_10_1016_j_conbuildmat_2021_123092
crossref_primary_10_1109_JSEN_2023_3277339
crossref_primary_10_1016_j_applthermaleng_2021_117351
crossref_primary_10_1016_j_ymssp_2021_108059
crossref_primary_10_1088_1361_665X_ac8210
crossref_primary_10_3390_ma15238534
crossref_primary_10_1016_j_ress_2023_109336
crossref_primary_10_3390_electronics12214393
crossref_primary_10_1016_j_ymssp_2024_111523
crossref_primary_10_1016_j_ymssp_2025_113206
crossref_primary_10_1016_j_jobe_2023_106855
crossref_primary_10_3390_ma14082079
crossref_primary_10_1061_JAEEEZ_ASENG_5950
crossref_primary_10_3390_ma14143980
crossref_primary_10_1016_j_measurement_2022_112102
crossref_primary_10_1088_1361_6501_ac42b3
crossref_primary_10_1111_mice_13304
crossref_primary_10_1016_j_ymssp_2021_107774
crossref_primary_10_1109_JSEN_2023_3276318
crossref_primary_10_1016_j_ast_2021_106987
crossref_primary_10_1016_j_compstruct_2021_114441
crossref_primary_10_1080_10589759_2024_2393205
crossref_primary_10_1007_s12206_025_0413_0
crossref_primary_10_1016_j_jsv_2022_117359
crossref_primary_10_1016_j_ymssp_2024_112049
crossref_primary_10_1016_j_jsv_2024_118324
crossref_primary_10_3390_buildings13123129
crossref_primary_10_1016_j_engstruct_2025_119688
crossref_primary_10_1016_j_seta_2021_101183
crossref_primary_10_1109_TII_2021_3084133
crossref_primary_10_1016_j_ymssp_2021_108287
crossref_primary_10_3390_su152015061
crossref_primary_10_1016_j_ymssp_2023_110319
crossref_primary_10_1007_s42417_025_01956_w
crossref_primary_10_3390_s22031207
crossref_primary_10_1007_s00158_022_03370_2
crossref_primary_10_1177_10775463211035934
crossref_primary_10_1016_j_compstruc_2025_107779
crossref_primary_10_1016_j_knosys_2024_112550
Cites_doi 10.1016/j.ymssp.2020.107097
10.1016/j.cma.2004.06.043
10.1016/j.ymssp.2019.03.042
10.1016/j.ymssp.2019.01.057
10.2514/3.20841
10.12989/sem.2011.37.6.671
10.1016/j.jsv.2013.12.014
10.1016/j.ymssp.2020.107110
10.1155/2018/6121293
10.1007/s13349-017-0235-6
10.1109/MCS.2018.2810460
10.1109/JSEN.2020.2978081
10.12989/sss.2015.16.6.981
10.1016/j.ymssp.2018.04.010
10.1016/j.ymssp.2017.03.029
10.1016/j.apm.2020.05.021
10.12989/sss.2013.12.3_4.345
10.1088/0964-1726/21/10/105033
10.1088/0964-1726/22/10/105014
10.1016/j.cma.2020.113042
10.1016/j.ymssp.2013.06.022
10.1016/j.jsv.2018.01.047
10.1007/s11227-016-1900-y
10.1002/stc.1963
10.1260/1369-4332.16.10.1779
10.1007/s11434-016-1000-7
10.1002/stc.2160
10.1016/j.jsv.2015.09.018
10.1142/S0219455411004221
10.1016/j.ymssp.2020.106901
10.1016/j.engstruct.2005.03.015
10.1109/JSEN.2018.2789523
10.1002/stc.1707
10.1002/tal.712
10.1111/j.1467-8667.2007.00485.x
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Apr 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2020.107363
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2020_107363
S0888327020307494
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-c96c224180ae70536a21d4cdbb16fec64f06859c0b6d017a31c709b6e78d59bd3
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640530600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-3270
IngestDate Sun Oct 05 00:24:00 EDT 2025
Sat Nov 29 07:12:02 EST 2025
Tue Nov 18 22:12:32 EST 2025
Fri Feb 23 02:48:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Iterative optimization
Structural health monitoring
Multi-objective
Weight factor updating
Adaptive sensor placement algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-c96c224180ae70536a21d4cdbb16fec64f06859c0b6d017a31c709b6e78d59bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2486866053
PQPubID 2045429
ParticipantIDs proquest_journals_2486866053
crossref_citationtrail_10_1016_j_ymssp_2020_107363
crossref_primary_10_1016_j_ymssp_2020_107363
elsevier_sciencedirect_doi_10_1016_j_ymssp_2020_107363
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yi, Yao, Qu (b0030) 2019; 145
Larson, Zimmerman, Marek (b0190) 1994
Imamovic (b0180) 1998
Yang, Lu, Yang (b0095) 2018; 18
Castro-Triguero, Murugan, Gallego (b0080) 2013; 41
Lin, Xu, Law (b0140) 2018; 422
Y.T. Chung, J.D. Moore, On-orbit sensor placement and system identification of space station with limited instrumentations, in: Proceedings of the International Modal Analysis Conference. Sem Society for Experimental Mechanics Inc., 1993, pp. 41-46.
Yang (b0200) 2018; 25
Yang, Liang, Zhang (b0090) 2020; 366
Sadhu, Goli (b0160) 2017; 7
Nestorović T, Hassw K, Oveisi A. Software-in-the-loop optimization of actuator and sensor placement for a smart piezoelectric funnel-shaped inlet of a magnetic resonance imaging tomograph. Mech. Syst. Sig. Process. 147, 107097.
Lu, Teng, Xu (b0035) 2013; 22
Yang, Liang, Zhang (b0105) 2019; 124
Shi, Hu, Wang (b0210) 2021; 390
Doebling (b0185) 1996
Zhang, Xu (b0050) 2017; 95
Zhou, Yi, Zhang (b0155) 2015; 22
Zhu, Zhang, Xu (b0055) 2013; 16
Yi, Li, Gu (b0065) 2011; 37
Cantero-Chinchilla, Beck, Chiachío (b0005) 2020; 144
Yang, Ma, Ma (b0205) 2020; 20
Kim, Youn, Oh (b0085) 2018; 111
Kammer (b0170) 1992; 15
Rajabzadeh, Haghighat (b0100) 2017; 73
Zhang, Xu (b0130) 2016; 360
Guo, Ni, Chen (b0165) 2017; 24
Xu, Zhang, Zhu (b0125) 2016; 61
Zhang, Zhu, Xu (b0135) 2011; 11
Mathakari, Gardoni, Agarwal, Raich, Haukaas (b0145) 2007; 22
Li B, Zhao Y P, Wu H, et al. Optimal sensor placement using data-driven sparse learning method with application to pattern classification of hypersonic inlet. Mech. Syst. Sig. Process. 147, 107110.
C. Papadimitriou Pareto optimal sensor locations for structural identification Comput. Meth. Appl. Math. 194 (2005) 1655e1673
Manohar, Brunton, Kutz (b0115) 2018; 38
De Clerck, Avitable (b0195) 1998
Meo, Zumpano (b0060) 2005; 27
He, Xu, Zhang (b0045) 2015; 16
Wang, Law, Yang (b0110) 2014; 333
Yi, Li, Zhang (b0075) 2012; 21
Yi, Li, Sun (b0025) 2013; 12
Yi, Li, Gu (b0070) 2011; 20
Shi, Wang, Chen (b0040) 2020; 86
Hernandez (b0020) 2019; 128
Zhao, Du, Bao (b0120) 2018; 2018
Larson (10.1016/j.ymssp.2020.107363_b0190) 1994
Meo (10.1016/j.ymssp.2020.107363_b0060) 2005; 27
He (10.1016/j.ymssp.2020.107363_b0045) 2015; 16
Yang (10.1016/j.ymssp.2020.107363_b0200) 2018; 25
Kim (10.1016/j.ymssp.2020.107363_b0085) 2018; 111
Zhu (10.1016/j.ymssp.2020.107363_b0055) 2013; 16
Rajabzadeh (10.1016/j.ymssp.2020.107363_b0100) 2017; 73
Shi (10.1016/j.ymssp.2020.107363_b0210) 2021; 390
De Clerck (10.1016/j.ymssp.2020.107363_b0195) 1998
Manohar (10.1016/j.ymssp.2020.107363_b0115) 2018; 38
10.1016/j.ymssp.2020.107363_b0015
Zhou (10.1016/j.ymssp.2020.107363_b0155) 2015; 22
Wang (10.1016/j.ymssp.2020.107363_b0110) 2014; 333
Zhang (10.1016/j.ymssp.2020.107363_b0050) 2017; 95
Yang (10.1016/j.ymssp.2020.107363_b0095) 2018; 18
10.1016/j.ymssp.2020.107363_b0010
10.1016/j.ymssp.2020.107363_b0175
Yi (10.1016/j.ymssp.2020.107363_b0065) 2011; 37
10.1016/j.ymssp.2020.107363_b0150
Kammer (10.1016/j.ymssp.2020.107363_b0170) 1992; 15
Hernandez (10.1016/j.ymssp.2020.107363_b0020) 2019; 128
Guo (10.1016/j.ymssp.2020.107363_b0165) 2017; 24
Yang (10.1016/j.ymssp.2020.107363_b0090) 2020; 366
Yang (10.1016/j.ymssp.2020.107363_b0205) 2020; 20
Yi (10.1016/j.ymssp.2020.107363_b0070) 2011; 20
Cantero-Chinchilla (10.1016/j.ymssp.2020.107363_b0005) 2020; 144
Zhang (10.1016/j.ymssp.2020.107363_b0130) 2016; 360
Zhao (10.1016/j.ymssp.2020.107363_b0120) 2018; 2018
Zhang (10.1016/j.ymssp.2020.107363_b0135) 2011; 11
Lin (10.1016/j.ymssp.2020.107363_b0140) 2018; 422
Yi (10.1016/j.ymssp.2020.107363_b0075) 2012; 21
Lu (10.1016/j.ymssp.2020.107363_b0035) 2013; 22
Yi (10.1016/j.ymssp.2020.107363_b0025) 2013; 12
Shi (10.1016/j.ymssp.2020.107363_b0040) 2020; 86
Castro-Triguero (10.1016/j.ymssp.2020.107363_b0080) 2013; 41
Xu (10.1016/j.ymssp.2020.107363_b0125) 2016; 61
Imamovic (10.1016/j.ymssp.2020.107363_b0180) 1998
Mathakari (10.1016/j.ymssp.2020.107363_b0145) 2007; 22
Doebling (10.1016/j.ymssp.2020.107363_b0185) 1996
Yang (10.1016/j.ymssp.2020.107363_b0105) 2019; 124
Yi (10.1016/j.ymssp.2020.107363_b0030) 2019; 145
Sadhu (10.1016/j.ymssp.2020.107363_b0160) 2017; 7
References_xml – volume: 20
  start-page: 881
  year: 2011
  end-page: 900
  ident: b0070
  article-title: Optimal sensor placement for structural health monitoring based on multiple optimization strategies
  publication-title: Struct. Design Tall Spec. Build.
– volume: 11
  start-page: 581
  year: 2011
  end-page: 602
  ident: b0135
  article-title: Integrated optimal placement of displacement transducers and strain gauges for better estimation of structural response
  publication-title: Int. J. Struct. Stab. Dyn.
– year: 1998
  ident: b0180
  article-title: Model validation of large finite element model using test data
– volume: 22
  start-page: 282e292
  year: 2007
  ident: b0145
  article-title: Reliability-based optimal design of electrical transmission towers using multi-objective genetic algorithms
  publication-title: Comput. Aided Civ. Inf.
– volume: 12
  start-page: 345
  year: 2013
  end-page: 361
  ident: b0025
  article-title: Multi-stage structural damage diagnosis method based on “energy-damage” theory
  publication-title: Smart Struct. Syst.
– volume: 111
  start-page: 615
  year: 2018
  end-page: 627
  ident: b0085
  article-title: Development of a stochastic effective independence (SEFI) method for optimal sensor placement under uncertainty
  publication-title: Mech. Syst. Sig. Process.
– volume: 21
  year: 2012
  ident: b0075
  article-title: A modified monkey algorithm for optimal sensor placement in structural health monitoring
  publication-title: Smart Mater. Struct.
– volume: 73
  start-page: 2001
  year: 2017
  end-page: 2017
  ident: b0100
  article-title: Energy-aware framework with Markov chain-based parallel simulated annealing algorithm for dynamic management of virtual machines in cloud data centers
  publication-title: J. Supercomput.
– reference: Nestorović T, Hassw K, Oveisi A. Software-in-the-loop optimization of actuator and sensor placement for a smart piezoelectric funnel-shaped inlet of a magnetic resonance imaging tomograph. Mech. Syst. Sig. Process. 147, 107097.
– volume: 95
  start-page: 42
  year: 2017
  end-page: 57
  ident: b0050
  article-title: Multi-level damage identification with response reconstruction
  publication-title: Mech. Syst. Sig. Process.
– volume: 390
  year: 2021
  ident: b0210
  article-title: Uncertain identification method of structural damage for beam-like structures based on strain modes with noises
  publication-title: Appl. Math. Comput.
– volume: 333
  start-page: 2469
  year: 2014
  end-page: 2482
  ident: b0110
  article-title: Sensor placement method for dynamic response reconstruction
  publication-title: J. Sound Vib.
– volume: 22
  start-page: 648
  year: 2015
  end-page: 666
  ident: b0155
  article-title: Energy-aware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm
  publication-title: Struct. Control Hlth.
– volume: 7
  start-page: 445
  year: 2017
  end-page: 458
  ident: b0160
  article-title: Blind source separation-based optimum sensor placement strategy for structures
  publication-title: J. Civil Struct. Health Monit.
– volume: 41
  start-page: 268
  year: 2013
  end-page: 287
  ident: b0080
  article-title: Robustness of optimal sensor placement under parametric uncertainty
  publication-title: Mech. Syst. Sig. Process.
– start-page: 205
  year: 1994
  end-page: 211
  ident: b0190
  article-title: A comparison of modal test planning techniques: excitation and sensor placement using the NASA 8-bay truss
  publication-title: In: Proceedings of the 12th international modal analysis conference
– year: 1996
  ident: b0185
  article-title: Measurement of structural flexibility matrices for experiments with incomplete reciprocity
– volume: 24
  year: 2017
  ident: b0165
  article-title: Optimal sensor placement for damage detection of bridges subject to ship collision
  publication-title: Struct. Control Hlth.
– volume: 124
  start-page: 369
  year: 2019
  end-page: 387
  ident: b0105
  article-title: Sensor placement algorithm for structural health monitoring with redundancy elimination model based on sub-clustering strategy
  publication-title: Mech. Syst. Sig. Process.
– year: 1998
  ident: b0195
  article-title: Development of several new tools for pre-test evaluation
  publication-title: In: Proceedings of the 16th International Modal Analysis Conference
– volume: 37
  start-page: 671
  year: 2011
  end-page: 684
  ident: b0065
  article-title: A new method for optimal selection of sensor location on a high-rise building using simplified finite element model
  publication-title: Struct. Eng. Mechan.
– volume: 144
  year: 2020
  ident: b0005
  article-title: Optimal sensor and actuator placement for structural health monitoring via an efficient convex cost-benefit optimization
  publication-title: Mech. Syst. Sig. Process.
– volume: 22
  year: 2013
  ident: b0035
  article-title: Identification of damage in dome-like structures using hybrid sensor measurements and artificial neural networks
  publication-title: Smart Mater. Struct.
– volume: 38
  start-page: 63
  year: 2018
  end-page: 86
  ident: b0115
  article-title: Data-driven sparse sensor placement for reconstruction: demonstrating the benefits of exploiting known patterns
  publication-title: IEEE Control Syst. Mag.
– volume: 128
  start-page: 318
  year: 2019
  end-page: 328
  ident: b0020
  article-title: Balancing robustness and optimality in sensor placement for dynamic state estimation
  publication-title: Mech. Syst. Sig. Process.
– volume: 86
  start-page: 384
  year: 2020
  end-page: 403
  ident: b0040
  article-title: Optimal Sensor Placement Method Considering the Importance of Structural Performance Degradation for the Allowable Loadings for Damage Identification
  publication-title: Appl. Math. Model.
– reference: Y.T. Chung, J.D. Moore, On-orbit sensor placement and system identification of space station with limited instrumentations, in: Proceedings of the International Modal Analysis Conference. Sem Society for Experimental Mechanics Inc., 1993, pp. 41-46.
– volume: 25
  year: 2018
  ident: b0200
  article-title: Sensor placement for structural health monitoring using hybrid optimization algorithm based on sensor distribution index and FE grids
  publication-title: Struct. Control Health Monitor.
– volume: 16
  start-page: 981
  year: 2015
  end-page: 1002
  ident: b0045
  article-title: Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors
  publication-title: Smart Struct. Syst.
– reference: Li B, Zhao Y P, Wu H, et al. Optimal sensor placement using data-driven sparse learning method with application to pattern classification of hypersonic inlet. Mech. Syst. Sig. Process. 147, 107110.
– volume: 145
  start-page: 04018122
  year: 2019
  ident: b0030
  article-title: Clustering number determination for sparse component analysis during output-only modal identification
  publication-title: J. Eng. Mech.
– volume: 27
  start-page: 1488
  year: 2005
  end-page: 1497
  ident: b0060
  article-title: On the optimal sensor placement techniques for a bridge structure
  publication-title: Eng. Struct.
– volume: 16
  start-page: 1779
  year: 2013
  end-page: 1797
  ident: b0055
  article-title: Multi-type sensor placement for multi-scale response reconstruction
  publication-title: Adv. Struct. Eng.
– volume: 366
  year: 2020
  ident: b0090
  article-title: Strategy for sensor number determination and placement optimization with incomplete information based on interval possibility model and clustering avoidance distribution index
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 2018
  year: 2018
  ident: b0120
  article-title: Optimal Sensor Placement for Inverse Finite Element Reconstruction of Three-Dimensional Frame Deformation
  publication-title: Int. J. Aerosp. Eng.
– volume: 61
  start-page: 313
  year: 2016
  end-page: 329
  ident: b0125
  article-title: Multi-type sensor placement and response reconstruction for structural health monitoring of long-span suspension bridges
  publication-title: Sci. Bull.
– volume: 15
  start-page: 334
  year: 1992
  end-page: 341
  ident: b0170
  article-title: Effect of model error on sensor placement for on-orbit modal identification of large space structures
  publication-title: J. Guid. Cont. Dynam.
– volume: 20
  start-page: 7337
  year: 2020
  end-page: 7346
  ident: b0205
  article-title: Optimal Sensor Placement for Modal Identification in Multirotary-Joint Solar Power Satellite
  publication-title: IEEE Sens. J.
– volume: 422
  start-page: 568
  year: 2018
  end-page: 589
  ident: b0140
  article-title: Structural damage detection-oriented multi-type sensor placement with multi-objective optimization
  publication-title: J. Sound Vib.
– volume: 18
  start-page: 2031
  year: 2018
  end-page: 2041
  ident: b0095
  article-title: Robust Optimal Sensor Placement for Uncertain Structures with Interval Parameters
  publication-title: IEEE Sens. J.
– reference: C. Papadimitriou Pareto optimal sensor locations for structural identification Comput. Meth. Appl. Math. 194 (2005) 1655e1673
– volume: 360
  start-page: 112
  year: 2016
  end-page: 128
  ident: b0130
  article-title: Optimal multi-type sensor placement for response and excitation reconstruction
  publication-title: J. Sound Vib.
– year: 1998
  ident: 10.1016/j.ymssp.2020.107363_b0180
– start-page: 205
  year: 1994
  ident: 10.1016/j.ymssp.2020.107363_b0190
  article-title: A comparison of modal test planning techniques: excitation and sensor placement using the NASA 8-bay truss
– ident: 10.1016/j.ymssp.2020.107363_b0010
  doi: 10.1016/j.ymssp.2020.107097
– ident: 10.1016/j.ymssp.2020.107363_b0150
  doi: 10.1016/j.cma.2004.06.043
– volume: 128
  start-page: 318
  year: 2019
  ident: 10.1016/j.ymssp.2020.107363_b0020
  article-title: Balancing robustness and optimality in sensor placement for dynamic state estimation
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.03.042
– volume: 124
  start-page: 369
  year: 2019
  ident: 10.1016/j.ymssp.2020.107363_b0105
  article-title: Sensor placement algorithm for structural health monitoring with redundancy elimination model based on sub-clustering strategy
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.01.057
– volume: 15
  start-page: 334
  issue: 2
  year: 1992
  ident: 10.1016/j.ymssp.2020.107363_b0170
  article-title: Effect of model error on sensor placement for on-orbit modal identification of large space structures
  publication-title: J. Guid. Cont. Dynam.
  doi: 10.2514/3.20841
– volume: 37
  start-page: 671
  issue: 6
  year: 2011
  ident: 10.1016/j.ymssp.2020.107363_b0065
  article-title: A new method for optimal selection of sensor location on a high-rise building using simplified finite element model
  publication-title: Struct. Eng. Mechan.
  doi: 10.12989/sem.2011.37.6.671
– ident: 10.1016/j.ymssp.2020.107363_b0175
– volume: 333
  start-page: 2469
  issue: 9
  year: 2014
  ident: 10.1016/j.ymssp.2020.107363_b0110
  article-title: Sensor placement method for dynamic response reconstruction
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2013.12.014
– ident: 10.1016/j.ymssp.2020.107363_b0015
  doi: 10.1016/j.ymssp.2020.107110
– volume: 2018
  year: 2018
  ident: 10.1016/j.ymssp.2020.107363_b0120
  article-title: Optimal Sensor Placement for Inverse Finite Element Reconstruction of Three-Dimensional Frame Deformation
  publication-title: Int. J. Aerosp. Eng.
  doi: 10.1155/2018/6121293
– volume: 7
  start-page: 445
  year: 2017
  ident: 10.1016/j.ymssp.2020.107363_b0160
  article-title: Blind source separation-based optimum sensor placement strategy for structures
  publication-title: J. Civil Struct. Health Monit.
  doi: 10.1007/s13349-017-0235-6
– volume: 38
  start-page: 63
  issue: 3
  year: 2018
  ident: 10.1016/j.ymssp.2020.107363_b0115
  article-title: Data-driven sparse sensor placement for reconstruction: demonstrating the benefits of exploiting known patterns
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2018.2810460
– volume: 145
  start-page: 04018122
  issue: 1
  year: 2019
  ident: 10.1016/j.ymssp.2020.107363_b0030
  article-title: Clustering number determination for sparse component analysis during output-only modal identification
  publication-title: J. Eng. Mech.
– volume: 20
  start-page: 7337
  issue: 13
  year: 2020
  ident: 10.1016/j.ymssp.2020.107363_b0205
  article-title: Optimal Sensor Placement for Modal Identification in Multirotary-Joint Solar Power Satellite
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2978081
– volume: 16
  start-page: 981
  issue: 6
  year: 2015
  ident: 10.1016/j.ymssp.2020.107363_b0045
  article-title: Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors
  publication-title: Smart Struct. Syst.
  doi: 10.12989/sss.2015.16.6.981
– volume: 111
  start-page: 615
  year: 2018
  ident: 10.1016/j.ymssp.2020.107363_b0085
  article-title: Development of a stochastic effective independence (SEFI) method for optimal sensor placement under uncertainty
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.04.010
– volume: 95
  start-page: 42
  year: 2017
  ident: 10.1016/j.ymssp.2020.107363_b0050
  article-title: Multi-level damage identification with response reconstruction
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.03.029
– volume: 86
  start-page: 384
  year: 2020
  ident: 10.1016/j.ymssp.2020.107363_b0040
  article-title: Optimal Sensor Placement Method Considering the Importance of Structural Performance Degradation for the Allowable Loadings for Damage Identification
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.05.021
– volume: 12
  start-page: 345
  issue: 3_4
  year: 2013
  ident: 10.1016/j.ymssp.2020.107363_b0025
  article-title: Multi-stage structural damage diagnosis method based on “energy-damage” theory
  publication-title: Smart Struct. Syst.
  doi: 10.12989/sss.2013.12.3_4.345
– volume: 21
  issue: 10
  year: 2012
  ident: 10.1016/j.ymssp.2020.107363_b0075
  article-title: A modified monkey algorithm for optimal sensor placement in structural health monitoring
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/10/105033
– volume: 22
  issue: 10
  year: 2013
  ident: 10.1016/j.ymssp.2020.107363_b0035
  article-title: Identification of damage in dome-like structures using hybrid sensor measurements and artificial neural networks
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/10/105014
– volume: 366
  year: 2020
  ident: 10.1016/j.ymssp.2020.107363_b0090
  article-title: Strategy for sensor number determination and placement optimization with incomplete information based on interval possibility model and clustering avoidance distribution index
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113042
– year: 1996
  ident: 10.1016/j.ymssp.2020.107363_b0185
– volume: 41
  start-page: 268
  issue: 1–2
  year: 2013
  ident: 10.1016/j.ymssp.2020.107363_b0080
  article-title: Robustness of optimal sensor placement under parametric uncertainty
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2013.06.022
– volume: 422
  start-page: 568
  year: 2018
  ident: 10.1016/j.ymssp.2020.107363_b0140
  article-title: Structural damage detection-oriented multi-type sensor placement with multi-objective optimization
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.01.047
– year: 1998
  ident: 10.1016/j.ymssp.2020.107363_b0195
  article-title: Development of several new tools for pre-test evaluation
– volume: 73
  start-page: 2001
  issue: 5
  year: 2017
  ident: 10.1016/j.ymssp.2020.107363_b0100
  article-title: Energy-aware framework with Markov chain-based parallel simulated annealing algorithm for dynamic management of virtual machines in cloud data centers
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-016-1900-y
– volume: 24
  year: 2017
  ident: 10.1016/j.ymssp.2020.107363_b0165
  article-title: Optimal sensor placement for damage detection of bridges subject to ship collision
  publication-title: Struct. Control Hlth.
  doi: 10.1002/stc.1963
– volume: 16
  start-page: 1779
  issue: 10
  year: 2013
  ident: 10.1016/j.ymssp.2020.107363_b0055
  article-title: Multi-type sensor placement for multi-scale response reconstruction
  publication-title: Adv. Struct. Eng.
  doi: 10.1260/1369-4332.16.10.1779
– volume: 61
  start-page: 313
  issue: 4
  year: 2016
  ident: 10.1016/j.ymssp.2020.107363_b0125
  article-title: Multi-type sensor placement and response reconstruction for structural health monitoring of long-span suspension bridges
  publication-title: Sci. Bull.
  doi: 10.1007/s11434-016-1000-7
– volume: 25
  issue: 6
  year: 2018
  ident: 10.1016/j.ymssp.2020.107363_b0200
  article-title: Sensor placement for structural health monitoring using hybrid optimization algorithm based on sensor distribution index and FE grids
  publication-title: Struct. Control Health Monitor.
  doi: 10.1002/stc.2160
– volume: 360
  start-page: 112
  year: 2016
  ident: 10.1016/j.ymssp.2020.107363_b0130
  article-title: Optimal multi-type sensor placement for response and excitation reconstruction
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.09.018
– volume: 11
  start-page: 581
  issue: 03
  year: 2011
  ident: 10.1016/j.ymssp.2020.107363_b0135
  article-title: Integrated optimal placement of displacement transducers and strain gauges for better estimation of structural response
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455411004221
– volume: 390
  year: 2021
  ident: 10.1016/j.ymssp.2020.107363_b0210
  article-title: Uncertain identification method of structural damage for beam-like structures based on strain modes with noises
  publication-title: Appl. Math. Comput.
– volume: 144
  year: 2020
  ident: 10.1016/j.ymssp.2020.107363_b0005
  article-title: Optimal sensor and actuator placement for structural health monitoring via an efficient convex cost-benefit optimization
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2020.106901
– volume: 27
  start-page: 1488
  issue: 10
  year: 2005
  ident: 10.1016/j.ymssp.2020.107363_b0060
  article-title: On the optimal sensor placement techniques for a bridge structure
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2005.03.015
– volume: 18
  start-page: 2031
  issue: 5
  year: 2018
  ident: 10.1016/j.ymssp.2020.107363_b0095
  article-title: Robust Optimal Sensor Placement for Uncertain Structures with Interval Parameters
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2789523
– volume: 22
  start-page: 648
  year: 2015
  ident: 10.1016/j.ymssp.2020.107363_b0155
  article-title: Energy-aware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm
  publication-title: Struct. Control Hlth.
  doi: 10.1002/stc.1707
– volume: 20
  start-page: 881
  issue: 7
  year: 2011
  ident: 10.1016/j.ymssp.2020.107363_b0070
  article-title: Optimal sensor placement for structural health monitoring based on multiple optimization strategies
  publication-title: Struct. Design Tall Spec. Build.
  doi: 10.1002/tal.712
– volume: 22
  start-page: 282e292
  year: 2007
  ident: 10.1016/j.ymssp.2020.107363_b0145
  article-title: Reliability-based optimal design of electrical transmission towers using multi-objective genetic algorithms
  publication-title: Comput. Aided Civ. Inf.
  doi: 10.1111/j.1467-8667.2007.00485.x
SSID ssj0009406
Score 2.5612803
Snippet A single method that does not consider all performances of mode testing is typically inadequate for determining the optimal sensor placement. However, if...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107363
SubjectTerms Adaptive algorithms
Adaptive sensor placement algorithm
Algorithms
Genetic algorithms
Iterative methods
Iterative optimization
Multi-objective
Multiple objective analysis
Optimization
Placement
Sensors
Structural health monitoring
Weight factor updating
Weight reduction
Title An adaptive sensor placement algorithm for structural health monitoring based on multi-objective iterative optimization using weight factor updating
URI https://dx.doi.org/10.1016/j.ymssp.2020.107363
https://www.proquest.com/docview/2486866053
Volume 151
WOSCitedRecordID wos000640530600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWLQc4ID7VQkE-cAtB-XTs46oqAg4VhyLtLYrthHa1m6w221L4Hfxgxh47u2zFih64RFEUO1bmZcZ23rwh5G1V51xnogHvx0WYKVWEUudR2KS5FlJBiI4aW2yiODvj06n4Mhr99Lkw1_OibfnNjVj-V1PDNTC2SZ29g7mHTuECnIPR4Qhmh-M_GX7SBpWulpYS1MMitVsFlniFbPL5t251ub5YWHohisda4Q3MhwwW9hO3nDwT37T5l2A5h2EnZ-gbAxRiNmcdPGXhEjmDK7vr8N1utboyPsHV0mRPuODo60bVJtkYszFRLt3-wDBEEpMVhokLvo3xR25H--TCZa25PYok3qK2eFfGwzTBEiGD33VKs-g5YRmaoqu75dRxf2H2_sei743EaGKu-bv_lNDeCW0D4dBz2Wal7aQ0nZTYyT1ykBS54GNyMPl0Ov28kWzObGXWYexes8qyA2-N5W_zmp0Ib6ct54_JI7feoBPEyRMyqtun5OGWCuUz8mvSUo8YioihA2LogBgKiKEbxFBEDN0ghlrE0K6lO4ihA2LoNmKoRQxFxFBEDPWIeU6-fjg9P_kYumIdoUrTeB0qwZSZDvKoqgvw7KxKYp0pLWXMmlqxrIkYz4WKJNMQBao0VkUkJKsLrnMhdfqCjNuurQ8JZamU0FWuWF1lTZpJrdNKiqZRSaxi3RyRxL_qUjkle1NQZV7uMfMReTc0WqKQy_7bmbdh6eaiOMcsAZX7Gx57i5fOK_RlknHGGYPX8vJuw3hFHmy-p2MyBiPXr8l9db2-7FdvHGJ_A1GEwXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+sensor+placement+algorithm+for+structural+health+monitoring+based+on+multi-objective+iterative+optimization+using+weight+factor+updating&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Yang%2C+Chen&rft.date=2021-04-01&rft.issn=0888-3270&rft.volume=151&rft.spage=107363&rft_id=info:doi/10.1016%2Fj.ymssp.2020.107363&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2020_107363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon