micrOMEGAs5.0 : Freeze-in
We present a major upgrade of the micrOMEGAs dark matter code to compute the abundance of feebly interacting dark matter candidates through the freeze-in mechanism in generic extensions of the Standard Model of particle physics. We develop the necessary formalism in order to solve the freeze-in Bolt...
Uloženo v:
| Vydáno v: | Computer physics communications Ročník 231; s. 173 - 186 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.10.2018
Elsevier |
| Témata: | |
| ISSN: | 0010-4655, 1879-2944 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present a major upgrade of the micrOMEGAs dark matter code to compute the abundance of feebly interacting dark matter candidates through the freeze-in mechanism in generic extensions of the Standard Model of particle physics. We develop the necessary formalism in order to solve the freeze-in Boltzmann equations while making as few simplifying assumptions as possible concerning the phase-space distributions of the particles involved in the dark matter production process. We further show that this formalism allows us to treat different freeze-in scenarios and discuss the way it is implemented in the code. We find that, depending on the New Physics scenario under consideration, the effect of a proper treatment of statistics on the predicted dark matter abundance can range from a few percent up to a factor of two, or more. We moreover illustrate the underlying physics, as well as the various novel functionalities of micrOMEGAs, by presenting several example results obtained for different dark matter models.
Program title: micrOMEGAs5.
Program Files doi:http://dx.doi.org/10.17632/4ck6jf5vxf.2
Licensing provisions: GNU General Public License 3 (GPL)
Programming language: C and Fortran
Journal reference of previous version: Comput. Phys. Commun. 222 (2018) 327.
Does the new version supersede the previous version?: Yes
Reasons for the new version: Previous versions of micrOMEGAs worked within the assumption that dark matter is in thermal equilibrium with the standard model particles in the early Universe. For several classes of dark matter models this condition is not fulfilled. This new version allows to treat such cases, in particular the one where dark matter is composed of feebly interacting massive particles (FIMPs) that obtain their relic density via the freeze-in mechanism.
Summary of revisions: This version includes new routines to compute the abundance of feebly interacting dark matter candidates through the freeze-in mechanism in generic extensions of the Standard Model of particle physics. A proper treatment of the phase-space distribution functions for bosons and fermions is included. The user must specify which particles are to be considered as FIMPs as well as the reheating temperature, that is the temperature at which dark matter formation starts. The relic density of the (next-to) lightest dark sector particle can also be computed via the freeze-out mechanism. This version includes three new sample models in which dark matter production proceeds through freeze-in.
Nature of problem: Dark matter candidates that satisfy cosmological constraints cover a wide range of masses and interaction strength. One reason for dark matter particles to have escaped all direct, indirect and collider searches so far could be that they are feebly interacting. We provide the first public code to perform a precise computation of the relic density of FIMPs in generic extensions of the standard model in order to check agreement with the value of the relic density extracted from cosmological observations.
Solution method: We solve the freeze-in Boltzmann equations while making as few simplifying assumptions as possible concerning the phase-space distribution of the particles involved in the dark matter production process. We include the case where dark matter is produced through the two-body decay of a particle whether or not it is in thermal equilibrium with the thermal bath as well as the one where dark matter is produced through 2→2 annihilations of a pair of bath particles. Two numerical methods are provided — one where the collision term in the Boltzmann equation is integrated directly and a more efficient one where some of the integrals are performed analytically. |
|---|---|
| AbstractList | We present a major upgrade of the micrOMEGAs dark matter code to compute the abundance of feebly interacting dark matter candidates through the freeze-in mechanism in generic extensions of the Standard Model of particle physics. We develop the necessary formalism in order to solve the freeze-in Boltzmann equations while making as few simplifying assumptions as possible concerning the phase-space distributions of the particles involved in the dark matter production process. We further show that this formalism allows us to treat different freeze-in scenarios and discuss the way it is implemented in the code. We find that, depending on the New Physics scenario under consideration, the effect of a proper treatment of statistics on the predicted dark matter abundance can range from a few percent up to a factor of two, or more. We moreover illustrate the underlying physics, as well as the various novel functionalities of micrOMEGAs, by presenting several example results obtained for different dark matter models.
Program title: micrOMEGAs5.
Program Files doi:http://dx.doi.org/10.17632/4ck6jf5vxf.2
Licensing provisions: GNU General Public License 3 (GPL)
Programming language: C and Fortran
Journal reference of previous version: Comput. Phys. Commun. 222 (2018) 327.
Does the new version supersede the previous version?: Yes
Reasons for the new version: Previous versions of micrOMEGAs worked within the assumption that dark matter is in thermal equilibrium with the standard model particles in the early Universe. For several classes of dark matter models this condition is not fulfilled. This new version allows to treat such cases, in particular the one where dark matter is composed of feebly interacting massive particles (FIMPs) that obtain their relic density via the freeze-in mechanism.
Summary of revisions: This version includes new routines to compute the abundance of feebly interacting dark matter candidates through the freeze-in mechanism in generic extensions of the Standard Model of particle physics. A proper treatment of the phase-space distribution functions for bosons and fermions is included. The user must specify which particles are to be considered as FIMPs as well as the reheating temperature, that is the temperature at which dark matter formation starts. The relic density of the (next-to) lightest dark sector particle can also be computed via the freeze-out mechanism. This version includes three new sample models in which dark matter production proceeds through freeze-in.
Nature of problem: Dark matter candidates that satisfy cosmological constraints cover a wide range of masses and interaction strength. One reason for dark matter particles to have escaped all direct, indirect and collider searches so far could be that they are feebly interacting. We provide the first public code to perform a precise computation of the relic density of FIMPs in generic extensions of the standard model in order to check agreement with the value of the relic density extracted from cosmological observations.
Solution method: We solve the freeze-in Boltzmann equations while making as few simplifying assumptions as possible concerning the phase-space distribution of the particles involved in the dark matter production process. We include the case where dark matter is produced through the two-body decay of a particle whether or not it is in thermal equilibrium with the thermal bath as well as the one where dark matter is produced through 2→2 annihilations of a pair of bath particles. Two numerical methods are provided — one where the collision term in the Boltzmann equation is integrated directly and a more efficient one where some of the integrals are performed analytically. We present a major upgrade of the micrOMEGAs dark matter code to compute the abundance of feebly interacting dark matter candidates through the freeze-in mechanism in generic extensions of the Standard Model of particle physics. We develop the necessary formalism in order to solve the freeze-in Boltzmann equations while making as few simplifying assumptions as possible concerning the phase-space distributions of the particles involved in the dark matter production process. We further show that this formalism allows us to treat different freeze-in scenarios and discuss the way it is implemented in the code. We find that, depending on the New Physics scenario under consideration, the effect of a proper treatment of statistics on the predicted dark matter abundance can range from a few percent up to a factor of two, or more. We moreover illustrate the underlying physics, as well as the various novel functionalities of micrOMEGAs, by presenting several example results obtained for different dark matter models. |
| Author | Zaldívar, B. Boudjema, F. Goudelis, A. Bélanger, G. Pukhov, A. |
| Author_xml | – sequence: 1 givenname: G. orcidid: 0000-0002-9621-4948 surname: Bélanger fullname: Bélanger, G. email: belanger@lapth.cnrs.fr organization: University Grenoble Alpes, USMB, CNRS, LAPTh, F-74940 Annecy, France – sequence: 2 givenname: F. surname: Boudjema fullname: Boudjema, F. email: boudjema@lapth.cnrs.fr organization: University Grenoble Alpes, USMB, CNRS, LAPTh, F-74940 Annecy, France – sequence: 3 givenname: A. surname: Goudelis fullname: Goudelis, A. email: andreas.goudelis@lpthe.jussieu.fr organization: Sorbonne Université, CNRS, Laboratoire de Physique Théorique et Hautes Énergies, LPTHE, F-75252 Paris, France – sequence: 4 givenname: A. surname: Pukhov fullname: Pukhov, A. email: pukhov@lapth.cnrs.fr organization: Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992, Russia – sequence: 5 givenname: B. surname: Zaldívar fullname: Zaldívar, B. email: zaldivar@lapth.cnrs.fr organization: University Grenoble Alpes, USMB, CNRS, LAPTh, F-74940 Annecy, France |
| BackLink | https://hal.science/hal-01703684$$DView record in HAL |
| BookMark | eNp9kE1LAzEQhoNUsK3-gN569bDrZLP5WD2V0g-h0oueQ3Y2wZR2tyRLQX-9KRUPHnoamHmfYeYZkUHbtZaQCYWcAhVPuxyPmBdAVQ5lDoW8IUOqZJUVVVkOyBCAQlYKzu_IKMYdAEhZsSGZHDyG7dtiNYs8h-nzdBms_baZb-_JrTP7aB9-65h8LBfv83W22a5e57NNhozRPkMhEClA5WomJK9qsM5AwZljzqbLpKW1U6ZIo6ZS6LBR3AhTcWwaVquSjcnjZe-n2etj8AcTvnRnvF7PNvrcAyqBCVWeaMrSSxZDF2Ow7g-goM8e9E4nD_rsQUOpk4fEyH8M-t70vmv7YPz-KvlyIW16_-Rt0BG9bdE2PljsddP5K_QPxVR2TQ |
| CitedBy_id | crossref_primary_10_1016_j_nuclphysb_2021_115307 crossref_primary_10_1007_JHEP04_2020_116 crossref_primary_10_1007_JHEP07_2025_014 crossref_primary_10_1007_JHEP04_2021_284 crossref_primary_10_1007_JHEP11_2019_159 crossref_primary_10_1088_1475_7516_2023_05_008 crossref_primary_10_1088_1475_7516_2025_01_110 crossref_primary_10_1088_1475_7516_2025_05_006 crossref_primary_10_1088_1475_7516_2021_03_075 crossref_primary_10_1140_epjc_s10052_023_11377_2 crossref_primary_10_1088_1361_6471_ac65a6 crossref_primary_10_1007_JHEP01_2020_162 crossref_primary_10_1140_epjs_s11734_024_01134_1 crossref_primary_10_1140_epjst_e2020_000198_1 crossref_primary_10_1007_JHEP07_2024_204 crossref_primary_10_1007_s11433_018_9322_7 crossref_primary_10_1016_j_dark_2021_100909 crossref_primary_10_1007_JHEP06_2023_001 crossref_primary_10_1103_PhysRevD_111_015014 crossref_primary_10_1007_JHEP06_2021_072 crossref_primary_10_1088_1361_6471_ad557c crossref_primary_10_1088_1475_7516_2023_11_074 crossref_primary_10_1007_JHEP06_2020_033 crossref_primary_10_1016_j_nuclphysb_2022_115810 crossref_primary_10_1007_JHEP09_2022_083 crossref_primary_10_1088_1475_7516_2018_11_050 crossref_primary_10_1007_JHEP09_2024_104 crossref_primary_10_1007_JHEP01_2020_147 crossref_primary_10_1016_j_nuclphysb_2024_116591 crossref_primary_10_1140_epjc_s10052_025_14622_y crossref_primary_10_1007_JHEP09_2024_113 crossref_primary_10_1088_1475_7516_2018_11_048 crossref_primary_10_1016_j_physletb_2023_138217 crossref_primary_10_1016_j_cpc_2020_107773 crossref_primary_10_1016_j_dark_2018_09_006 crossref_primary_10_1088_1674_1137_43_10_103102 crossref_primary_10_1088_1475_7516_2020_04_034 crossref_primary_10_1088_1674_1137_ac67d0 crossref_primary_10_1007_JHEP02_2025_135 crossref_primary_10_1016_j_nuclphysb_2021_115404 crossref_primary_10_1016_j_nuclphysb_2022_115967 crossref_primary_10_1007_JHEP02_2024_207 crossref_primary_10_1007_JHEP07_2022_027 crossref_primary_10_1016_j_physletb_2025_139790 crossref_primary_10_1016_j_cpc_2025_109766 crossref_primary_10_1016_j_nuclphysb_2022_116015 crossref_primary_10_1140_epjc_s10052_019_7374_3 crossref_primary_10_1007_JHEP11_2024_086 crossref_primary_10_1007_JHEP07_2021_026 crossref_primary_10_1016_j_cpc_2023_108905 crossref_primary_10_1007_JHEP06_2024_179 crossref_primary_10_1007_JHEP03_2023_182 crossref_primary_10_1093_ptep_ptae142 crossref_primary_10_1103_PhysRevD_111_015039 crossref_primary_10_1007_JHEP11_2021_084 crossref_primary_10_1140_epjc_s10052_024_13633_5 crossref_primary_10_1088_1475_7516_2023_09_015 crossref_primary_10_1140_epjc_s10052_024_13176_9 crossref_primary_10_1016_j_physletb_2021_136609 crossref_primary_10_1088_1475_7516_2019_03_012 crossref_primary_10_1088_1475_7516_2025_03_071 crossref_primary_10_1016_j_physletb_2021_136292 crossref_primary_10_1088_1475_7516_2021_10_026 crossref_primary_10_1088_1475_7516_2019_03_019 crossref_primary_10_1088_1475_7516_2024_07_048 crossref_primary_10_1007_JHEP04_2021_146 crossref_primary_10_1007_JHEP06_2020_007 crossref_primary_10_1007_JHEP09_2021_146 crossref_primary_10_1088_1674_1137_43_11_113102 crossref_primary_10_1140_epjc_s10052_024_12689_7 crossref_primary_10_1007_JHEP02_2021_010 crossref_primary_10_1140_epjc_s10052_024_13407_z crossref_primary_10_1007_JHEP05_2021_234 crossref_primary_10_1007_JHEP03_2020_022 crossref_primary_10_1016_j_nuclphysb_2021_115469 crossref_primary_10_1007_JHEP05_2020_050 crossref_primary_10_3389_fphy_2022_838531 crossref_primary_10_1007_JHEP11_2022_133 crossref_primary_10_1140_epjc_s10052_025_14632_w crossref_primary_10_1016_j_physletb_2025_139690 crossref_primary_10_1007_JHEP05_2020_057 crossref_primary_10_1016_j_physletb_2020_135890 crossref_primary_10_1007_JHEP07_2022_091 crossref_primary_10_1007_JHEP05_2024_076 crossref_primary_10_1088_1475_7516_2025_02_072 crossref_primary_10_1140_epjc_s10052_022_10801_3 crossref_primary_10_1007_JHEP06_2023_163 crossref_primary_10_1007_JHEP11_2021_202 crossref_primary_10_1007_JHEP03_2020_018 crossref_primary_10_1016_j_physletb_2019_134823 crossref_primary_10_1140_epjc_s10052_021_09012_z crossref_primary_10_1140_epjp_s13360_022_03432_w crossref_primary_10_1140_epjc_s10052_022_10507_6 crossref_primary_10_1016_j_nuclphysb_2020_115057 crossref_primary_10_1103_PhysRevD_111_095015 crossref_primary_10_1007_JHEP04_2021_098 crossref_primary_10_1007_JHEP06_2021_136 crossref_primary_10_1016_j_dark_2023_101198 crossref_primary_10_1140_epjc_s10052_022_10051_3 crossref_primary_10_1093_mnras_stab1930 crossref_primary_10_1007_JHEP10_2021_044 crossref_primary_10_1007_JHEP09_2021_125 crossref_primary_10_1016_j_cpc_2023_109057 crossref_primary_10_1103_PhysRevD_111_015046 crossref_primary_10_1088_1475_7516_2021_08_038 crossref_primary_10_1007_JHEP03_2022_034 crossref_primary_10_1007_JHEP08_2020_085 crossref_primary_10_1016_j_physletb_2021_136118 crossref_primary_10_1088_1674_1137_ac538c crossref_primary_10_1016_j_ppnp_2021_103881 crossref_primary_10_1140_epjc_s10052_021_09170_0 crossref_primary_10_1007_JHEP09_2021_206 crossref_primary_10_1088_1742_6596_1380_1_012093 crossref_primary_10_1007_JHEP04_2020_015 crossref_primary_10_1140_epjc_s10052_022_10990_x crossref_primary_10_1140_epjc_s10052_020_8080_x crossref_primary_10_1007_JHEP02_2022_110 crossref_primary_10_1007_JHEP03_2021_130 crossref_primary_10_1007_JHEP12_2022_167 crossref_primary_10_1007_JHEP11_2023_037 crossref_primary_10_1007_JHEP12_2022_049 crossref_primary_10_1140_epjc_s10052_021_09823_0 crossref_primary_10_1007_JHEP06_2022_048 crossref_primary_10_1007_JHEP09_2023_182 crossref_primary_10_1007_JHEP04_2020_144 crossref_primary_10_1088_1475_7516_2021_04_068 crossref_primary_10_1088_1475_7516_2022_11_055 crossref_primary_10_1007_JHEP12_2021_116 crossref_primary_10_1088_1674_1137_ac1577 crossref_primary_10_1140_epjc_s10052_022_10440_8 crossref_primary_10_1140_epjc_s10052_022_10778_z crossref_primary_10_1088_1475_7516_2025_06_060 crossref_primary_10_3390_sym13060991 crossref_primary_10_1016_j_nuclphysb_2020_115154 crossref_primary_10_1016_j_nuclphysb_2020_115276 crossref_primary_10_1007_JHEP10_2018_014 crossref_primary_10_1007_JHEP09_2018_098 crossref_primary_10_1007_JHEP10_2021_063 crossref_primary_10_1007_JHEP12_2022_032 crossref_primary_10_1016_j_nuclphysb_2024_116524 crossref_primary_10_1007_JHEP07_2020_136 crossref_primary_10_1016_j_cpc_2024_109133 crossref_primary_10_1016_j_cpc_2023_109075 crossref_primary_10_1016_j_physletb_2020_135427 crossref_primary_10_1088_1475_7516_2023_04_045 crossref_primary_10_1007_JHEP02_2021_099 crossref_primary_10_1007_JHEP06_2025_126 crossref_primary_10_1007_JHEP06_2019_095 crossref_primary_10_1016_j_nuclphysb_2020_115300 crossref_primary_10_1140_epjc_s10052_021_09198_2 crossref_primary_10_1007_JHEP07_2021_081 crossref_primary_10_1088_1742_6596_2156_1_012028 crossref_primary_10_1088_1475_7516_2025_03_003 crossref_primary_10_1016_j_cpc_2023_108729 crossref_primary_10_1088_1475_7516_2022_05_004 crossref_primary_10_1007_JHEP05_2019_115 crossref_primary_10_1088_1742_6596_2156_1_012031 crossref_primary_10_1140_epjc_s10052_025_13743_8 crossref_primary_10_1140_epjc_s10052_021_09597_5 crossref_primary_10_1140_epjc_s10052_022_10532_5 crossref_primary_10_1007_JHEP08_2022_068 crossref_primary_10_1140_epjc_s10052_020_08795_x crossref_primary_10_1007_JHEP06_2022_026 crossref_primary_10_1016_j_cpc_2023_109027 crossref_primary_10_3390_sym13122406 crossref_primary_10_3389_fphy_2023_1285986 crossref_primary_10_1140_epjc_s10052_021_08869_4 crossref_primary_10_1007_JHEP11_2024_114 crossref_primary_10_1016_j_nuclphysb_2022_115778 crossref_primary_10_1007_JHEP10_2020_044 crossref_primary_10_1016_j_physletb_2025_139268 crossref_primary_10_1007_JHEP07_2019_136 crossref_primary_10_1103_PhysRevD_111_075023 crossref_primary_10_1007_JHEP07_2023_017 crossref_primary_10_1007_JHEP12_2024_091 crossref_primary_10_1007_JHEP02_2020_039 crossref_primary_10_1007_JHEP02_2019_140 crossref_primary_10_1007_JHEP10_2019_152 crossref_primary_10_1007_JHEP01_2025_129 crossref_primary_10_1007_JHEP07_2020_152 crossref_primary_10_1103_5n75_wbcj crossref_primary_10_1007_JHEP05_2021_079 crossref_primary_10_1016_j_physletb_2019_135013 crossref_primary_10_1088_1475_7516_2020_09_040 crossref_primary_10_1007_JHEP04_2025_118 crossref_primary_10_1016_j_physletb_2019_134961 crossref_primary_10_1007_JHEP04_2023_032 crossref_primary_10_1140_epjc_s10052_024_13108_7 crossref_primary_10_1007_JHEP08_2022_085 crossref_primary_10_1140_epjc_s10052_023_12235_x crossref_primary_10_1016_j_physletb_2022_137214 crossref_primary_10_1007_JHEP02_2020_068 crossref_primary_10_1007_JHEP09_2024_064 crossref_primary_10_1016_j_cpc_2022_108311 crossref_primary_10_1088_1475_7516_2021_05_063 crossref_primary_10_1007_JHEP02_2023_234 crossref_primary_10_1134_S1547477123050084 crossref_primary_10_1140_epjc_s10052_021_09535_5 crossref_primary_10_1007_JHEP11_2023_079 crossref_primary_10_1088_1674_1137_ac0c0e crossref_primary_10_1140_epjp_s13360_025_06551_2 crossref_primary_10_1088_1475_7516_2023_04_068 crossref_primary_10_1016_j_physletb_2020_135757 crossref_primary_10_1007_JHEP03_2025_157 crossref_primary_10_1007_JHEP07_2024_044 crossref_primary_10_1088_1475_7516_2024_10_001 crossref_primary_10_1007_JHEP08_2024_235 crossref_primary_10_1016_j_nuclphysb_2022_115677 crossref_primary_10_1140_epjc_s10052_023_11495_x crossref_primary_10_1007_JHEP03_2019_204 crossref_primary_10_1016_j_nuclphysb_2021_115495 crossref_primary_10_1088_1475_7516_2019_10_047 crossref_primary_10_1088_1475_7516_2023_08_052 crossref_primary_10_1140_epjc_s10052_025_14057_5 crossref_primary_10_1140_epjc_s10052_024_13158_x crossref_primary_10_1016_j_physletb_2021_136455 crossref_primary_10_1016_j_physletb_2020_136038 crossref_primary_10_1088_1475_7516_2023_11_024 crossref_primary_10_1007_JHEP05_2025_055 crossref_primary_10_1007_JHEP07_2025_195 crossref_primary_10_1016_j_physletb_2023_137982 crossref_primary_10_1007_JHEP11_2023_186 crossref_primary_10_1007_JHEP11_2021_112 crossref_primary_10_1016_j_physletb_2021_136458 crossref_primary_10_1007_JHEP07_2024_037 crossref_primary_10_1007_JHEP06_2019_052 crossref_primary_10_1140_epjc_s10052_021_09218_1 crossref_primary_10_1007_JHEP02_2020_130 crossref_primary_10_1007_JHEP10_2022_126 crossref_primary_10_1140_epjc_s10052_024_12900_9 crossref_primary_10_1088_1475_7516_2023_05_049 crossref_primary_10_1140_epjc_s10052_025_14635_7 crossref_primary_10_3103_S0027134924701182 crossref_primary_10_1007_JHEP01_2023_041 crossref_primary_10_1088_1475_7516_2019_02_051 crossref_primary_10_1007_JHEP05_2021_129 crossref_primary_10_1007_JHEP10_2020_080 crossref_primary_10_1007_s40042_023_00976_7 crossref_primary_10_1103_v9ky_jfnb crossref_primary_10_1140_epjc_s10052_022_10541_4 crossref_primary_10_1007_JHEP02_2020_118 crossref_primary_10_1007_JHEP09_2021_080 crossref_primary_10_1016_j_physletb_2021_136076 crossref_primary_10_1088_1475_7516_2022_03_041 crossref_primary_10_1140_epjc_s10052_023_11368_3 crossref_primary_10_1007_JHEP02_2019_186 crossref_primary_10_1007_JHEP09_2018_037 crossref_primary_10_1088_1475_7516_2020_08_011 crossref_primary_10_1140_epjc_s10052_023_11612_w crossref_primary_10_1016_j_physletb_2021_136639 crossref_primary_10_1093_ptep_ptad021 crossref_primary_10_1140_epjc_s10052_022_10188_1 crossref_primary_10_1140_epjc_s10052_024_13501_2 crossref_primary_10_1007_JHEP01_2022_025 crossref_primary_10_1007_JHEP01_2022_144 crossref_primary_10_1007_JHEP05_2021_150 crossref_primary_10_1016_j_dark_2024_101746 crossref_primary_10_1140_epjc_s10052_019_7186_5 crossref_primary_10_1140_epjc_s10052_022_10139_w crossref_primary_10_1007_JHEP04_2021_218 crossref_primary_10_1007_JHEP08_2022_169 crossref_primary_10_1007_JHEP11_2019_013 crossref_primary_10_1088_1475_7516_2025_02_011 crossref_primary_10_1140_epjc_s10052_024_12440_2 crossref_primary_10_1088_1475_7516_2024_02_052 crossref_primary_10_1088_1475_7516_2025_02_010 crossref_primary_10_1140_epjc_s10052_025_14184_z crossref_primary_10_1140_epjc_s10052_019_6881_6 crossref_primary_10_1007_JHEP02_2021_163 crossref_primary_10_1007_JHEP07_2022_111 crossref_primary_10_1007_JHEP10_2021_215 crossref_primary_10_1007_JHEP02_2024_119 crossref_primary_10_1007_JHEP09_2020_030 crossref_primary_10_1088_1475_7516_2021_09_011 crossref_primary_10_1140_epjc_s10052_023_11493_z crossref_primary_10_1140_epjc_s10052_021_09828_9 crossref_primary_10_1088_1475_7516_2020_03_026 crossref_primary_10_1140_epjc_s10052_020_7933_7 crossref_primary_10_1007_JHEP11_2022_064 crossref_primary_10_1007_JHEP05_2020_123 crossref_primary_10_1088_1475_7516_2024_05_015 crossref_primary_10_1140_epjc_s10052_024_12660_6 crossref_primary_10_1007_JHEP02_2019_048 crossref_primary_10_1007_JHEP11_2020_112 crossref_primary_10_1088_1475_7516_2024_06_049 crossref_primary_10_1103_73xh_7hhz |
| Cites_doi | 10.1007/JHEP03(2015)048 10.1103/PhysRevD.95.095002 10.1103/PhysRevLett.88.091304 10.1007/JHEP10(2016)129 10.1088/1475-7516/2014/01/034 10.1088/1475-7516/2014/07/015 10.1088/1475-7516/2014/10/063 10.1103/PhysRevD.96.103510 10.1016/j.physletb.2016.07.042 10.1088/1475-7516/2016/03/018 10.1088/1475-7516/2015/09/023 10.1088/1475-7516/2016/01/006 10.1088/0067-0049/208/2/19 10.1088/1475-7516/2015/11/001 10.1088/1475-7516/2014/03/028 10.1142/S0217732316300056 10.1088/1475-7516/2015/06/011 10.1016/j.cpc.2015.03.003 10.1088/1475-7516/2012/05/034 10.1016/j.cpc.2011.03.019 10.1088/1475-7516/2016/07/005 10.1016/j.physrep.2004.08.031 10.1103/PhysRevLett.118.021303 10.1007/JHEP11(2013)193 10.1103/PhysRevLett.110.241306 10.1016/j.cpc.2006.11.008 10.1007/JHEP10(2015)134 10.1016/S0010-4655(02)00596-9 10.1103/PhysRevD.94.063506 10.1007/JHEP08(2011)060 10.1103/PhysRevLett.117.111301 10.1016/j.cpc.2014.04.012 10.1016/0550-3213(91)90438-4 10.1103/PhysRevD.91.095010 10.1103/PhysRevLett.118.101802 10.1103/PhysRevLett.117.121303 10.1051/0004-6361/201525830 10.1088/1475-7516/2014/01/003 10.1007/JHEP03(2010)080 10.1088/1475-7516/2013/11/039 10.1103/PhysRevLett.118.251301 10.1088/1475-7516/2004/07/008 10.1016/j.physletb.2015.06.018 10.1016/j.cpc.2013.01.014 10.1016/j.dark.2014.04.001 10.1088/1475-7516/2016/08/035 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1016/j.cpc.2018.04.027 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics Computer Science |
| EISSN | 1879-2944 |
| EndPage | 186 |
| ExternalDocumentID | oai:HAL:hal-01703684v1 10_1016_j_cpc_2018_04_027 S0010465518301437 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC |
| ID | FETCH-LOGICAL-c331t-c66cc1009fb36759b0efa0253f3fe0167e1bf8a2759d98cfcd85a6a95cdd3b843 |
| ISICitedReferencesCount | 401 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000437964200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4655 |
| IngestDate | Tue Oct 14 20:53:33 EDT 2025 Sat Nov 29 03:58:13 EST 2025 Tue Nov 18 21:58:09 EST 2025 Fri Feb 23 02:49:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | micrOMEGAs Relic density Freeze-in Dark matter Boltzmann equation: solution numerical calculations new physics dark matter: interaction dark matter: relic density dark matter: production programming |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-c66cc1009fb36759b0efa0253f3fe0167e1bf8a2759d98cfcd85a6a95cdd3b843 |
| ORCID | 0000-0002-9621-4948 |
| PageCount | 14 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01703684v1 crossref_primary_10_1016_j_cpc_2018_04_027 crossref_citationtrail_10_1016_j_cpc_2018_04_027 elsevier_sciencedirect_doi_10_1016_j_cpc_2018_04_027 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Kaneta, Lee, Yun (b15) 2017; 118 constraints. Mambrini, Olive, Quevillon, Zaldivar (b23) 2013; 110 Khachatryan (b13) 2016; 10 Chu, Mambrini, Quevillon, Zaldivar (b21) 2014; 1401 Amole (b8) 2017; 118 Belyaev, Christensen, Pukhov (b63) 2013; 184 XENON Collaboration, E. Aprile, et al., First dark matter search results from the XENON1T experiment. Merle, Niro, Schmidt (b45) 2014; 1403 Bernal, Chu, Garcia-Cely, Hambye, Zaldivar (b60) 2016; 1603 Bhupal Dev, Mazumdar, Qutub (b20) 2014; 2 Chung, Kolb, Riotto (b57) 1999; 59 J. Kim, J. McDonald, A clockwork Higgs portal model for freeze-in dark matter. McDonald (b32) 2002; 88 Alloul, Christensen, Degrande, Duhr, Fuks (b62) 2014; 185 Arbey, Mahmoudi (b42) 2011; 182 A. Ghosh, T. Mondal, B. Mukhopadhyaya, Heavy stable charged tracks as signatures of non-thermal dark matter at the LHC: a study in some non-supersymmetric scenarios. . Shakya (b26) 2016; 31 M. Heikinheimo, T. Tenkanen, K. Tuominen, Prospects for indirect detection of frozen-in dark matter. Tan (b6) 2016; 117 [astro-ph.CO]. Nurmi, Tenkanen, Tuominen (b28) 2015; 1511 M. Pandey, D. Majumdar, K.P. Modak, Two component feebly interacting massive particle (FIMP) dark matter Abdallah (b10) 2016; 117 Kolb, Turner (b53) 1990; 69 Backovic, Kong, McCaskey (b43) 2014; 5–6 Akerib (b7) 2017; 118 Garcia, Mambrini, Olive, Peloso (b58) 2017; 96 Klasen, Yaguna (b22) 2013; 1311 Gondolo, Gelmini (b54) 1991; 360 D. Abercrombie, et al. Dark matter benchmark models for early LHC Run-2 searches: Report of the ATLAS/CMS dark matter forum. J. Silk, et al., Particle dark matter: Observations, models and searches, 2010. Blennow, Fernandez-Martinez, Zaldivar (b19) 2014; 1401 N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, V. Vaskonen, The dawn of FIMP dark matter: A review of models and constraints. [hep-ph]. Heikinheimo, Tenkanen, Tuominen, Vaskonen (b16) 2016; 94 Aad (b12) 2015; 10 [hep-ex]. Belanger, Boudjema, Pukhov, Semenov (b40) 2002; 149 Gondolo, Edsjo, Ullio, Bergstrom, Schelke, Baltz (b41) 2004; 0407 Aaboud (b50) 2016; 760 Arcadi, Covi, Dradi (b49) 2014; 1410 Arcadi, Ghosh, Mambrini, Pierre (b30) 2016; 1607 Belanger, Boudjema, Pukhov, Semenov (b39) 2007; 176 Ade (b2) 2016; 594 Belanger, Boudjema, Pukhov, Semenov (b55) 2015; 192 K.J. Bae, A. Kamada, S.P. Liew, K. Yanagi, Light Axinos from Freeze-in: production processes, phase space distributions, and Ly- Ahnen (b9) 2016; 1602 Merle, Totzauer (b27) 2015; 1506 Hall, Jedamzik, March-Russell, West (b33) 2010; 03 Elahi, Kolda, Unwin (b34) 2015; 03 Bernal, Chu (b61) 2016; 1601 D. Barducci, G. Belanger, J. Bernon, F. Boudjema, J.D. Silva, S. Kraml, U. Laa, A. Pukhov, Collider limits on new physics within micrOMEGAs43. Hinshaw (b1) 2013; 208 G. Bélanger, A. Goudelis, A. Pukhov, B. Zaldívar, in progress. McDonald (b35) 2016; 1608 An, Pospelov, Pradler, Ritz (b46) 2015; 747 Essig, Kuflik, McDermott, Volansky, Zurek (b47) 2013; 11 Chu, Hambye, Tytgat (b25) 2012; 1205 Giesen, Boudaud, Génolini, Poulin, Cirelli, Salati, Serpico (b11) 2015; 1509 Yaser Ayazi, Firouzabadi, Zakeri (b17) 2016; 43 Molinaro, Yaguna, Zapata (b18) 2014; 1407 Mambrini, Nagata, Olive, Quevillon, Zheng (b36) 2015; 91 Yaguna (b24) 2011; 08 Benakli, Chen, Dudas, Mambrini (b31) 2017; 95 Bertone, Hooper, Silk (b3) 2005; 405 Khachatryan (b51) 2016; 94 S.-L. Chen, Z. Kang, On ultraviolet freeze-in dark matter during reheating. Hinshaw (10.1016/j.cpc.2018.04.027_b1) 2013; 208 Merle (10.1016/j.cpc.2018.04.027_b27) 2015; 1506 Elahi (10.1016/j.cpc.2018.04.027_b34) 2015; 03 Heikinheimo (10.1016/j.cpc.2018.04.027_b16) 2016; 94 10.1016/j.cpc.2018.04.027_b44 Chu (10.1016/j.cpc.2018.04.027_b25) 2012; 1205 Kaneta (10.1016/j.cpc.2018.04.027_b15) 2017; 118 Tan (10.1016/j.cpc.2018.04.027_b6) 2016; 117 10.1016/j.cpc.2018.04.027_b37 10.1016/j.cpc.2018.04.027_b38 Chung (10.1016/j.cpc.2018.04.027_b57) 1999; 59 Belanger (10.1016/j.cpc.2018.04.027_b39) 2007; 176 Garcia (10.1016/j.cpc.2018.04.027_b58) 2017; 96 10.1016/j.cpc.2018.04.027_b52 Belanger (10.1016/j.cpc.2018.04.027_b40) 2002; 149 Bhupal Dev (10.1016/j.cpc.2018.04.027_b20) 2014; 2 Belyaev (10.1016/j.cpc.2018.04.027_b63) 2013; 184 Abdallah (10.1016/j.cpc.2018.04.027_b10) 2016; 117 Akerib (10.1016/j.cpc.2018.04.027_b7) 2017; 118 10.1016/j.cpc.2018.04.027_b48 Khachatryan (10.1016/j.cpc.2018.04.027_b51) 2016; 94 Molinaro (10.1016/j.cpc.2018.04.027_b18) 2014; 1407 Belanger (10.1016/j.cpc.2018.04.027_b55) 2015; 192 Chu (10.1016/j.cpc.2018.04.027_b21) 2014; 1401 Khachatryan (10.1016/j.cpc.2018.04.027_b13) 2016; 10 Shakya (10.1016/j.cpc.2018.04.027_b26) 2016; 31 Ade (10.1016/j.cpc.2018.04.027_b2) 2016; 594 10.1016/j.cpc.2018.04.027_b64 10.1016/j.cpc.2018.04.027_b65 Bertone (10.1016/j.cpc.2018.04.027_b3) 2005; 405 Ahnen (10.1016/j.cpc.2018.04.027_b9) 2016; 1602 McDonald (10.1016/j.cpc.2018.04.027_b32) 2002; 88 Arcadi (10.1016/j.cpc.2018.04.027_b30) 2016; 1607 Benakli (10.1016/j.cpc.2018.04.027_b31) 2017; 95 Essig (10.1016/j.cpc.2018.04.027_b47) 2013; 11 Gondolo (10.1016/j.cpc.2018.04.027_b41) 2004; 0407 Nurmi (10.1016/j.cpc.2018.04.027_b28) 2015; 1511 An (10.1016/j.cpc.2018.04.027_b46) 2015; 747 Alloul (10.1016/j.cpc.2018.04.027_b62) 2014; 185 McDonald (10.1016/j.cpc.2018.04.027_b35) 2016; 1608 Giesen (10.1016/j.cpc.2018.04.027_b11) 2015; 1509 Klasen (10.1016/j.cpc.2018.04.027_b22) 2013; 1311 10.1016/j.cpc.2018.04.027_b56 10.1016/j.cpc.2018.04.027_b14 Yaser Ayazi (10.1016/j.cpc.2018.04.027_b17) 2016; 43 10.1016/j.cpc.2018.04.027_b59 Yaguna (10.1016/j.cpc.2018.04.027_b24) 2011; 08 Amole (10.1016/j.cpc.2018.04.027_b8) 2017; 118 Aad (10.1016/j.cpc.2018.04.027_b12) 2015; 10 10.1016/j.cpc.2018.04.027_b5 10.1016/j.cpc.2018.04.027_b4 Aaboud (10.1016/j.cpc.2018.04.027_b50) 2016; 760 Arcadi (10.1016/j.cpc.2018.04.027_b49) 2014; 1410 Hall (10.1016/j.cpc.2018.04.027_b33) 2010; 03 Merle (10.1016/j.cpc.2018.04.027_b45) 2014; 1403 Gondolo (10.1016/j.cpc.2018.04.027_b54) 1991; 360 Blennow (10.1016/j.cpc.2018.04.027_b19) 2014; 1401 Mambrini (10.1016/j.cpc.2018.04.027_b23) 2013; 110 Kolb (10.1016/j.cpc.2018.04.027_b53) 1990; 69 Bernal (10.1016/j.cpc.2018.04.027_b60) 2016; 1603 Bernal (10.1016/j.cpc.2018.04.027_b61) 2016; 1601 Backovic (10.1016/j.cpc.2018.04.027_b43) 2014; 5–6 Mambrini (10.1016/j.cpc.2018.04.027_b36) 2015; 91 10.1016/j.cpc.2018.04.027_b29 Arbey (10.1016/j.cpc.2018.04.027_b42) 2011; 182 |
| References_xml | – volume: 176 start-page: 367 year: 2007 end-page: 382 ident: b39 publication-title: Comput. Phys. Comm. – reference: constraints. – reference: D. Abercrombie, et al. Dark matter benchmark models for early LHC Run-2 searches: Report of the ATLAS/CMS dark matter forum. – reference: K.J. Bae, A. Kamada, S.P. Liew, K. Yanagi, Light Axinos from Freeze-in: production processes, phase space distributions, and Ly- – volume: 117 year: 2016 ident: b6 publication-title: Phys. Rev. Lett. – volume: 1205 start-page: 034 year: 2012 ident: b25 publication-title: J. Cosmol. Astropart. Phys. – reference: A. Ghosh, T. Mondal, B. Mukhopadhyaya, Heavy stable charged tracks as signatures of non-thermal dark matter at the LHC: a study in some non-supersymmetric scenarios. – volume: 91 year: 2015 ident: b36 publication-title: Phys. Rev. D – volume: 11 start-page: 193 year: 2013 ident: b47 publication-title: J. High Energy Phys. – reference: J. Silk, et al., Particle dark matter: Observations, models and searches, 2010. – reference: [hep-ex]. – volume: 95 year: 2017 ident: b31 publication-title: Phys. Rev. D – volume: 110 year: 2013 ident: b23 publication-title: Phys. Rev. Lett. – volume: 1511 start-page: 001 year: 2015 ident: b28 publication-title: J. Cosmol. Astropart. Phys. – volume: 1509 start-page: 023 year: 2015 ident: b11 publication-title: J. Cosmol. Astropart. Phys. – volume: 0407 start-page: 008 year: 2004 ident: b41 publication-title: J. Cosmol. Astropart. Phys. – volume: 118 year: 2017 ident: b15 publication-title: Phys. Rev. Lett. – volume: 117 year: 2016 ident: b10 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 129 year: 2016 ident: b13 publication-title: J. High Energy Phys. – reference: J. Kim, J. McDonald, A clockwork Higgs portal model for freeze-in dark matter. – volume: 184 start-page: 1729 year: 2013 end-page: 1769 ident: b63 publication-title: Comput. Phys. Comm. – volume: 2 start-page: 26 year: 2014 ident: b20 publication-title: Front. Phys. – volume: 03 start-page: 080 year: 2010 ident: b33 publication-title: J. High Energy Phys. – volume: 43 year: 2016 ident: b17 publication-title: J. Phys. G – volume: 96 year: 2017 ident: b58 publication-title: Phys. Rev. D – reference: D. Barducci, G. Belanger, J. Bernon, F. Boudjema, J.D. Silva, S. Kraml, U. Laa, A. Pukhov, Collider limits on new physics within micrOMEGAs43. – volume: 1602 start-page: 039 year: 2016 ident: b9 publication-title: J. Cosmol. Astropart. Phys. – volume: 5–6 start-page: 18 year: 2014 end-page: 28 ident: b43 publication-title: Physics of the Dark Universe – volume: 208 start-page: 19 year: 2013 ident: b1 publication-title: Astrophys. J. Suppl. – reference: XENON Collaboration, E. Aprile, et al., First dark matter search results from the XENON1T experiment. – volume: 360 start-page: 145 year: 1991 end-page: 179 ident: b54 publication-title: Nuclear Phys. B – volume: 594 start-page: A13 year: 2016 ident: b2 publication-title: Astron. Astrophys. – volume: 182 start-page: 1582 year: 2011 end-page: 1583 ident: b42 publication-title: Comput. Phys. Comm. – volume: 1311 start-page: 039 year: 2013 ident: b22 publication-title: J. Cosmol. Astropart. Phys. – volume: 1603 start-page: 018 year: 2016 ident: b60 publication-title: J. Cosmol. Astropart. Phys. – reference: G. Bélanger, A. Goudelis, A. Pukhov, B. Zaldívar, in progress. – volume: 94 year: 2016 ident: b51 publication-title: Phys. Rev. D – reference: M. Pandey, D. Majumdar, K.P. Modak, Two component feebly interacting massive particle (FIMP) dark matter, – volume: 88 year: 2002 ident: b32 publication-title: Phys. Rev. Lett. – volume: 185 start-page: 2250 year: 2014 end-page: 2300 ident: b62 publication-title: Comput. Phys. Comm. – volume: 31 start-page: 1630005 year: 2016 ident: b26 publication-title: Modern Phys. Lett. A – reference: S.-L. Chen, Z. Kang, On ultraviolet freeze-in dark matter during reheating. – volume: 10 start-page: 134 year: 2015 ident: b12 publication-title: J. High Energy Phys. – volume: 1407 start-page: 015 year: 2014 ident: b18 publication-title: J. Cosmol. Astropart. Phys. – volume: 192 start-page: 322 year: 2015 end-page: 329 ident: b55 publication-title: Comput. Phys. Comm. – volume: 405 start-page: 279 year: 2005 end-page: 390 ident: b3 publication-title: Phys. Rep. – volume: 1401 start-page: 034 year: 2014 ident: b21 publication-title: J. Cosmol. Astropart. Phys. – volume: 69 start-page: 1 year: 1990 end-page: 547 ident: b53 publication-title: Front. Phys. – reference: [astro-ph.CO]. – volume: 1506 start-page: 011 year: 2015 ident: b27 publication-title: J. Cosmol. Astropart. Phys. – volume: 747 start-page: 331 year: 2015 end-page: 338 ident: b46 publication-title: Phys. Lett. B – volume: 1608 start-page: 035 year: 2016 ident: b35 publication-title: J. Cosmol. Astropart. Phys. – reference: N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, V. Vaskonen, The dawn of FIMP dark matter: A review of models and constraints. – volume: 03 start-page: 048 year: 2015 ident: b34 publication-title: J. High Energy Phys. – reference: [hep-ph]. – volume: 760 start-page: 647 year: 2016 end-page: 665 ident: b50 publication-title: Phys. Lett. B – reference: . – volume: 118 year: 2017 ident: b7 publication-title: Phys. Rev. Lett. – volume: 1403 start-page: 028 year: 2014 ident: b45 publication-title: J. Cosmol. Astropart. Phys. – volume: 118 year: 2017 ident: b8 publication-title: Phys. Rev. Lett. – volume: 1410 start-page: 063 year: 2014 ident: b49 publication-title: J. Cosmol. Astropart. Phys. – volume: 94 year: 2016 ident: b16 publication-title: Phys. Rev. D – volume: 1607 start-page: 005 year: 2016 ident: b30 publication-title: J. Cosmol. Astropart. Phys. – reference: M. Heikinheimo, T. Tenkanen, K. Tuominen, Prospects for indirect detection of frozen-in dark matter. – volume: 1401 start-page: 003 year: 2014 ident: b19 publication-title: J. Cosmol. Astropart. Phys. – volume: 08 start-page: 060 year: 2011 ident: b24 publication-title: J. High Energy Phys. – volume: 59 year: 1999 ident: b57 publication-title: Phys. Rev D – volume: 149 start-page: 103 year: 2002 end-page: 120 ident: b40 publication-title: Comput. Phys. Comm. – volume: 1601 start-page: 006 year: 2016 ident: b61 publication-title: J. Cosmol. Astropart. Phys. – ident: 10.1016/j.cpc.2018.04.027_b14 – volume: 03 start-page: 048 year: 2015 ident: 10.1016/j.cpc.2018.04.027_b34 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2015)048 – volume: 95 issue: 9 year: 2017 ident: 10.1016/j.cpc.2018.04.027_b31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.095002 – volume: 88 year: 2002 ident: 10.1016/j.cpc.2018.04.027_b32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.091304 – volume: 69 start-page: 1 year: 1990 ident: 10.1016/j.cpc.2018.04.027_b53 publication-title: Front. Phys. – volume: 2 start-page: 26 year: 2014 ident: 10.1016/j.cpc.2018.04.027_b20 publication-title: Front. Phys. – volume: 10 start-page: 129 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b13 publication-title: J. High Energy Phys. doi: 10.1007/JHEP10(2016)129 – volume: 1401 start-page: 034 year: 2014 ident: 10.1016/j.cpc.2018.04.027_b21 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/01/034 – volume: 1407 start-page: 015 year: 2014 ident: 10.1016/j.cpc.2018.04.027_b18 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/07/015 – volume: 1410 start-page: 063 issue: 10 year: 2014 ident: 10.1016/j.cpc.2018.04.027_b49 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/10/063 – volume: 96 issue: 10 year: 2017 ident: 10.1016/j.cpc.2018.04.027_b58 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.103510 – ident: 10.1016/j.cpc.2018.04.027_b52 – volume: 760 start-page: 647 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b50 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2016.07.042 – volume: 1602 start-page: 039 issue: 02 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b9 publication-title: J. Cosmol. Astropart. Phys. – volume: 1603 start-page: 018 issue: 03 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b60 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/03/018 – volume: 1509 start-page: 023 issue: 09 year: 2015 ident: 10.1016/j.cpc.2018.04.027_b11 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2015/09/023 – ident: 10.1016/j.cpc.2018.04.027_b37 – ident: 10.1016/j.cpc.2018.04.027_b4 – ident: 10.1016/j.cpc.2018.04.027_b56 – volume: 1601 start-page: 006 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b61 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/01/006 – volume: 208 start-page: 19 year: 2013 ident: 10.1016/j.cpc.2018.04.027_b1 publication-title: Astrophys. J. Suppl. doi: 10.1088/0067-0049/208/2/19 – volume: 94 issue: 11 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b51 publication-title: Phys. Rev. D – volume: 1511 start-page: 001 issue: 11 year: 2015 ident: 10.1016/j.cpc.2018.04.027_b28 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2015/11/001 – volume: 1403 start-page: 028 year: 2014 ident: 10.1016/j.cpc.2018.04.027_b45 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/03/028 – volume: 43 issue: 9 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b17 publication-title: J. Phys. G – volume: 31 start-page: 1630005 issue: 06 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b26 publication-title: Modern Phys. Lett. A doi: 10.1142/S0217732316300056 – volume: 1506 start-page: 011 year: 2015 ident: 10.1016/j.cpc.2018.04.027_b27 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2015/06/011 – volume: 192 start-page: 322 year: 2015 ident: 10.1016/j.cpc.2018.04.027_b55 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2015.03.003 – volume: 59 year: 1999 ident: 10.1016/j.cpc.2018.04.027_b57 publication-title: Phys. Rev D – volume: 1205 start-page: 034 year: 2012 ident: 10.1016/j.cpc.2018.04.027_b25 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2012/05/034 – volume: 182 start-page: 1582 year: 2011 ident: 10.1016/j.cpc.2018.04.027_b42 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2011.03.019 – volume: 1607 start-page: 005 issue: 07 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b30 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/07/005 – volume: 405 start-page: 279 year: 2005 ident: 10.1016/j.cpc.2018.04.027_b3 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2004.08.031 – volume: 118 issue: 2 year: 2017 ident: 10.1016/j.cpc.2018.04.027_b7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.021303 – volume: 11 start-page: 193 year: 2013 ident: 10.1016/j.cpc.2018.04.027_b47 publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2013)193 – volume: 110 issue: 24 year: 2013 ident: 10.1016/j.cpc.2018.04.027_b23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.241306 – volume: 176 start-page: 367 year: 2007 ident: 10.1016/j.cpc.2018.04.027_b39 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2006.11.008 – volume: 10 start-page: 134 year: 2015 ident: 10.1016/j.cpc.2018.04.027_b12 publication-title: J. High Energy Phys. doi: 10.1007/JHEP10(2015)134 – ident: 10.1016/j.cpc.2018.04.027_b29 – volume: 149 start-page: 103 year: 2002 ident: 10.1016/j.cpc.2018.04.027_b40 publication-title: Comput. Phys. Comm. doi: 10.1016/S0010-4655(02)00596-9 – ident: 10.1016/j.cpc.2018.04.027_b64 – volume: 94 issue: 6 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.063506 – volume: 08 start-page: 060 year: 2011 ident: 10.1016/j.cpc.2018.04.027_b24 publication-title: J. High Energy Phys. doi: 10.1007/JHEP08(2011)060 – volume: 117 issue: 11 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.111301 – volume: 185 start-page: 2250 year: 2014 ident: 10.1016/j.cpc.2018.04.027_b62 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2014.04.012 – ident: 10.1016/j.cpc.2018.04.027_b65 – volume: 360 start-page: 145 year: 1991 ident: 10.1016/j.cpc.2018.04.027_b54 publication-title: Nuclear Phys. B doi: 10.1016/0550-3213(91)90438-4 – volume: 91 issue: 9 year: 2015 ident: 10.1016/j.cpc.2018.04.027_b36 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.095010 – volume: 118 issue: 10 year: 2017 ident: 10.1016/j.cpc.2018.04.027_b15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.101802 – volume: 117 issue: 12 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.121303 – ident: 10.1016/j.cpc.2018.04.027_b44 – ident: 10.1016/j.cpc.2018.04.027_b48 – ident: 10.1016/j.cpc.2018.04.027_b5 – volume: 594 start-page: A13 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b2 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201525830 – volume: 1401 start-page: 003 year: 2014 ident: 10.1016/j.cpc.2018.04.027_b19 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/01/003 – volume: 03 start-page: 080 year: 2010 ident: 10.1016/j.cpc.2018.04.027_b33 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2010)080 – volume: 1311 start-page: 039 year: 2013 ident: 10.1016/j.cpc.2018.04.027_b22 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2013/11/039 – volume: 118 issue: 25 year: 2017 ident: 10.1016/j.cpc.2018.04.027_b8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.251301 – volume: 0407 start-page: 008 year: 2004 ident: 10.1016/j.cpc.2018.04.027_b41 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2004/07/008 – volume: 747 start-page: 331 year: 2015 ident: 10.1016/j.cpc.2018.04.027_b46 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2015.06.018 – ident: 10.1016/j.cpc.2018.04.027_b59 – volume: 184 start-page: 1729 year: 2013 ident: 10.1016/j.cpc.2018.04.027_b63 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2013.01.014 – volume: 5–6 start-page: 18 year: 2014 ident: 10.1016/j.cpc.2018.04.027_b43 publication-title: Physics of the Dark Universe doi: 10.1016/j.dark.2014.04.001 – volume: 1608 start-page: 035 issue: 08 year: 2016 ident: 10.1016/j.cpc.2018.04.027_b35 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/08/035 – ident: 10.1016/j.cpc.2018.04.027_b38 |
| SSID | ssj0007793 |
| Score | 2.6934931 |
| Snippet | We present a major upgrade of the micrOMEGAs dark matter code to compute the abundance of feebly interacting dark matter candidates through the freeze-in... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 173 |
| SubjectTerms | Astrophysics Computer Science Dark matter Freeze-in High Energy Physics - Phenomenology micrOMEGAs Physics Relic density |
| Title | micrOMEGAs5.0 : Freeze-in |
| URI | https://dx.doi.org/10.1016/j.cpc.2018.04.027 https://hal.science/hal-01703684 |
| Volume | 231 |
| WOSCitedRecordID | wos000437964200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdYB9JeJj5FN0AV4gkpVVI7sc1bhNoNNEYlhtQ3K_GHtrKlVb808ddz_ogLm5gAiZcouSROcr_kfL74fofQG5NxiZnCiTR5mhBuKssBCZvEFkeykQ_pkD6hp6dsMuHjULN16coJ0KZh19d8_l-hBhmAbVNn_wLu2CgIYB1AhyXADss_Av7qQi4-fxoelcu8n7oR_2ih9XedBI7tlpYglHMIsY2lnVy-TRXZBs_9n_RLlx7sguj9uGu2VlN95bzPUZQegVSHIutllI7X385nm59kIdCQsThlLUS_bmXAeIsKR1kONt-feCPKKE8G3PM6tlZ2EIy9t5OZr18SutzMs2HfsuY-sDDty7klm8yYI6X1VAI3SLK_OJ6hwtLL2TEipjtod0Bzzjpot_wwnHyMvTOlgYg53Hf7p9vN-btxod_5KjvnbdTdeSFnD9F-GD70Sg_7I3RPN4_Rg7GH8Anq_gJ-710vQv8UfR0Nz94fJ6H4RSIxzlaJLAopM_CATY1hUMfrVJsKHFRssNE2d0RntWGVfUjFmTRSsbwqKp5LpXDNCH6GOs2s0c9Rj-bwmRJKiMorQnLOCVfgxqlqUPOKY9VFafuYQgZmeFug5FK0UwCnAjQjrGZESgRopovexlPmnhblroNJqzsR_DrvrwkA-q7TXoOeY_OWB_24PBFWZkmfcMHIJjv4t7YP0d72FX-BOqvFWr9E9-VmdbFcvArvzA9MSHHu |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=micrOMEGAs5.0+%3A+Freeze-in&rft.jtitle=Computer+physics+communications&rft.au=B%C3%A9langer%2C+G.&rft.au=Boudjema%2C+F.&rft.au=Goudelis%2C+A.&rft.au=Pukhov%2C+A.&rft.date=2018-10-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=231&rft.spage=173&rft.epage=186&rft_id=info:doi/10.1016%2Fj.cpc.2018.04.027&rft.externalDocID=S0010465518301437 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |