Artificial Intelligence Based Spacecraft Resilience Optimization in Space Informatics Digital Twins
This article focuses on optimizing the elasticity of spacecraft by harnessing the power of artificial intelligence (AI) technology. With the support of spatial informatics and digital twins technology, this work initially employs AI techniques, specifically the radial basis function neural networks,...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on aerospace and electronic systems Jg. 61; H. 2; S. 1834 - 1847 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9251, 1557-9603, 1557-9603 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This article focuses on optimizing the elasticity of spacecraft by harnessing the power of artificial intelligence (AI) technology. With the support of spatial informatics and digital twins technology, this work initially employs AI techniques, specifically the radial basis function neural networks, a deep learning algorithm, to perform global optimization and orbit fitting for spacecraft. Augmented Lagrangian multipliers are then introduced to locally optimize this neural network. Additionally, to further enhance the spacecraft's flexibility, an improved particle swarm optimization (PSO) algorithm is applied to optimize the proposed network. The work also introduces a periodic variational multiobjective quantum particle swarm optimization (PMQPSO) algorithm. Subsequently, a rigid-flexible coupled dynamics model for the spacecraft is established, and relevant simulations and experiments are conducted to support this work. The results indicate that the average fitness of the improved PMQPSO algorithm decreases to 18.23 after 500 iterations, with its performance being at least 3.2% higher than that of the classical quantum PSO algorithm. Furthermore, after the initial decline in the first order, the limiter residuals no longer decline and exhibit convergence, as the residual curve transitions from high to low, indicating a gradual improvement in convergence and stability. These findings highlight the advantages of the PMQPSO algorithm in optimizing the spacecraft's elasticity. In conclusion, this parameter optimization holds practical significance for the design optimization of aircraft aerodynamic shapes. |
|---|---|
| AbstractList | This article focuses on optimizing the elasticity of spacecraft by harnessing the power of artificial intelligence (AI) technology. With the support of spatial informatics and digital twins technology, this work initially employs AI techniques, specifically the radial basis function neural networks, a deep learning algorithm, to perform global optimization and orbit fitting for spacecraft. Augmented Lagrangian multipliers are then introduced to locally optimize this neural network. Additionally, to further enhance the spacecraft's flexibility, an improved particle swarm optimization (PSO) algorithm is applied to optimize the proposed network. The work also introduces a periodic variational multiobjective quantum particle swarm optimization (PMQPSO) algorithm. Subsequently, a rigid-flexible coupled dynamics model for the spacecraft is established, and relevant simulations and experiments are conducted to support this work. The results indicate that the average fitness of the improved PMQPSO algorithm decreases to 18.23 after 500 iterations, with its performance being at least 3.2% higher than that of the classical quantum PSO algorithm. Furthermore, after the initial decline in the first order, the limiter residuals no longer decline and exhibit convergence, as the residual curve transitions from high to low, indicating a gradual improvement in convergence and stability. These findings highlight the advantages of the PMQPSO algorithm in optimizing the spacecraft's elasticity. In conclusion, this parameter optimization holds practical significance for the design optimization of aircraft aerodynamic shapes. |
| Author | Lou, Ranran Lyu, Zhihan Guo, Jinkang Lv, Haibin |
| Author_xml | – sequence: 1 givenname: Zhihan orcidid: 0000-0003-2525-3074 surname: Lyu fullname: Lyu, Zhihan email: lvzhihan@gmail.com organization: Faculty of Arts, Uppsala University, Uppsala, Sweden – sequence: 2 givenname: Jinkang orcidid: 0000-0003-2633-6314 surname: Guo fullname: Guo, Jinkang email: 2020025951@qdu.edu.cn organization: College of Computer Science and Technology, Qingdao University, Qingdao, China – sequence: 3 givenname: Ranran orcidid: 0000-0002-3029-3444 surname: Lou fullname: Lou, Ranran email: louranran1113@gmail.com organization: College of Computer Science and Technology, Qingdao University, Qingdao, China – sequence: 4 givenname: Haibin orcidid: 0000-0003-1059-4765 surname: Lv fullname: Lv, Haibin email: lvhaibinsoa@gmail.com organization: North China Sea Offshore Engineering Survey Institute,Ministry of Natural Resources, North Sea Bureau, Qingdao, China |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-556965$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNp9kF1L5DAUhsOisKO7P0DYi4K3dsxH07SX47cgCDrrbUgzJ8ORTluTFNn99aZWFvFicxOSvM97wnNA9rq-A0KOGF0yRuvT9erycckpL5aikHWl6m9kwaRUeV1SsUcWlLIqr7lk38lBCM_pWFSFWBC78hEdWjRtdttFaFvcQmchOzMBNtnjYCxYb1zMHiBgi-9v90PEHf41Efsuw25OJdz1fpcubcgucIsxVa5fsQs_yL4zbYCfH_sh-X11uT6_ye_ur2_PV3e5FYLF3JbOSeC1U5wXQgEzlW2g4Wqz4W7TsIqC4o5S45QqLWW2oNY2prGNELwpC3FITube8ArD2OjB4874P7o3qC_waaV7v9XjqKUs61Km-PEcH3z_MkKI-rkffZd-qAWr0pJUTKVsTlnfh-DB_atlVE_q9aReT-r1h_rEqC-MTTYmW9EbbP9L_ppJBIBPk0pVl5yJN1ySlTs |
| CODEN | IEARAX |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3601615 |
| Cites_doi | 10.31772/2712-8970-2023-24-2-335-347 10.3390/s23063110 10.1109/JMASS.2021.3069938 10.1016/j.ins.2021.11.052 10.1080/0951192X.2021.1992657 10.2514/1.A35044 10.1109/TNSE.2022.3198818 10.1016/j.iotcps.2022.06.001 10.1007/s11837-020-04388-x 10.1016/j.aei.2023.101876 10.3390/info14050299 10.1016/j.actaastro.2020.10.007 10.1007/s40435-022-01033-0 10.1109/TAES.2021.3060734 10.1007/s42401-020-00069-4 10.1109/ACCESS.2023.3272835 10.1109/TPEL.2020.2994254 10.1109/ACCESS.2020.3015892 10.1186/s10033-022-00760-x 10.3390/s21165568 10.1016/j.jcp.2021.110765 10.2514/1.A34521 10.1109/ACCESS.2020.2993648 10.1109/TR.2020.3001232 10.1007/s00500-021-05799-x 10.1016/j.ast.2019.105527 10.1109/LSP.2020.3021925 10.1177/14613484221114883 10.1109/ACCESS.2019.2947297 10.3390/s21041417 10.1016/j.ymssp.2022.109423 10.1007/s00500-020-04834-7 10.1109/TSMC.2023.3292426 10.1016/j.jweia.2021.104590 10.2514/1.G006101 10.1109/TSC.2023.3242606 10.1007/s12555-022-0295-1 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M ADTPV AOWAS DF2 |
| DOI | 10.1109/TAES.2024.3459879 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace SwePub SwePub Articles SWEPUB Uppsala universitet |
| DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9603 |
| EndPage | 1847 |
| ExternalDocumentID | oai_DiVA_org_uu_556965 10_1109_TAES_2024_3459879 10679621 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61902203 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7TB 8FD AARMG ABAZT FR3 H8D L7M ADTPV AOWAS DF2 |
| ID | FETCH-LOGICAL-c331t-c6ff5e29f722437e1a8cbeb27dd2fdb180e72f00af776c01c40ccbabcb332b643 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001465130000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9251 1557-9603 |
| IngestDate | Tue Nov 04 16:41:27 EST 2025 Tue Jul 22 15:11:53 EDT 2025 Sat Nov 29 07:34:37 EST 2025 Tue Nov 18 22:06:01 EST 2025 Mon Dec 08 03:37:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-c6ff5e29f722437e1a8cbeb27dd2fdb180e72f00af776c01c40ccbabcb332b643 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2633-6314 0000-0003-1059-4765 0000-0003-2525-3074 0000-0002-3029-3444 |
| PQID | 3188885034 |
| PQPubID | 85477 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_10679621 proquest_journals_3188885034 crossref_primary_10_1109_TAES_2024_3459879 crossref_citationtrail_10_1109_TAES_2024_3459879 swepub_primary_oai_DiVA_org_uu_556965 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on aerospace and electronic systems |
| PublicationTitleAbbrev | T-AES |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref1 Ivanov (ref2) 2020; 13 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref25 doi: 10.31772/2712-8970-2023-24-2-335-347 – ident: ref8 doi: 10.3390/s23063110 – ident: ref12 doi: 10.1109/JMASS.2021.3069938 – ident: ref18 doi: 10.1016/j.ins.2021.11.052 – ident: ref22 doi: 10.1080/0951192X.2021.1992657 – ident: ref1 doi: 10.2514/1.A35044 – ident: ref26 doi: 10.1109/TNSE.2022.3198818 – ident: ref5 doi: 10.1016/j.iotcps.2022.06.001 – ident: ref16 doi: 10.1007/s11837-020-04388-x – ident: ref24 doi: 10.1016/j.aei.2023.101876 – ident: ref20 doi: 10.3390/info14050299 – ident: ref11 doi: 10.1016/j.actaastro.2020.10.007 – volume: 13 start-page: 111 issue: 1 year: 2020 ident: ref2 article-title: Timeline and problems of wing-in-ground craft building: From Volga-2 motorboat to aerospace systems publication-title: Int. J. Control Automat. – ident: ref10 doi: 10.1007/s40435-022-01033-0 – ident: ref27 doi: 10.1109/TAES.2021.3060734 – ident: ref7 doi: 10.1007/s42401-020-00069-4 – ident: ref9 doi: 10.1109/ACCESS.2023.3272835 – ident: ref34 doi: 10.1109/TPEL.2020.2994254 – ident: ref35 doi: 10.1109/ACCESS.2020.3015892 – ident: ref23 doi: 10.1186/s10033-022-00760-x – ident: ref3 doi: 10.3390/s21165568 – ident: ref4 doi: 10.1016/j.jcp.2021.110765 – ident: ref28 doi: 10.2514/1.A34521 – ident: ref32 doi: 10.1109/ACCESS.2020.2993648 – ident: ref30 doi: 10.1109/TR.2020.3001232 – ident: ref21 doi: 10.1007/s00500-021-05799-x – ident: ref31 doi: 10.1016/j.ast.2019.105527 – ident: ref33 doi: 10.1109/LSP.2020.3021925 – ident: ref13 doi: 10.1177/14613484221114883 – ident: ref6 doi: 10.1109/ACCESS.2019.2947297 – ident: ref17 doi: 10.3390/s21041417 – ident: ref38 doi: 10.1016/j.ymssp.2022.109423 – ident: ref36 doi: 10.1007/s00500-020-04834-7 – ident: ref14 doi: 10.1109/TSMC.2023.3292426 – ident: ref15 doi: 10.1016/j.jweia.2021.104590 – ident: ref29 doi: 10.2514/1.G006101 – ident: ref19 doi: 10.1109/TSC.2023.3242606 – ident: ref37 doi: 10.1007/s12555-022-0295-1 |
| SSID | ssj0014843 |
| Score | 2.4574573 |
| Snippet | This article focuses on optimizing the elasticity of spacecraft by harnessing the power of artificial intelligence (AI) technology. With the support of spatial... |
| SourceID | swepub proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1834 |
| SubjectTerms | Aerodynamics Aircraft Algorithms Artificial intelligence Artificial intelligence (AI) Convergence Design optimization Digital twins Elasticity Global optimization Heuristic algorithms improved particle swarm algorithm Informatics Lagrange multiplier Machine learning Multiple objective analysis Neural networks Optimization Particle swarm optimization Radial basis function Space vehicles Spacecraft spacecraft optimization spatial information Trajectory |
| Title | Artificial Intelligence Based Spacecraft Resilience Optimization in Space Informatics Digital Twins |
| URI | https://ieeexplore.ieee.org/document/10679621 https://www.proquest.com/docview/3188885034 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-556965 |
| Volume | 61 |
| WOSCitedRecordID | wos001465130000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014843 issn: 1557-9603 databaseCode: RIE dateStart: 19650101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46POjB3-J0Sg56EbqlTdu0x-kmCjJFp3gLzS8pzCpu03_flzSO7aBgT4EmpeRL8t6X5H0PoRMRMwGWiAbWOwhipUgg0kwFsEoSYmRBqYuterphg0H2_Jzf-WB1FwujtXaXz3TbFt1ZvnqTU7tV1gndrocNG19mLK2DtWZHBnHmr8iFMIPBavsjzJDknWG3_wBUMIrbNE6AZOcLRshlVVl0MOdFQ52hudz45y9uonXvUeJuPQS20JKuttHanM7gDpL2ZS0Vga_nNDjxOdgwhR-AN4P3WJgJvtfjcuRmO76FxeTVR2nisqprYR--ZMWdca98sSlH8PCrrMa76PGyP7y4Cnx2hUBSGk4CmRqT6Cg3LLKihDosMimAZzOlIqNEmBHNIkNIYaCvJQllTKQUhZCC0kiAI7OHGtVbpfcRBjdFJ0akKbAtoHusKHQY6UwwJWVuctVE5Ke7ufTS4zYDxog7CkJybhHiFiHuEWqis1mT91p346_KuxaJuYo1CE3U-gGV-6k55rCIwZMQGjfRaQ30rKHV2u6VT10OmPLplCdJmqfJwS-fP0Srkc0G7O7xtFBj8jHVR2hFfk7K8cexG53fS-zjIA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0higQ9FMqH2LKAD_RSKeDESZwcFxYEYrtUZYu4WfEXirQNFbvb_n3GjlkthyKRU6TYUZRne2Y8fm8AjmTKJVoiFjnvIEq1ppHMCx3hKkmpVRVjnlt1N-DDYXF_X_4IZHXPhTHG-MNn5tjd-ly-flQzt1V2EvtdD0cb_-BKZwW61jxpkBbhkFyMcxjtdkhixrQ8GfXObzEYTNJjlmYYZpevzJCvq_LaxVyUDfWm5mL9nR-5AZ-CT0l67SD4DEum2YSPC0qDW6Dcw1YsglwtqHCSU7Rimtxi5Iz-Y2Wn5KeZ1GM_38kNLie_A0-T1E3bigQCk5N3Jv36wRUdIaN_dTPZhl8X56OzyyjUV4gUY_E0Urm1mUlKyxMnS2jiqlASI22udWK1jAtqeGIprSznuaKxSqlSspJKMpZIdGV2YLl5bMwuEHRUTGZlnmO8hQEfryoTJ6aQXCtV2lJ3gL78bqGC-LirgTEWPgihpXAICYeQCAh14Nu8y59WeeOtxtsOiYWGLQgd6L6AKsLknAhcxvDKKEs78LUFet7RqW3367ueQEzFbCayLC_z7Mt_Xn8Iq5ej7wMxuBpe78Fa4moD-1M9XViePs3MPqyov9N68nTgR-ozRDXmaQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Based+Spacecraft+Resilience+Optimization+in+Space+Informatics+Digital+Twins&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Lyu%2C+Zhihan&rft.au=Guo%2C+Jinkang&rft.au=Lou%2C+Ranran&rft.au=Lv%2C+Haibin&rft.date=2025-04-01&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=61&rft.issue=2&rft.spage=1834&rft.epage=1847&rft_id=info:doi/10.1109%2FTAES.2024.3459879&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAES_2024_3459879 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |