Complexity and algorithms for injective edge-coloring in graphs

•We start a systematic study of the complexity of INJECTIVE k-EDGE-COLORING.•INJECTIVE k-EDGE-COLORING for k=3,4 is hard for restricted classes of subcubic graphs.•INJECTIVE k-EDGE-COLORING is linear-time solvable on graphs of bounded treewidth.•All planar bipartite subcubic graphs of girth 16 are i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters Jg. 170; S. 106121
Hauptverfasser: Foucaud, Florent, Hocquard, Hervé, Lajou, Dimitri
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.09.2021
Elsevier
Schlagworte:
ISSN:0020-0190, 1872-6119
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We start a systematic study of the complexity of INJECTIVE k-EDGE-COLORING.•INJECTIVE k-EDGE-COLORING for k=3,4 is hard for restricted classes of subcubic graphs.•INJECTIVE k-EDGE-COLORING is linear-time solvable on graphs of bounded treewidth.•All planar bipartite subcubic graphs of girth 16 are injectively 3-edge-colorable. An injective k-edge-coloring of a graph G is an assignment of colors, i.e. integers in {1,…,k}, to the edges of G such that any two edges each incident with one distinct endpoint of a third edge, receive distinct colors. The problem of determining whether such a k-coloring exists is called Injectivek-Edge-Coloring. We show that Injective 3-Edge-Coloring is NP-complete, even for triangle-free cubic graphs, planar subcubic graphs of arbitrarily large girth, and planar bipartite subcubic graphs of girth 6. Injective 4-Edge-Coloring remains NP-complete for cubic graphs. For any k≥45, we show that Injectivek-Edge-Coloring remains NP-complete even for graphs of maximum degree at most 53k. In contrast with these negative results, we show that Injectivek-Edge-Coloring is linear-time solvable on graphs of bounded treewidth. Moreover, we show that all planar bipartite subcubic graphs of girth at least 16 are injectively 3-edge-colorable. In addition, any graph of maximum degree at most k/2 is injectively k-edge-colorable.
AbstractList •We start a systematic study of the complexity of INJECTIVE k-EDGE-COLORING.•INJECTIVE k-EDGE-COLORING for k=3,4 is hard for restricted classes of subcubic graphs.•INJECTIVE k-EDGE-COLORING is linear-time solvable on graphs of bounded treewidth.•All planar bipartite subcubic graphs of girth 16 are injectively 3-edge-colorable. An injective k-edge-coloring of a graph G is an assignment of colors, i.e. integers in {1,…,k}, to the edges of G such that any two edges each incident with one distinct endpoint of a third edge, receive distinct colors. The problem of determining whether such a k-coloring exists is called Injectivek-Edge-Coloring. We show that Injective 3-Edge-Coloring is NP-complete, even for triangle-free cubic graphs, planar subcubic graphs of arbitrarily large girth, and planar bipartite subcubic graphs of girth 6. Injective 4-Edge-Coloring remains NP-complete for cubic graphs. For any k≥45, we show that Injectivek-Edge-Coloring remains NP-complete even for graphs of maximum degree at most 53k. In contrast with these negative results, we show that Injectivek-Edge-Coloring is linear-time solvable on graphs of bounded treewidth. Moreover, we show that all planar bipartite subcubic graphs of girth at least 16 are injectively 3-edge-colorable. In addition, any graph of maximum degree at most k/2 is injectively k-edge-colorable.
An injective k-edge-coloring of a graph G is an assignment of colors, i.e. integers in {1,. .. , k}, to the edges of G such that any two edges each incident with one distinct endpoint of a third edge, receive distinct colors. The problem of determining whether such a k-coloring exists is called Injective k-Edge-Coloring. We show that Injective 3-Edge-Coloring is NP-complete, even for triangle-free cubic graphs, planar subcubic graphs of arbitrarily large girth, and planar bipartite subcubic graphs of girth 6. Injective 4-Edge-Coloring remains NP-complete for cubic graphs. For any k ≥ 45, we show that Injective k-Edge-Coloring remains NP-complete even for graphs of maximum degree at most 5 √ 3k. In contrast with these negative results, we show that Injective k-Edge-Coloring is linear-time solvable on graphs of bounded treewidth. Moreover, we show that all planar bipartite subcubic graphs of girth at least 16 are injectively 3-edge-colorable. In addition, any graph of maximum degree at most k/2 is injectively k-edge-colorable.
ArticleNumber 106121
Author Hocquard, Hervé
Foucaud, Florent
Lajou, Dimitri
Author_xml – sequence: 1
  givenname: Florent
  surname: Foucaud
  fullname: Foucaud, Florent
  email: florent.foucaud@uca.fr
  organization: LIMOS, CNRS UMR 6158, Université Clermont Auvergne, Aubière, France
– sequence: 2
  givenname: Hervé
  surname: Hocquard
  fullname: Hocquard, Hervé
  organization: Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France
– sequence: 3
  givenname: Dimitri
  surname: Lajou
  fullname: Lajou, Dimitri
  organization: Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France
BackLink https://hal.science/hal-03201544$$DView record in HAL
BookMark eNp9kD1PwzAQQC1UJNrCD2DLypBythMnEQOqKqBIlVhgtlz7nDpK48qJKvrvcRXEwNDpdB_vdPdmZNL5Dgm5p7CgQMVjs3CHdsGA0ZgLyugVmdKyYKmgtJqQKQCDFGgFN2TW9w0AiIwXU_K88vtDi99uOCWqM4lqax_csNv3ifUhcV2DenBHTNDUmGrfxm5Xx3pSB3XY9bfk2qq2x7vfOCdfry-fq3W6-Xh7Xy03qeacDqkGi0pst5DrKldaF8zEM3Or1bYwCm3BWMmzSigwiBmUVokSLSieGSMKbvmcPIx7d6qVh-D2KpykV06ulxt5rgFnQPMsO9I4S8dZHXzfB7R_AAV5tiUbGW3Jsy052opM8Y_RblCD890QlGsvkk8jifH9o8Mge-2w02hciO6k8e4C_QM7DIaS
CitedBy_id crossref_primary_10_1007_s10878_024_01188_w
crossref_primary_10_1016_j_tcs_2024_114884
crossref_primary_10_1142_S179383092450112X
crossref_primary_10_1007_s00373_022_02562_3
crossref_primary_10_1007_s10878_024_01234_7
crossref_primary_10_1007_s12190_023_01888_2
crossref_primary_10_1007_s00453_024_01289_2
crossref_primary_10_55525_tjst_1633962
crossref_primary_10_1016_j_tcs_2023_114010
Cites_doi 10.1016/S0012-365X(01)00466-6
10.1016/j.disc.2018.10.018
10.1142/S1793830918500222
10.1007/s00453-007-9044-3
10.1016/0196-6774(83)90032-9
10.2298/FIL1919411C
10.1016/0304-3975(76)90059-1
10.1016/j.ipl.2013.07.026
10.1016/j.jctb.2004.11.001
10.1137/0210055
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.ipl.2021.106121
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6119
ExternalDocumentID oai:HAL:hal-03201544v1
10_1016_j_ipl_2021_106121
S0020019021000351
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c331t-c0fea6bb05c95acc72d1065fcab7daef72283496a0dee408fa68ef0a34dd673f3
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000653022800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0190
IngestDate Tue Oct 14 20:26:50 EDT 2025
Sat Nov 29 07:26:57 EST 2025
Tue Nov 18 21:47:43 EST 2025
Fri Feb 23 02:42:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Subcubic graphs
Graph algorithms
Injective edge-coloring
Planar graphs
Treewidth
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-c0fea6bb05c95acc72d1065fcab7daef72283496a0dee408fa68ef0a34dd673f3
ORCID 0000-0001-8198-693X
OpenAccessLink https://hal.science/hal-03201544
ParticipantIDs hal_primary_oai_HAL_hal_03201544v1
crossref_primary_10_1016_j_ipl_2021_106121
crossref_citationtrail_10_1016_j_ipl_2021_106121
elsevier_sciencedirect_doi_10_1016_j_ipl_2021_106121
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
2021-09
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Information processing letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kloks (br0130) 1994
Hahn, Kratochvíl, Širáň, Sotteau (br0100) 2002; 256
Kostochka, Raspaud, Xu (br0140) 2020
Hocquard, Ochem, Valicov (br0110) 2013; 113
Cole, Kowalik (br0050) 2008; 50
Holyer (br0120) 1981; 10
Borodin, Glebov, Raspaud, Salavatipour (br0020) 2005; 93
Ferdjallah, Kerdjoudj, Raspaud (br0070) 2019
Axenovich, Dörr, Rollin, Ueckerdt (br0010) 2019; 342
Cardoso, Cerdeira, Cruz, Dominic (br0040) 2019; 33
Fouquet, Jolivet (br0080) 1983; 16A
Erdős (br0060) 1988; vol. 38
Garey, Johnson, Stockmeyer (br0090) 1976; 1
Yue, Zhang, Zhang (br0160) 2016; 289
Bu, Qi (br0030) 2018; 10
Leven, Galil (br0150) 1983; 4
Hocquard (10.1016/j.ipl.2021.106121_br0110) 2013; 113
Holyer (10.1016/j.ipl.2021.106121_br0120) 1981; 10
Ferdjallah (10.1016/j.ipl.2021.106121_br0070)
Garey (10.1016/j.ipl.2021.106121_br0090) 1976; 1
Hahn (10.1016/j.ipl.2021.106121_br0100) 2002; 256
Leven (10.1016/j.ipl.2021.106121_br0150) 1983; 4
Cardoso (10.1016/j.ipl.2021.106121_br0040) 2019; 33
Erdős (10.1016/j.ipl.2021.106121_br0060) 1988; vol. 38
Kloks (10.1016/j.ipl.2021.106121_br0130) 1994
Fouquet (10.1016/j.ipl.2021.106121_br0080) 1983; 16A
Kostochka (10.1016/j.ipl.2021.106121_br0140)
Bu (10.1016/j.ipl.2021.106121_br0030) 2018; 10
Yue (10.1016/j.ipl.2021.106121_br0160) 2016; 289
Borodin (10.1016/j.ipl.2021.106121_br0020) 2005; 93
Axenovich (10.1016/j.ipl.2021.106121_br0010) 2019; 342
Cole (10.1016/j.ipl.2021.106121_br0050) 2008; 50
References_xml – volume: 1
  start-page: 237
  year: 1976
  end-page: 267
  ident: br0090
  article-title: Some simplified NP-complete graph problems
  publication-title: Theor. Comput. Sci.
– volume: 50
  start-page: 351
  year: 2008
  end-page: 368
  ident: br0050
  article-title: New linear-time algorithms for edge-coloring planar graphs
  publication-title: Algorithmica
– volume: 16A
  start-page: 141
  year: 1983
  end-page: 150
  ident: br0080
  article-title: Strong edge-coloring of graphs and applications to multi-
  publication-title: Ars Comb.
– volume: 93
  start-page: 303
  year: 2005
  end-page: 311
  ident: br0020
  article-title: Planar graphs without cycles of length from 4 to 7 are 3-colorable
  publication-title: J. Comb. Theory, Ser. B
– volume: 33
  start-page: 6411
  year: 2019
  end-page: 6423
  ident: br0040
  article-title: Injective edge coloring of graphs
  publication-title: Filomat
– volume: 10
  start-page: 718
  year: 1981
  end-page: 720
  ident: br0120
  article-title: The NP-completeness of edge-coloring
  publication-title: SIAM J. Comput.
– volume: 342
  start-page: 511
  year: 2019
  end-page: 519
  ident: br0010
  article-title: Induced and weak induced arboricities
  publication-title: Discrete Math.
– year: 1994
  ident: br0130
  article-title: Treewidth, Computations and Approximations
– volume: 113
  start-page: 836
  year: 2013
  end-page: 843
  ident: br0110
  article-title: Strong edge-colouring and induced matchings
  publication-title: Inf. Process. Lett.
– year: 2020
  ident: br0140
  article-title: Injective edge coloring of graphs with given maximum degree
– volume: vol. 38
  start-page: 81
  year: 1988
  end-page: 92
  ident: br0060
  article-title: Problems and results in combinatorial analysis and graph theory
  publication-title: Graph Theory and Applications
– volume: 289
  start-page: 481
  year: 2016
  end-page: 485
  ident: br0160
  article-title: Note on the perfect EIC-graphs
  publication-title: Appl. Math. Comput.
– volume: 256
  start-page: 179
  year: 2002
  end-page: 192
  ident: br0100
  article-title: On the injective chromatic number of graphs
  publication-title: Discrete Math.
– year: 2019
  ident: br0070
  article-title: Injective edge-coloring of sparse graphs
– volume: 10
  year: 2018
  ident: br0030
  article-title: Injective edge coloring of sparse graphs
  publication-title: Discrete Math. Algorithms Appl.
– volume: 4
  start-page: 35
  year: 1983
  end-page: 44
  ident: br0150
  article-title: NP completeness of finding the chromatic index of regular graphs
  publication-title: J. Algorithms
– volume: 256
  start-page: 179
  issue: 1
  year: 2002
  ident: 10.1016/j.ipl.2021.106121_br0100
  article-title: On the injective chromatic number of graphs
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(01)00466-6
– volume: 342
  start-page: 511
  issue: 2
  year: 2019
  ident: 10.1016/j.ipl.2021.106121_br0010
  article-title: Induced and weak induced arboricities
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2018.10.018
– volume: 16A
  start-page: 141
  year: 1983
  ident: 10.1016/j.ipl.2021.106121_br0080
  article-title: Strong edge-coloring of graphs and applications to multi-k-gons
  publication-title: Ars Comb.
– ident: 10.1016/j.ipl.2021.106121_br0140
– volume: 10
  issue: 02
  year: 2018
  ident: 10.1016/j.ipl.2021.106121_br0030
  article-title: Injective edge coloring of sparse graphs
  publication-title: Discrete Math. Algorithms Appl.
  doi: 10.1142/S1793830918500222
– volume: 50
  start-page: 351
  issue: 3
  year: 2008
  ident: 10.1016/j.ipl.2021.106121_br0050
  article-title: New linear-time algorithms for edge-coloring planar graphs
  publication-title: Algorithmica
  doi: 10.1007/s00453-007-9044-3
– volume: 4
  start-page: 35
  issue: 1
  year: 1983
  ident: 10.1016/j.ipl.2021.106121_br0150
  article-title: NP completeness of finding the chromatic index of regular graphs
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(83)90032-9
– volume: 33
  start-page: 6411
  year: 2019
  ident: 10.1016/j.ipl.2021.106121_br0040
  article-title: Injective edge coloring of graphs
  publication-title: Filomat
  doi: 10.2298/FIL1919411C
– volume: 1
  start-page: 237
  issue: 3
  year: 1976
  ident: 10.1016/j.ipl.2021.106121_br0090
  article-title: Some simplified NP-complete graph problems
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(76)90059-1
– volume: vol. 38
  start-page: 81
  year: 1988
  ident: 10.1016/j.ipl.2021.106121_br0060
  article-title: Problems and results in combinatorial analysis and graph theory
– year: 1994
  ident: 10.1016/j.ipl.2021.106121_br0130
– ident: 10.1016/j.ipl.2021.106121_br0070
– volume: 113
  start-page: 836
  issue: 19
  year: 2013
  ident: 10.1016/j.ipl.2021.106121_br0110
  article-title: Strong edge-colouring and induced matchings
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2013.07.026
– volume: 93
  start-page: 303
  issue: 2
  year: 2005
  ident: 10.1016/j.ipl.2021.106121_br0020
  article-title: Planar graphs without cycles of length from 4 to 7 are 3-colorable
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/j.jctb.2004.11.001
– volume: 289
  start-page: 481
  year: 2016
  ident: 10.1016/j.ipl.2021.106121_br0160
  article-title: Note on the perfect EIC-graphs
  publication-title: Appl. Math. Comput.
– volume: 10
  start-page: 718
  issue: 4
  year: 1981
  ident: 10.1016/j.ipl.2021.106121_br0120
  article-title: The NP-completeness of edge-coloring
  publication-title: SIAM J. Comput.
  doi: 10.1137/0210055
SSID ssj0006437
Score 2.40249
Snippet •We start a systematic study of the complexity of INJECTIVE k-EDGE-COLORING.•INJECTIVE k-EDGE-COLORING for k=3,4 is hard for restricted classes of subcubic...
An injective k-edge-coloring of a graph G is an assignment of colors, i.e. integers in {1,. .. , k}, to the edges of G such that any two edges each incident...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 106121
SubjectTerms Computer Science
Data Structures and Algorithms
Graph algorithms
Injective edge-coloring
Planar graphs
Subcubic graphs
Treewidth
Title Complexity and algorithms for injective edge-coloring in graphs
URI https://dx.doi.org/10.1016/j.ipl.2021.106121
https://hal.science/hal-03201544
Volume 170
WOSCitedRecordID wos000653022800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBabTQ-99F2avjClpwYHW37IPpWlJGxLCIWmsDczq0fjZfFuHe-Sn9_Rw_ImJaE59GKMkAfZ83k0kma-IeQjo4oKBVkocJUTpsDiEOK8DJMUeIIeiSyVIXE9ZWdnxWxWfh-NfvS5MNsla5ri6qpc_1dVYxsqW6fO3kPdXig24D0qHa-odrz-k-L1H65ZLjvLrATLX6u27i4s8cJh3SysiTvUG2mh5qxuXVqL4a6-3PVWXa6SgcjaZhTovkuTAjQkjqw2HDYGKScobSeSZrrivzdgg-enaJTsqbyPAQJ8H2PzdJJVW-9uQNDYR1gNCQE6ts1W_fRG1ZYDcWZRrzttIvRfFttuHiyO6rU-CKLx0dD3Ojv2jVnLxxL2YWqLCkVUWkRlReyRfcqyshiT_cnX49k3P0Hrs0ob-WPH3R92m7C_G-O4zV3Zu-g33o0jcv6EPHIriGBiNf-UjGTzjDzuq3MEzlg_J58HIAQIhGAAQoBaDTwQgmtAwPbAAuEF-XlyfP5lGrpyGSFPkrgLeaQk5PN5lPEyA84ZFfgOmeIwZwKkYprpKC1ziISUaVQoyAupIkhSIXKWqOQlGTerRr4igRKxKkUsRDKP0wwoZIxGHETKS4kzAj0gUf9VKu645HVJk2V1qzYOyCf_yNoSqdzVOe0_deU8QevhVQibux77gGrx4jVz-nRyWum2KKGm3t42fn2fgbwhDwfIvyXjrt3Id-QB33b1ZfveAesPrpaJ0A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+and+algorithms+for+injective+edge-coloring+in+graphs&rft.jtitle=Information+processing+letters&rft.au=Foucaud%2C+Florent&rft.au=Hocquard%2C+Herv%C3%A9&rft.au=Lajou%2C+Dimitri&rft.date=2021-09-01&rft.issn=0020-0190&rft.volume=170&rft.spage=106121&rft_id=info:doi/10.1016%2Fj.ipl.2021.106121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ipl_2021_106121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon