micrOMEGAs5.0 : Freeze-in

We present a major upgrade of the micrOMEGAs dark matter code to compute the abundance of feebly interacting dark matter candidates through the freeze-in mechanism in generic extensions of the Standard Model of particle physics. We develop the necessary formalism in order to solve the freeze-in Bolt...

Full description

Saved in:
Bibliographic Details
Published in:Computer physics communications Vol. 231; pp. 173 - 186
Main Authors: Bélanger, G., Boudjema, F., Goudelis, A., Pukhov, A., Zaldívar, B.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.10.2018
Elsevier
Subjects:
ISSN:0010-4655, 1879-2944
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a major upgrade of the micrOMEGAs dark matter code to compute the abundance of feebly interacting dark matter candidates through the freeze-in mechanism in generic extensions of the Standard Model of particle physics. We develop the necessary formalism in order to solve the freeze-in Boltzmann equations while making as few simplifying assumptions as possible concerning the phase-space distributions of the particles involved in the dark matter production process. We further show that this formalism allows us to treat different freeze-in scenarios and discuss the way it is implemented in the code. We find that, depending on the New Physics scenario under consideration, the effect of a proper treatment of statistics on the predicted dark matter abundance can range from a few percent up to a factor of two, or more. We moreover illustrate the underlying physics, as well as the various novel functionalities of micrOMEGAs, by presenting several example results obtained for different dark matter models. Program title: micrOMEGAs5. Program Files doi:http://dx.doi.org/10.17632/4ck6jf5vxf.2 Licensing provisions: GNU General Public License 3 (GPL) Programming language: C and Fortran Journal reference of previous version: Comput. Phys. Commun. 222 (2018) 327. Does the new version supersede the previous version?: Yes Reasons for the new version: Previous versions of micrOMEGAs worked within the assumption that dark matter is in thermal equilibrium with the standard model particles in the early Universe. For several classes of dark matter models this condition is not fulfilled. This new version allows to treat such cases, in particular the one where dark matter is composed of feebly interacting massive particles (FIMPs) that obtain their relic density via the freeze-in mechanism. Summary of revisions: This version includes new routines to compute the abundance of feebly interacting dark matter candidates through the freeze-in mechanism in generic extensions of the Standard Model of particle physics. A proper treatment of the phase-space distribution functions for bosons and fermions is included. The user must specify which particles are to be considered as FIMPs as well as the reheating temperature, that is the temperature at which dark matter formation starts. The relic density of the (next-to) lightest dark sector particle can also be computed via the freeze-out mechanism. This version includes three new sample models in which dark matter production proceeds through freeze-in. Nature of problem: Dark matter candidates that satisfy cosmological constraints cover a wide range of masses and interaction strength. One reason for dark matter particles to have escaped all direct, indirect and collider searches so far could be that they are feebly interacting. We provide the first public code to perform a precise computation of the relic density of FIMPs in generic extensions of the standard model in order to check agreement with the value of the relic density extracted from cosmological observations. Solution method: We solve the freeze-in Boltzmann equations while making as few simplifying assumptions as possible concerning the phase-space distribution of the particles involved in the dark matter production process. We include the case where dark matter is produced through the two-body decay of a particle whether or not it is in thermal equilibrium with the thermal bath as well as the one where dark matter is produced through 2→2 annihilations of a pair of bath particles. Two numerical methods are provided — one where the collision term in the Boltzmann equation is integrated directly and a more efficient one where some of the integrals are performed analytically.
AbstractList We present a major upgrade of the micrOMEGAs dark matter code to compute the abundance of feebly interacting dark matter candidates through the freeze-in mechanism in generic extensions of the Standard Model of particle physics. We develop the necessary formalism in order to solve the freeze-in Boltzmann equations while making as few simplifying assumptions as possible concerning the phase-space distributions of the particles involved in the dark matter production process. We further show that this formalism allows us to treat different freeze-in scenarios and discuss the way it is implemented in the code. We find that, depending on the New Physics scenario under consideration, the effect of a proper treatment of statistics on the predicted dark matter abundance can range from a few percent up to a factor of two, or more. We moreover illustrate the underlying physics, as well as the various novel functionalities of micrOMEGAs, by presenting several example results obtained for different dark matter models. Program title: micrOMEGAs5. Program Files doi:http://dx.doi.org/10.17632/4ck6jf5vxf.2 Licensing provisions: GNU General Public License 3 (GPL) Programming language: C and Fortran Journal reference of previous version: Comput. Phys. Commun. 222 (2018) 327. Does the new version supersede the previous version?: Yes Reasons for the new version: Previous versions of micrOMEGAs worked within the assumption that dark matter is in thermal equilibrium with the standard model particles in the early Universe. For several classes of dark matter models this condition is not fulfilled. This new version allows to treat such cases, in particular the one where dark matter is composed of feebly interacting massive particles (FIMPs) that obtain their relic density via the freeze-in mechanism. Summary of revisions: This version includes new routines to compute the abundance of feebly interacting dark matter candidates through the freeze-in mechanism in generic extensions of the Standard Model of particle physics. A proper treatment of the phase-space distribution functions for bosons and fermions is included. The user must specify which particles are to be considered as FIMPs as well as the reheating temperature, that is the temperature at which dark matter formation starts. The relic density of the (next-to) lightest dark sector particle can also be computed via the freeze-out mechanism. This version includes three new sample models in which dark matter production proceeds through freeze-in. Nature of problem: Dark matter candidates that satisfy cosmological constraints cover a wide range of masses and interaction strength. One reason for dark matter particles to have escaped all direct, indirect and collider searches so far could be that they are feebly interacting. We provide the first public code to perform a precise computation of the relic density of FIMPs in generic extensions of the standard model in order to check agreement with the value of the relic density extracted from cosmological observations. Solution method: We solve the freeze-in Boltzmann equations while making as few simplifying assumptions as possible concerning the phase-space distribution of the particles involved in the dark matter production process. We include the case where dark matter is produced through the two-body decay of a particle whether or not it is in thermal equilibrium with the thermal bath as well as the one where dark matter is produced through 2→2 annihilations of a pair of bath particles. Two numerical methods are provided — one where the collision term in the Boltzmann equation is integrated directly and a more efficient one where some of the integrals are performed analytically.
We present a major upgrade of the micrOMEGAs dark matter code to compute the abundance of feebly interacting dark matter candidates through the freeze-in mechanism in generic extensions of the Standard Model of particle physics. We develop the necessary formalism in order to solve the freeze-in Boltzmann equations while making as few simplifying assumptions as possible concerning the phase-space distributions of the particles involved in the dark matter production process. We further show that this formalism allows us to treat different freeze-in scenarios and discuss the way it is implemented in the code. We find that, depending on the New Physics scenario under consideration, the effect of a proper treatment of statistics on the predicted dark matter abundance can range from a few percent up to a factor of two, or more. We moreover illustrate the underlying physics, as well as the various novel functionalities of micrOMEGAs, by presenting several example results obtained for different dark matter models.
Author Zaldívar, B.
Boudjema, F.
Goudelis, A.
Bélanger, G.
Pukhov, A.
Author_xml – sequence: 1
  givenname: G.
  orcidid: 0000-0002-9621-4948
  surname: Bélanger
  fullname: Bélanger, G.
  email: belanger@lapth.cnrs.fr
  organization: University Grenoble Alpes, USMB, CNRS, LAPTh, F-74940 Annecy, France
– sequence: 2
  givenname: F.
  surname: Boudjema
  fullname: Boudjema, F.
  email: boudjema@lapth.cnrs.fr
  organization: University Grenoble Alpes, USMB, CNRS, LAPTh, F-74940 Annecy, France
– sequence: 3
  givenname: A.
  surname: Goudelis
  fullname: Goudelis, A.
  email: andreas.goudelis@lpthe.jussieu.fr
  organization: Sorbonne Université, CNRS, Laboratoire de Physique Théorique et Hautes Énergies, LPTHE, F-75252 Paris, France
– sequence: 4
  givenname: A.
  surname: Pukhov
  fullname: Pukhov, A.
  email: pukhov@lapth.cnrs.fr
  organization: Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992, Russia
– sequence: 5
  givenname: B.
  surname: Zaldívar
  fullname: Zaldívar, B.
  email: zaldivar@lapth.cnrs.fr
  organization: University Grenoble Alpes, USMB, CNRS, LAPTh, F-74940 Annecy, France
BackLink https://hal.science/hal-01703684$$DView record in HAL
BookMark eNp9kE1LAzEQhoNUsK3-gN569bDrZLP5WD2V0g-h0oueQ3Y2wZR2tyRLQX-9KRUPHnoamHmfYeYZkUHbtZaQCYWcAhVPuxyPmBdAVQ5lDoW8IUOqZJUVVVkOyBCAQlYKzu_IKMYdAEhZsSGZHDyG7dtiNYs8h-nzdBms_baZb-_JrTP7aB9-65h8LBfv83W22a5e57NNhozRPkMhEClA5WomJK9qsM5AwZljzqbLpKW1U6ZIo6ZS6LBR3AhTcWwaVquSjcnjZe-n2etj8AcTvnRnvF7PNvrcAyqBCVWeaMrSSxZDF2Ow7g-goM8e9E4nD_rsQUOpk4fEyH8M-t70vmv7YPz-KvlyIW16_-Rt0BG9bdE2PljsddP5K_QPxVR2TQ
CitedBy_id crossref_primary_10_1016_j_nuclphysb_2021_115307
crossref_primary_10_1007_JHEP04_2020_116
crossref_primary_10_1007_JHEP07_2025_014
crossref_primary_10_1007_JHEP04_2021_284
crossref_primary_10_1007_JHEP11_2019_159
crossref_primary_10_1088_1475_7516_2023_05_008
crossref_primary_10_1088_1475_7516_2025_01_110
crossref_primary_10_1088_1475_7516_2025_05_006
crossref_primary_10_1088_1475_7516_2021_03_075
crossref_primary_10_1140_epjc_s10052_023_11377_2
crossref_primary_10_1088_1361_6471_ac65a6
crossref_primary_10_1007_JHEP01_2020_162
crossref_primary_10_1140_epjs_s11734_024_01134_1
crossref_primary_10_1140_epjst_e2020_000198_1
crossref_primary_10_1007_JHEP07_2024_204
crossref_primary_10_1007_s11433_018_9322_7
crossref_primary_10_1016_j_dark_2021_100909
crossref_primary_10_1007_JHEP06_2023_001
crossref_primary_10_1103_PhysRevD_111_015014
crossref_primary_10_1007_JHEP06_2021_072
crossref_primary_10_1088_1361_6471_ad557c
crossref_primary_10_1088_1475_7516_2023_11_074
crossref_primary_10_1007_JHEP06_2020_033
crossref_primary_10_1016_j_nuclphysb_2022_115810
crossref_primary_10_1007_JHEP09_2022_083
crossref_primary_10_1088_1475_7516_2018_11_050
crossref_primary_10_1007_JHEP09_2024_104
crossref_primary_10_1007_JHEP01_2020_147
crossref_primary_10_1016_j_nuclphysb_2024_116591
crossref_primary_10_1140_epjc_s10052_025_14622_y
crossref_primary_10_1007_JHEP09_2024_113
crossref_primary_10_1088_1475_7516_2018_11_048
crossref_primary_10_1016_j_physletb_2023_138217
crossref_primary_10_1016_j_cpc_2020_107773
crossref_primary_10_1016_j_dark_2018_09_006
crossref_primary_10_1088_1674_1137_43_10_103102
crossref_primary_10_1088_1475_7516_2020_04_034
crossref_primary_10_1088_1674_1137_ac67d0
crossref_primary_10_1007_JHEP02_2025_135
crossref_primary_10_1016_j_nuclphysb_2021_115404
crossref_primary_10_1016_j_nuclphysb_2022_115967
crossref_primary_10_1007_JHEP02_2024_207
crossref_primary_10_1007_JHEP07_2022_027
crossref_primary_10_1016_j_physletb_2025_139790
crossref_primary_10_1016_j_cpc_2025_109766
crossref_primary_10_1016_j_nuclphysb_2022_116015
crossref_primary_10_1140_epjc_s10052_019_7374_3
crossref_primary_10_1007_JHEP11_2024_086
crossref_primary_10_1007_JHEP07_2021_026
crossref_primary_10_1016_j_cpc_2023_108905
crossref_primary_10_1007_JHEP06_2024_179
crossref_primary_10_1007_JHEP03_2023_182
crossref_primary_10_1093_ptep_ptae142
crossref_primary_10_1103_PhysRevD_111_015039
crossref_primary_10_1007_JHEP11_2021_084
crossref_primary_10_1140_epjc_s10052_024_13633_5
crossref_primary_10_1088_1475_7516_2023_09_015
crossref_primary_10_1140_epjc_s10052_024_13176_9
crossref_primary_10_1016_j_physletb_2021_136609
crossref_primary_10_1088_1475_7516_2019_03_012
crossref_primary_10_1088_1475_7516_2025_03_071
crossref_primary_10_1016_j_physletb_2021_136292
crossref_primary_10_1088_1475_7516_2021_10_026
crossref_primary_10_1088_1475_7516_2019_03_019
crossref_primary_10_1088_1475_7516_2024_07_048
crossref_primary_10_1007_JHEP04_2021_146
crossref_primary_10_1007_JHEP06_2020_007
crossref_primary_10_1007_JHEP09_2021_146
crossref_primary_10_1088_1674_1137_43_11_113102
crossref_primary_10_1140_epjc_s10052_024_12689_7
crossref_primary_10_1007_JHEP02_2021_010
crossref_primary_10_1140_epjc_s10052_024_13407_z
crossref_primary_10_1007_JHEP05_2021_234
crossref_primary_10_1007_JHEP03_2020_022
crossref_primary_10_1016_j_nuclphysb_2021_115469
crossref_primary_10_1007_JHEP05_2020_050
crossref_primary_10_3389_fphy_2022_838531
crossref_primary_10_1007_JHEP11_2022_133
crossref_primary_10_1140_epjc_s10052_025_14632_w
crossref_primary_10_1016_j_physletb_2025_139690
crossref_primary_10_1007_JHEP05_2020_057
crossref_primary_10_1016_j_physletb_2020_135890
crossref_primary_10_1007_JHEP07_2022_091
crossref_primary_10_1007_JHEP05_2024_076
crossref_primary_10_1088_1475_7516_2025_02_072
crossref_primary_10_1140_epjc_s10052_022_10801_3
crossref_primary_10_1007_JHEP06_2023_163
crossref_primary_10_1007_JHEP11_2021_202
crossref_primary_10_1007_JHEP03_2020_018
crossref_primary_10_1016_j_physletb_2019_134823
crossref_primary_10_1140_epjc_s10052_021_09012_z
crossref_primary_10_1140_epjp_s13360_022_03432_w
crossref_primary_10_1140_epjc_s10052_022_10507_6
crossref_primary_10_1016_j_nuclphysb_2020_115057
crossref_primary_10_1103_PhysRevD_111_095015
crossref_primary_10_1007_JHEP04_2021_098
crossref_primary_10_1007_JHEP06_2021_136
crossref_primary_10_1016_j_dark_2023_101198
crossref_primary_10_1140_epjc_s10052_022_10051_3
crossref_primary_10_1093_mnras_stab1930
crossref_primary_10_1007_JHEP10_2021_044
crossref_primary_10_1007_JHEP09_2021_125
crossref_primary_10_1016_j_cpc_2023_109057
crossref_primary_10_1103_PhysRevD_111_015046
crossref_primary_10_1088_1475_7516_2021_08_038
crossref_primary_10_1007_JHEP03_2022_034
crossref_primary_10_1007_JHEP08_2020_085
crossref_primary_10_1016_j_physletb_2021_136118
crossref_primary_10_1088_1674_1137_ac538c
crossref_primary_10_1016_j_ppnp_2021_103881
crossref_primary_10_1140_epjc_s10052_021_09170_0
crossref_primary_10_1007_JHEP09_2021_206
crossref_primary_10_1088_1742_6596_1380_1_012093
crossref_primary_10_1007_JHEP04_2020_015
crossref_primary_10_1140_epjc_s10052_022_10990_x
crossref_primary_10_1140_epjc_s10052_020_8080_x
crossref_primary_10_1007_JHEP02_2022_110
crossref_primary_10_1007_JHEP03_2021_130
crossref_primary_10_1007_JHEP12_2022_167
crossref_primary_10_1007_JHEP11_2023_037
crossref_primary_10_1007_JHEP12_2022_049
crossref_primary_10_1140_epjc_s10052_021_09823_0
crossref_primary_10_1007_JHEP06_2022_048
crossref_primary_10_1007_JHEP09_2023_182
crossref_primary_10_1007_JHEP04_2020_144
crossref_primary_10_1088_1475_7516_2021_04_068
crossref_primary_10_1088_1475_7516_2022_11_055
crossref_primary_10_1007_JHEP12_2021_116
crossref_primary_10_1088_1674_1137_ac1577
crossref_primary_10_1140_epjc_s10052_022_10440_8
crossref_primary_10_1140_epjc_s10052_022_10778_z
crossref_primary_10_1088_1475_7516_2025_06_060
crossref_primary_10_3390_sym13060991
crossref_primary_10_1016_j_nuclphysb_2020_115154
crossref_primary_10_1016_j_nuclphysb_2020_115276
crossref_primary_10_1007_JHEP10_2018_014
crossref_primary_10_1007_JHEP09_2018_098
crossref_primary_10_1007_JHEP10_2021_063
crossref_primary_10_1007_JHEP12_2022_032
crossref_primary_10_1016_j_nuclphysb_2024_116524
crossref_primary_10_1007_JHEP07_2020_136
crossref_primary_10_1016_j_cpc_2024_109133
crossref_primary_10_1016_j_cpc_2023_109075
crossref_primary_10_1016_j_physletb_2020_135427
crossref_primary_10_1088_1475_7516_2023_04_045
crossref_primary_10_1007_JHEP02_2021_099
crossref_primary_10_1007_JHEP06_2025_126
crossref_primary_10_1007_JHEP06_2019_095
crossref_primary_10_1016_j_nuclphysb_2020_115300
crossref_primary_10_1140_epjc_s10052_021_09198_2
crossref_primary_10_1007_JHEP07_2021_081
crossref_primary_10_1088_1742_6596_2156_1_012028
crossref_primary_10_1088_1475_7516_2025_03_003
crossref_primary_10_1016_j_cpc_2023_108729
crossref_primary_10_1088_1475_7516_2022_05_004
crossref_primary_10_1007_JHEP05_2019_115
crossref_primary_10_1088_1742_6596_2156_1_012031
crossref_primary_10_1140_epjc_s10052_025_13743_8
crossref_primary_10_1140_epjc_s10052_021_09597_5
crossref_primary_10_1140_epjc_s10052_022_10532_5
crossref_primary_10_1007_JHEP08_2022_068
crossref_primary_10_1140_epjc_s10052_020_08795_x
crossref_primary_10_1007_JHEP06_2022_026
crossref_primary_10_1016_j_cpc_2023_109027
crossref_primary_10_3390_sym13122406
crossref_primary_10_3389_fphy_2023_1285986
crossref_primary_10_1140_epjc_s10052_021_08869_4
crossref_primary_10_1007_JHEP11_2024_114
crossref_primary_10_1016_j_nuclphysb_2022_115778
crossref_primary_10_1007_JHEP10_2020_044
crossref_primary_10_1016_j_physletb_2025_139268
crossref_primary_10_1007_JHEP07_2019_136
crossref_primary_10_1103_PhysRevD_111_075023
crossref_primary_10_1007_JHEP07_2023_017
crossref_primary_10_1007_JHEP12_2024_091
crossref_primary_10_1007_JHEP02_2020_039
crossref_primary_10_1007_JHEP02_2019_140
crossref_primary_10_1007_JHEP10_2019_152
crossref_primary_10_1007_JHEP01_2025_129
crossref_primary_10_1007_JHEP07_2020_152
crossref_primary_10_1103_5n75_wbcj
crossref_primary_10_1007_JHEP05_2021_079
crossref_primary_10_1016_j_physletb_2019_135013
crossref_primary_10_1088_1475_7516_2020_09_040
crossref_primary_10_1007_JHEP04_2025_118
crossref_primary_10_1016_j_physletb_2019_134961
crossref_primary_10_1007_JHEP04_2023_032
crossref_primary_10_1140_epjc_s10052_024_13108_7
crossref_primary_10_1007_JHEP08_2022_085
crossref_primary_10_1140_epjc_s10052_023_12235_x
crossref_primary_10_1016_j_physletb_2022_137214
crossref_primary_10_1007_JHEP02_2020_068
crossref_primary_10_1007_JHEP09_2024_064
crossref_primary_10_1016_j_cpc_2022_108311
crossref_primary_10_1088_1475_7516_2021_05_063
crossref_primary_10_1007_JHEP02_2023_234
crossref_primary_10_1134_S1547477123050084
crossref_primary_10_1140_epjc_s10052_021_09535_5
crossref_primary_10_1007_JHEP11_2023_079
crossref_primary_10_1088_1674_1137_ac0c0e
crossref_primary_10_1140_epjp_s13360_025_06551_2
crossref_primary_10_1088_1475_7516_2023_04_068
crossref_primary_10_1016_j_physletb_2020_135757
crossref_primary_10_1007_JHEP03_2025_157
crossref_primary_10_1007_JHEP07_2024_044
crossref_primary_10_1088_1475_7516_2024_10_001
crossref_primary_10_1007_JHEP08_2024_235
crossref_primary_10_1016_j_nuclphysb_2022_115677
crossref_primary_10_1140_epjc_s10052_023_11495_x
crossref_primary_10_1007_JHEP03_2019_204
crossref_primary_10_1016_j_nuclphysb_2021_115495
crossref_primary_10_1088_1475_7516_2019_10_047
crossref_primary_10_1088_1475_7516_2023_08_052
crossref_primary_10_1140_epjc_s10052_025_14057_5
crossref_primary_10_1140_epjc_s10052_024_13158_x
crossref_primary_10_1016_j_physletb_2021_136455
crossref_primary_10_1016_j_physletb_2020_136038
crossref_primary_10_1088_1475_7516_2023_11_024
crossref_primary_10_1007_JHEP05_2025_055
crossref_primary_10_1007_JHEP07_2025_195
crossref_primary_10_1016_j_physletb_2023_137982
crossref_primary_10_1007_JHEP11_2023_186
crossref_primary_10_1007_JHEP11_2021_112
crossref_primary_10_1016_j_physletb_2021_136458
crossref_primary_10_1007_JHEP07_2024_037
crossref_primary_10_1007_JHEP06_2019_052
crossref_primary_10_1140_epjc_s10052_021_09218_1
crossref_primary_10_1007_JHEP02_2020_130
crossref_primary_10_1007_JHEP10_2022_126
crossref_primary_10_1140_epjc_s10052_024_12900_9
crossref_primary_10_1088_1475_7516_2023_05_049
crossref_primary_10_1140_epjc_s10052_025_14635_7
crossref_primary_10_3103_S0027134924701182
crossref_primary_10_1007_JHEP01_2023_041
crossref_primary_10_1088_1475_7516_2019_02_051
crossref_primary_10_1007_JHEP05_2021_129
crossref_primary_10_1007_JHEP10_2020_080
crossref_primary_10_1007_s40042_023_00976_7
crossref_primary_10_1103_v9ky_jfnb
crossref_primary_10_1140_epjc_s10052_022_10541_4
crossref_primary_10_1007_JHEP02_2020_118
crossref_primary_10_1007_JHEP09_2021_080
crossref_primary_10_1016_j_physletb_2021_136076
crossref_primary_10_1088_1475_7516_2022_03_041
crossref_primary_10_1140_epjc_s10052_023_11368_3
crossref_primary_10_1007_JHEP02_2019_186
crossref_primary_10_1007_JHEP09_2018_037
crossref_primary_10_1088_1475_7516_2020_08_011
crossref_primary_10_1140_epjc_s10052_023_11612_w
crossref_primary_10_1016_j_physletb_2021_136639
crossref_primary_10_1093_ptep_ptad021
crossref_primary_10_1140_epjc_s10052_022_10188_1
crossref_primary_10_1140_epjc_s10052_024_13501_2
crossref_primary_10_1007_JHEP01_2022_025
crossref_primary_10_1007_JHEP01_2022_144
crossref_primary_10_1007_JHEP05_2021_150
crossref_primary_10_1016_j_dark_2024_101746
crossref_primary_10_1140_epjc_s10052_019_7186_5
crossref_primary_10_1140_epjc_s10052_022_10139_w
crossref_primary_10_1007_JHEP04_2021_218
crossref_primary_10_1007_JHEP08_2022_169
crossref_primary_10_1007_JHEP11_2019_013
crossref_primary_10_1088_1475_7516_2025_02_011
crossref_primary_10_1140_epjc_s10052_024_12440_2
crossref_primary_10_1088_1475_7516_2024_02_052
crossref_primary_10_1088_1475_7516_2025_02_010
crossref_primary_10_1140_epjc_s10052_025_14184_z
crossref_primary_10_1140_epjc_s10052_019_6881_6
crossref_primary_10_1007_JHEP02_2021_163
crossref_primary_10_1007_JHEP07_2022_111
crossref_primary_10_1007_JHEP10_2021_215
crossref_primary_10_1007_JHEP02_2024_119
crossref_primary_10_1007_JHEP09_2020_030
crossref_primary_10_1088_1475_7516_2021_09_011
crossref_primary_10_1140_epjc_s10052_023_11493_z
crossref_primary_10_1140_epjc_s10052_021_09828_9
crossref_primary_10_1088_1475_7516_2020_03_026
crossref_primary_10_1140_epjc_s10052_020_7933_7
crossref_primary_10_1007_JHEP11_2022_064
crossref_primary_10_1007_JHEP05_2020_123
crossref_primary_10_1088_1475_7516_2024_05_015
crossref_primary_10_1140_epjc_s10052_024_12660_6
crossref_primary_10_1007_JHEP02_2019_048
crossref_primary_10_1007_JHEP11_2020_112
crossref_primary_10_1088_1475_7516_2024_06_049
crossref_primary_10_1103_73xh_7hhz
Cites_doi 10.1007/JHEP03(2015)048
10.1103/PhysRevD.95.095002
10.1103/PhysRevLett.88.091304
10.1007/JHEP10(2016)129
10.1088/1475-7516/2014/01/034
10.1088/1475-7516/2014/07/015
10.1088/1475-7516/2014/10/063
10.1103/PhysRevD.96.103510
10.1016/j.physletb.2016.07.042
10.1088/1475-7516/2016/03/018
10.1088/1475-7516/2015/09/023
10.1088/1475-7516/2016/01/006
10.1088/0067-0049/208/2/19
10.1088/1475-7516/2015/11/001
10.1088/1475-7516/2014/03/028
10.1142/S0217732316300056
10.1088/1475-7516/2015/06/011
10.1016/j.cpc.2015.03.003
10.1088/1475-7516/2012/05/034
10.1016/j.cpc.2011.03.019
10.1088/1475-7516/2016/07/005
10.1016/j.physrep.2004.08.031
10.1103/PhysRevLett.118.021303
10.1007/JHEP11(2013)193
10.1103/PhysRevLett.110.241306
10.1016/j.cpc.2006.11.008
10.1007/JHEP10(2015)134
10.1016/S0010-4655(02)00596-9
10.1103/PhysRevD.94.063506
10.1007/JHEP08(2011)060
10.1103/PhysRevLett.117.111301
10.1016/j.cpc.2014.04.012
10.1016/0550-3213(91)90438-4
10.1103/PhysRevD.91.095010
10.1103/PhysRevLett.118.101802
10.1103/PhysRevLett.117.121303
10.1051/0004-6361/201525830
10.1088/1475-7516/2014/01/003
10.1007/JHEP03(2010)080
10.1088/1475-7516/2013/11/039
10.1103/PhysRevLett.118.251301
10.1088/1475-7516/2004/07/008
10.1016/j.physletb.2015.06.018
10.1016/j.cpc.2013.01.014
10.1016/j.dark.2014.04.001
10.1088/1475-7516/2016/08/035
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.cpc.2018.04.027
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1879-2944
EndPage 186
ExternalDocumentID oai:HAL:hal-01703684v1
10_1016_j_cpc_2018_04_027
S0010465518301437
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
ID FETCH-LOGICAL-c331t-c66cc1009fb36759b0efa0253f3fe0167e1bf8a2759d98cfcd85a6a95cdd3b843
ISICitedReferencesCount 401
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000437964200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4655
IngestDate Tue Oct 14 20:53:33 EDT 2025
Sat Nov 29 03:58:13 EST 2025
Tue Nov 18 21:58:09 EST 2025
Fri Feb 23 02:49:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords micrOMEGAs
Relic density
Freeze-in
Dark matter
Boltzmann equation: solution
numerical calculations
new physics
dark matter: interaction
dark matter: relic density
dark matter: production
programming
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-c66cc1009fb36759b0efa0253f3fe0167e1bf8a2759d98cfcd85a6a95cdd3b843
ORCID 0000-0002-9621-4948
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_01703684v1
crossref_primary_10_1016_j_cpc_2018_04_027
crossref_citationtrail_10_1016_j_cpc_2018_04_027
elsevier_sciencedirect_doi_10_1016_j_cpc_2018_04_027
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Computer physics communications
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kaneta, Lee, Yun (b15) 2017; 118
constraints.
Mambrini, Olive, Quevillon, Zaldivar (b23) 2013; 110
Khachatryan (b13) 2016; 10
Chu, Mambrini, Quevillon, Zaldivar (b21) 2014; 1401
Amole (b8) 2017; 118
Belyaev, Christensen, Pukhov (b63) 2013; 184
XENON Collaboration, E. Aprile, et al., First dark matter search results from the XENON1T experiment.
Merle, Niro, Schmidt (b45) 2014; 1403
Bernal, Chu, Garcia-Cely, Hambye, Zaldivar (b60) 2016; 1603
Bhupal Dev, Mazumdar, Qutub (b20) 2014; 2
Chung, Kolb, Riotto (b57) 1999; 59
J. Kim, J. McDonald, A clockwork Higgs portal model for freeze-in dark matter.
McDonald (b32) 2002; 88
Alloul, Christensen, Degrande, Duhr, Fuks (b62) 2014; 185
Arbey, Mahmoudi (b42) 2011; 182
A. Ghosh, T. Mondal, B. Mukhopadhyaya, Heavy stable charged tracks as signatures of non-thermal dark matter at the LHC: a study in some non-supersymmetric scenarios.
.
Shakya (b26) 2016; 31
M. Heikinheimo, T. Tenkanen, K. Tuominen, Prospects for indirect detection of frozen-in dark matter.
Tan (b6) 2016; 117
[astro-ph.CO].
Nurmi, Tenkanen, Tuominen (b28) 2015; 1511
M. Pandey, D. Majumdar, K.P. Modak, Two component feebly interacting massive particle (FIMP) dark matter
Abdallah (b10) 2016; 117
Kolb, Turner (b53) 1990; 69
Backovic, Kong, McCaskey (b43) 2014; 5–6
Akerib (b7) 2017; 118
Garcia, Mambrini, Olive, Peloso (b58) 2017; 96
Klasen, Yaguna (b22) 2013; 1311
Gondolo, Gelmini (b54) 1991; 360
D. Abercrombie, et al. Dark matter benchmark models for early LHC Run-2 searches: Report of the ATLAS/CMS dark matter forum.
J. Silk, et al., Particle dark matter: Observations, models and searches, 2010.
Blennow, Fernandez-Martinez, Zaldivar (b19) 2014; 1401
N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, V. Vaskonen, The dawn of FIMP dark matter: A review of models and constraints.
[hep-ph].
Heikinheimo, Tenkanen, Tuominen, Vaskonen (b16) 2016; 94
Aad (b12) 2015; 10
[hep-ex].
Belanger, Boudjema, Pukhov, Semenov (b40) 2002; 149
Gondolo, Edsjo, Ullio, Bergstrom, Schelke, Baltz (b41) 2004; 0407
Aaboud (b50) 2016; 760
Arcadi, Covi, Dradi (b49) 2014; 1410
Arcadi, Ghosh, Mambrini, Pierre (b30) 2016; 1607
Belanger, Boudjema, Pukhov, Semenov (b39) 2007; 176
Ade (b2) 2016; 594
Belanger, Boudjema, Pukhov, Semenov (b55) 2015; 192
K.J. Bae, A. Kamada, S.P. Liew, K. Yanagi, Light Axinos from Freeze-in: production processes, phase space distributions, and Ly-
Ahnen (b9) 2016; 1602
Merle, Totzauer (b27) 2015; 1506
Hall, Jedamzik, March-Russell, West (b33) 2010; 03
Elahi, Kolda, Unwin (b34) 2015; 03
Bernal, Chu (b61) 2016; 1601
D. Barducci, G. Belanger, J. Bernon, F. Boudjema, J.D. Silva, S. Kraml, U. Laa, A. Pukhov, Collider limits on new physics within micrOMEGAs43.
Hinshaw (b1) 2013; 208
G. Bélanger, A. Goudelis, A. Pukhov, B. Zaldívar, in progress.
McDonald (b35) 2016; 1608
An, Pospelov, Pradler, Ritz (b46) 2015; 747
Essig, Kuflik, McDermott, Volansky, Zurek (b47) 2013; 11
Chu, Hambye, Tytgat (b25) 2012; 1205
Giesen, Boudaud, Génolini, Poulin, Cirelli, Salati, Serpico (b11) 2015; 1509
Yaser Ayazi, Firouzabadi, Zakeri (b17) 2016; 43
Molinaro, Yaguna, Zapata (b18) 2014; 1407
Mambrini, Nagata, Olive, Quevillon, Zheng (b36) 2015; 91
Yaguna (b24) 2011; 08
Benakli, Chen, Dudas, Mambrini (b31) 2017; 95
Bertone, Hooper, Silk (b3) 2005; 405
Khachatryan (b51) 2016; 94
S.-L. Chen, Z. Kang, On ultraviolet freeze-in dark matter during reheating.
Hinshaw (10.1016/j.cpc.2018.04.027_b1) 2013; 208
Merle (10.1016/j.cpc.2018.04.027_b27) 2015; 1506
Elahi (10.1016/j.cpc.2018.04.027_b34) 2015; 03
Heikinheimo (10.1016/j.cpc.2018.04.027_b16) 2016; 94
10.1016/j.cpc.2018.04.027_b44
Chu (10.1016/j.cpc.2018.04.027_b25) 2012; 1205
Kaneta (10.1016/j.cpc.2018.04.027_b15) 2017; 118
Tan (10.1016/j.cpc.2018.04.027_b6) 2016; 117
10.1016/j.cpc.2018.04.027_b37
10.1016/j.cpc.2018.04.027_b38
Chung (10.1016/j.cpc.2018.04.027_b57) 1999; 59
Belanger (10.1016/j.cpc.2018.04.027_b39) 2007; 176
Garcia (10.1016/j.cpc.2018.04.027_b58) 2017; 96
10.1016/j.cpc.2018.04.027_b52
Belanger (10.1016/j.cpc.2018.04.027_b40) 2002; 149
Bhupal Dev (10.1016/j.cpc.2018.04.027_b20) 2014; 2
Belyaev (10.1016/j.cpc.2018.04.027_b63) 2013; 184
Abdallah (10.1016/j.cpc.2018.04.027_b10) 2016; 117
Akerib (10.1016/j.cpc.2018.04.027_b7) 2017; 118
10.1016/j.cpc.2018.04.027_b48
Khachatryan (10.1016/j.cpc.2018.04.027_b51) 2016; 94
Molinaro (10.1016/j.cpc.2018.04.027_b18) 2014; 1407
Belanger (10.1016/j.cpc.2018.04.027_b55) 2015; 192
Chu (10.1016/j.cpc.2018.04.027_b21) 2014; 1401
Khachatryan (10.1016/j.cpc.2018.04.027_b13) 2016; 10
Shakya (10.1016/j.cpc.2018.04.027_b26) 2016; 31
Ade (10.1016/j.cpc.2018.04.027_b2) 2016; 594
10.1016/j.cpc.2018.04.027_b64
10.1016/j.cpc.2018.04.027_b65
Bertone (10.1016/j.cpc.2018.04.027_b3) 2005; 405
Ahnen (10.1016/j.cpc.2018.04.027_b9) 2016; 1602
McDonald (10.1016/j.cpc.2018.04.027_b32) 2002; 88
Arcadi (10.1016/j.cpc.2018.04.027_b30) 2016; 1607
Benakli (10.1016/j.cpc.2018.04.027_b31) 2017; 95
Essig (10.1016/j.cpc.2018.04.027_b47) 2013; 11
Gondolo (10.1016/j.cpc.2018.04.027_b41) 2004; 0407
Nurmi (10.1016/j.cpc.2018.04.027_b28) 2015; 1511
An (10.1016/j.cpc.2018.04.027_b46) 2015; 747
Alloul (10.1016/j.cpc.2018.04.027_b62) 2014; 185
McDonald (10.1016/j.cpc.2018.04.027_b35) 2016; 1608
Giesen (10.1016/j.cpc.2018.04.027_b11) 2015; 1509
Klasen (10.1016/j.cpc.2018.04.027_b22) 2013; 1311
10.1016/j.cpc.2018.04.027_b56
10.1016/j.cpc.2018.04.027_b14
Yaser Ayazi (10.1016/j.cpc.2018.04.027_b17) 2016; 43
10.1016/j.cpc.2018.04.027_b59
Yaguna (10.1016/j.cpc.2018.04.027_b24) 2011; 08
Amole (10.1016/j.cpc.2018.04.027_b8) 2017; 118
Aad (10.1016/j.cpc.2018.04.027_b12) 2015; 10
10.1016/j.cpc.2018.04.027_b5
10.1016/j.cpc.2018.04.027_b4
Aaboud (10.1016/j.cpc.2018.04.027_b50) 2016; 760
Arcadi (10.1016/j.cpc.2018.04.027_b49) 2014; 1410
Hall (10.1016/j.cpc.2018.04.027_b33) 2010; 03
Merle (10.1016/j.cpc.2018.04.027_b45) 2014; 1403
Gondolo (10.1016/j.cpc.2018.04.027_b54) 1991; 360
Blennow (10.1016/j.cpc.2018.04.027_b19) 2014; 1401
Mambrini (10.1016/j.cpc.2018.04.027_b23) 2013; 110
Kolb (10.1016/j.cpc.2018.04.027_b53) 1990; 69
Bernal (10.1016/j.cpc.2018.04.027_b60) 2016; 1603
Bernal (10.1016/j.cpc.2018.04.027_b61) 2016; 1601
Backovic (10.1016/j.cpc.2018.04.027_b43) 2014; 5–6
Mambrini (10.1016/j.cpc.2018.04.027_b36) 2015; 91
10.1016/j.cpc.2018.04.027_b29
Arbey (10.1016/j.cpc.2018.04.027_b42) 2011; 182
References_xml – volume: 176
  start-page: 367
  year: 2007
  end-page: 382
  ident: b39
  publication-title: Comput. Phys. Comm.
– reference: constraints.
– reference: D. Abercrombie, et al. Dark matter benchmark models for early LHC Run-2 searches: Report of the ATLAS/CMS dark matter forum.
– reference: K.J. Bae, A. Kamada, S.P. Liew, K. Yanagi, Light Axinos from Freeze-in: production processes, phase space distributions, and Ly-
– volume: 117
  year: 2016
  ident: b6
  publication-title: Phys. Rev. Lett.
– volume: 1205
  start-page: 034
  year: 2012
  ident: b25
  publication-title: J. Cosmol. Astropart. Phys.
– reference: A. Ghosh, T. Mondal, B. Mukhopadhyaya, Heavy stable charged tracks as signatures of non-thermal dark matter at the LHC: a study in some non-supersymmetric scenarios.
– volume: 91
  year: 2015
  ident: b36
  publication-title: Phys. Rev. D
– volume: 11
  start-page: 193
  year: 2013
  ident: b47
  publication-title: J. High Energy Phys.
– reference: J. Silk, et al., Particle dark matter: Observations, models and searches, 2010.
– reference: [hep-ex].
– volume: 95
  year: 2017
  ident: b31
  publication-title: Phys. Rev. D
– volume: 110
  year: 2013
  ident: b23
  publication-title: Phys. Rev. Lett.
– volume: 1511
  start-page: 001
  year: 2015
  ident: b28
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 1509
  start-page: 023
  year: 2015
  ident: b11
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 0407
  start-page: 008
  year: 2004
  ident: b41
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 118
  year: 2017
  ident: b15
  publication-title: Phys. Rev. Lett.
– volume: 117
  year: 2016
  ident: b10
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 129
  year: 2016
  ident: b13
  publication-title: J. High Energy Phys.
– reference: J. Kim, J. McDonald, A clockwork Higgs portal model for freeze-in dark matter.
– volume: 184
  start-page: 1729
  year: 2013
  end-page: 1769
  ident: b63
  publication-title: Comput. Phys. Comm.
– volume: 2
  start-page: 26
  year: 2014
  ident: b20
  publication-title: Front. Phys.
– volume: 03
  start-page: 080
  year: 2010
  ident: b33
  publication-title: J. High Energy Phys.
– volume: 43
  year: 2016
  ident: b17
  publication-title: J. Phys. G
– volume: 96
  year: 2017
  ident: b58
  publication-title: Phys. Rev. D
– reference: D. Barducci, G. Belanger, J. Bernon, F. Boudjema, J.D. Silva, S. Kraml, U. Laa, A. Pukhov, Collider limits on new physics within micrOMEGAs43.
– volume: 1602
  start-page: 039
  year: 2016
  ident: b9
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 5–6
  start-page: 18
  year: 2014
  end-page: 28
  ident: b43
  publication-title: Physics of the Dark Universe
– volume: 208
  start-page: 19
  year: 2013
  ident: b1
  publication-title: Astrophys. J. Suppl.
– reference: XENON Collaboration, E. Aprile, et al., First dark matter search results from the XENON1T experiment.
– volume: 360
  start-page: 145
  year: 1991
  end-page: 179
  ident: b54
  publication-title: Nuclear Phys. B
– volume: 594
  start-page: A13
  year: 2016
  ident: b2
  publication-title: Astron. Astrophys.
– volume: 182
  start-page: 1582
  year: 2011
  end-page: 1583
  ident: b42
  publication-title: Comput. Phys. Comm.
– volume: 1311
  start-page: 039
  year: 2013
  ident: b22
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 1603
  start-page: 018
  year: 2016
  ident: b60
  publication-title: J. Cosmol. Astropart. Phys.
– reference: G. Bélanger, A. Goudelis, A. Pukhov, B. Zaldívar, in progress.
– volume: 94
  year: 2016
  ident: b51
  publication-title: Phys. Rev. D
– reference: M. Pandey, D. Majumdar, K.P. Modak, Two component feebly interacting massive particle (FIMP) dark matter,
– volume: 88
  year: 2002
  ident: b32
  publication-title: Phys. Rev. Lett.
– volume: 185
  start-page: 2250
  year: 2014
  end-page: 2300
  ident: b62
  publication-title: Comput. Phys. Comm.
– volume: 31
  start-page: 1630005
  year: 2016
  ident: b26
  publication-title: Modern Phys. Lett. A
– reference: S.-L. Chen, Z. Kang, On ultraviolet freeze-in dark matter during reheating.
– volume: 10
  start-page: 134
  year: 2015
  ident: b12
  publication-title: J. High Energy Phys.
– volume: 1407
  start-page: 015
  year: 2014
  ident: b18
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 192
  start-page: 322
  year: 2015
  end-page: 329
  ident: b55
  publication-title: Comput. Phys. Comm.
– volume: 405
  start-page: 279
  year: 2005
  end-page: 390
  ident: b3
  publication-title: Phys. Rep.
– volume: 1401
  start-page: 034
  year: 2014
  ident: b21
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 69
  start-page: 1
  year: 1990
  end-page: 547
  ident: b53
  publication-title: Front. Phys.
– reference:  [astro-ph.CO].
– volume: 1506
  start-page: 011
  year: 2015
  ident: b27
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 747
  start-page: 331
  year: 2015
  end-page: 338
  ident: b46
  publication-title: Phys. Lett. B
– volume: 1608
  start-page: 035
  year: 2016
  ident: b35
  publication-title: J. Cosmol. Astropart. Phys.
– reference: N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, V. Vaskonen, The dawn of FIMP dark matter: A review of models and constraints.
– volume: 03
  start-page: 048
  year: 2015
  ident: b34
  publication-title: J. High Energy Phys.
– reference:  [hep-ph].
– volume: 760
  start-page: 647
  year: 2016
  end-page: 665
  ident: b50
  publication-title: Phys. Lett. B
– reference: .
– volume: 118
  year: 2017
  ident: b7
  publication-title: Phys. Rev. Lett.
– volume: 1403
  start-page: 028
  year: 2014
  ident: b45
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 118
  year: 2017
  ident: b8
  publication-title: Phys. Rev. Lett.
– volume: 1410
  start-page: 063
  year: 2014
  ident: b49
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 94
  year: 2016
  ident: b16
  publication-title: Phys. Rev. D
– volume: 1607
  start-page: 005
  year: 2016
  ident: b30
  publication-title: J. Cosmol. Astropart. Phys.
– reference: M. Heikinheimo, T. Tenkanen, K. Tuominen, Prospects for indirect detection of frozen-in dark matter.
– volume: 1401
  start-page: 003
  year: 2014
  ident: b19
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 08
  start-page: 060
  year: 2011
  ident: b24
  publication-title: J. High Energy Phys.
– volume: 59
  year: 1999
  ident: b57
  publication-title: Phys. Rev D
– volume: 149
  start-page: 103
  year: 2002
  end-page: 120
  ident: b40
  publication-title: Comput. Phys. Comm.
– volume: 1601
  start-page: 006
  year: 2016
  ident: b61
  publication-title: J. Cosmol. Astropart. Phys.
– ident: 10.1016/j.cpc.2018.04.027_b14
– volume: 03
  start-page: 048
  year: 2015
  ident: 10.1016/j.cpc.2018.04.027_b34
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2015)048
– volume: 95
  issue: 9
  year: 2017
  ident: 10.1016/j.cpc.2018.04.027_b31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.095002
– volume: 88
  year: 2002
  ident: 10.1016/j.cpc.2018.04.027_b32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.091304
– volume: 69
  start-page: 1
  year: 1990
  ident: 10.1016/j.cpc.2018.04.027_b53
  publication-title: Front. Phys.
– volume: 2
  start-page: 26
  year: 2014
  ident: 10.1016/j.cpc.2018.04.027_b20
  publication-title: Front. Phys.
– volume: 10
  start-page: 129
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b13
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP10(2016)129
– volume: 1401
  start-page: 034
  year: 2014
  ident: 10.1016/j.cpc.2018.04.027_b21
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/01/034
– volume: 1407
  start-page: 015
  year: 2014
  ident: 10.1016/j.cpc.2018.04.027_b18
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/07/015
– volume: 1410
  start-page: 063
  issue: 10
  year: 2014
  ident: 10.1016/j.cpc.2018.04.027_b49
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/10/063
– volume: 96
  issue: 10
  year: 2017
  ident: 10.1016/j.cpc.2018.04.027_b58
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.103510
– ident: 10.1016/j.cpc.2018.04.027_b52
– volume: 760
  start-page: 647
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b50
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2016.07.042
– volume: 1602
  start-page: 039
  issue: 02
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b9
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 1603
  start-page: 018
  issue: 03
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b60
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/03/018
– volume: 1509
  start-page: 023
  issue: 09
  year: 2015
  ident: 10.1016/j.cpc.2018.04.027_b11
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2015/09/023
– ident: 10.1016/j.cpc.2018.04.027_b37
– ident: 10.1016/j.cpc.2018.04.027_b4
– ident: 10.1016/j.cpc.2018.04.027_b56
– volume: 1601
  start-page: 006
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b61
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/01/006
– volume: 208
  start-page: 19
  year: 2013
  ident: 10.1016/j.cpc.2018.04.027_b1
  publication-title: Astrophys. J. Suppl.
  doi: 10.1088/0067-0049/208/2/19
– volume: 94
  issue: 11
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b51
  publication-title: Phys. Rev. D
– volume: 1511
  start-page: 001
  issue: 11
  year: 2015
  ident: 10.1016/j.cpc.2018.04.027_b28
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2015/11/001
– volume: 1403
  start-page: 028
  year: 2014
  ident: 10.1016/j.cpc.2018.04.027_b45
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/03/028
– volume: 43
  issue: 9
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b17
  publication-title: J. Phys. G
– volume: 31
  start-page: 1630005
  issue: 06
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b26
  publication-title: Modern Phys. Lett. A
  doi: 10.1142/S0217732316300056
– volume: 1506
  start-page: 011
  year: 2015
  ident: 10.1016/j.cpc.2018.04.027_b27
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2015/06/011
– volume: 192
  start-page: 322
  year: 2015
  ident: 10.1016/j.cpc.2018.04.027_b55
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2015.03.003
– volume: 59
  year: 1999
  ident: 10.1016/j.cpc.2018.04.027_b57
  publication-title: Phys. Rev D
– volume: 1205
  start-page: 034
  year: 2012
  ident: 10.1016/j.cpc.2018.04.027_b25
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2012/05/034
– volume: 182
  start-page: 1582
  year: 2011
  ident: 10.1016/j.cpc.2018.04.027_b42
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2011.03.019
– volume: 1607
  start-page: 005
  issue: 07
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b30
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/07/005
– volume: 405
  start-page: 279
  year: 2005
  ident: 10.1016/j.cpc.2018.04.027_b3
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2004.08.031
– volume: 118
  issue: 2
  year: 2017
  ident: 10.1016/j.cpc.2018.04.027_b7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.021303
– volume: 11
  start-page: 193
  year: 2013
  ident: 10.1016/j.cpc.2018.04.027_b47
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2013)193
– volume: 110
  issue: 24
  year: 2013
  ident: 10.1016/j.cpc.2018.04.027_b23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.241306
– volume: 176
  start-page: 367
  year: 2007
  ident: 10.1016/j.cpc.2018.04.027_b39
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2006.11.008
– volume: 10
  start-page: 134
  year: 2015
  ident: 10.1016/j.cpc.2018.04.027_b12
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP10(2015)134
– ident: 10.1016/j.cpc.2018.04.027_b29
– volume: 149
  start-page: 103
  year: 2002
  ident: 10.1016/j.cpc.2018.04.027_b40
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/S0010-4655(02)00596-9
– ident: 10.1016/j.cpc.2018.04.027_b64
– volume: 94
  issue: 6
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.063506
– volume: 08
  start-page: 060
  year: 2011
  ident: 10.1016/j.cpc.2018.04.027_b24
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP08(2011)060
– volume: 117
  issue: 11
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.111301
– volume: 185
  start-page: 2250
  year: 2014
  ident: 10.1016/j.cpc.2018.04.027_b62
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2014.04.012
– ident: 10.1016/j.cpc.2018.04.027_b65
– volume: 360
  start-page: 145
  year: 1991
  ident: 10.1016/j.cpc.2018.04.027_b54
  publication-title: Nuclear Phys. B
  doi: 10.1016/0550-3213(91)90438-4
– volume: 91
  issue: 9
  year: 2015
  ident: 10.1016/j.cpc.2018.04.027_b36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.095010
– volume: 118
  issue: 10
  year: 2017
  ident: 10.1016/j.cpc.2018.04.027_b15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.101802
– volume: 117
  issue: 12
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.121303
– ident: 10.1016/j.cpc.2018.04.027_b44
– ident: 10.1016/j.cpc.2018.04.027_b48
– ident: 10.1016/j.cpc.2018.04.027_b5
– volume: 594
  start-page: A13
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b2
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201525830
– volume: 1401
  start-page: 003
  year: 2014
  ident: 10.1016/j.cpc.2018.04.027_b19
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/01/003
– volume: 03
  start-page: 080
  year: 2010
  ident: 10.1016/j.cpc.2018.04.027_b33
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2010)080
– volume: 1311
  start-page: 039
  year: 2013
  ident: 10.1016/j.cpc.2018.04.027_b22
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2013/11/039
– volume: 118
  issue: 25
  year: 2017
  ident: 10.1016/j.cpc.2018.04.027_b8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.251301
– volume: 0407
  start-page: 008
  year: 2004
  ident: 10.1016/j.cpc.2018.04.027_b41
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2004/07/008
– volume: 747
  start-page: 331
  year: 2015
  ident: 10.1016/j.cpc.2018.04.027_b46
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2015.06.018
– ident: 10.1016/j.cpc.2018.04.027_b59
– volume: 184
  start-page: 1729
  year: 2013
  ident: 10.1016/j.cpc.2018.04.027_b63
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2013.01.014
– volume: 5–6
  start-page: 18
  year: 2014
  ident: 10.1016/j.cpc.2018.04.027_b43
  publication-title: Physics of the Dark Universe
  doi: 10.1016/j.dark.2014.04.001
– volume: 1608
  start-page: 035
  issue: 08
  year: 2016
  ident: 10.1016/j.cpc.2018.04.027_b35
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/08/035
– ident: 10.1016/j.cpc.2018.04.027_b38
SSID ssj0007793
Score 2.6934931
Snippet We present a major upgrade of the micrOMEGAs dark matter code to compute the abundance of feebly interacting dark matter candidates through the freeze-in...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 173
SubjectTerms Astrophysics
Computer Science
Dark matter
Freeze-in
High Energy Physics - Phenomenology
micrOMEGAs
Physics
Relic density
Title micrOMEGAs5.0 : Freeze-in
URI https://dx.doi.org/10.1016/j.cpc.2018.04.027
https://hal.science/hal-01703684
Volume 231
WOSCitedRecordID wos000437964200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZgaaVeEH2pC6VaVT1Vyipe5-Fwi6pdaEXpHqi0N8vxQ7BAdrUvIX4940e8QAUqBy5RNElGsT9nPJ6Mv0Hom5CYy0KLKBOpjhKVV_DNpb0oo1WlhdYw6Vmkj_OTEzoaFUNfv3NuywnkdU2vr4vpi0INMgDbbJ19BtxBKQjgHECHI8AOx_8C_upczP787h-W87Qb2xX_YKbUjYo8x3ZDS-DLOfjYxtwkl6-3iqyD5-5P-qXdHmyD6N1wabKUY3Vlvc9BkB6CVPki62WQDpcXZ5PVHZkPNGAaUtaC8QSBoVu7azx73oY784ddWRI_k2JHcv2PkXbxgnFXTA2HJKaWa9YxBNwnxH4wUYX0wSYzbcxABTMqWJwwULGJtnp5WtAW2ip_9ke_wpyc555-2Teh-b9tM_0evMdjHsrmWRNrt77H6Q7a9ouGTunAfos2VP0OvR464N6j9j3IOwedAPgH9HfQP_1xFPmSF5EgBC8ikWVCYPB7dUVgKVdUsdIc3FKiiVZmx4jClabcNFIWVGghacozXqRCSlLRhHxErXpSq0-ok3OeC5nFnIDLC2acck11xSUWhlE7ztoobprJhOeDN2VJLtmj3dtG38MjU0eG8tTNSdN3zHtzzktjMA6eeuwr9HNQb9jPj8pjZmSG6olkNFnh3ee8yB56sx7On1FrMVuqffRKrBbn89kXP1JuATMvbdY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=micrOMEGAs5.0+%3A+Freeze-in&rft.jtitle=Computer+physics+communications&rft.au=B%C3%A9langer%2C+G.&rft.au=Boudjema%2C+F.&rft.au=Goudelis%2C+A.&rft.au=Pukhov%2C+A.&rft.date=2018-10-01&rft.issn=0010-4655&rft.volume=231&rft.spage=173&rft.epage=186&rft_id=info:doi/10.1016%2Fj.cpc.2018.04.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2018_04_027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon