On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions
We consider the gradient (or steepest) descent method with exact line search applied to a strongly convex function with Lipschitz continuous gradient. We establish the exact worst-case rate of convergence of this scheme, and show that this worst-case behavior is exhibited by a certain convex quadrat...
Uloženo v:
| Vydáno v: | Optimization letters Ročník 11; číslo 7; s. 1185 - 1199 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2017
|
| Témata: | |
| ISSN: | 1862-4472, 1862-4480 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the gradient (or steepest) descent method with exact line search applied to a strongly convex function with Lipschitz continuous gradient. We establish the exact worst-case rate of convergence of this scheme, and show that this worst-case behavior is exhibited by a certain convex quadratic function. We also give the tight worst-case complexity bound for a noisy variant of gradient descent method, where exact line-search is performed in a search direction that differs from negative gradient by at most a prescribed relative tolerance. The proofs are computer-assisted, and rely on the resolutions of semidefinite programming performance estimation problems as introduced in the paper (Drori and Teboulle, Math Progr 145(1–2):451–482,
2014
). |
|---|---|
| ISSN: | 1862-4472 1862-4480 |
| DOI: | 10.1007/s11590-016-1087-4 |