Distributed source coding for utilization of inter/intra source correlation
In many practical distributed source coding (DSC) applications, correlation information plays several important roles at decoding, which provides the prior knowledge of the source statistics for the decoding algorithms to start work. Therefore, the accurate utilization of such correlation informatio...
Saved in:
| Published in: | Signal processing. Image communication Vol. 105; p. 116698 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.07.2022
Elsevier BV |
| Subjects: | |
| ISSN: | 0923-5965, 1879-2677 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In many practical distributed source coding (DSC) applications, correlation information plays several important roles at decoding, which provides the prior knowledge of the source statistics for the decoding algorithms to start work. Therefore, the accurate utilization of such correlation information has a significant impact on decoding performance. In this work, a hybrid DSC (HYDSC) scheme is proposed to generate the “soft” information about the clean source symbols, which allows the channel code-based DSC scheme to effectively utilize the inter/intra source correlation without requiring prior knowledge of its statistics, so as to further improve the decoding performance. Further performance improvement, at the cost of moderate increasing in computational complexity, can be achieved by performing additional iterations on the basis of the HYDSC scheme. We mainly focus on, in particular, applications where Slepian–Wolf coding and usual source coding are jointly used to exploit both the correlation among the adjoining source symbols and the correlation between the sources. Experiment results indicate that the presented scheme not only show superior performance from an error correction viewpoint, but also achieve better compression ratio in the case of strong internal correlation of the source sequence, as compared with the previous DSC techniques.
•Analyze the limitations of source code-based and channel code-based DSC schemes.•More accurate “soft” information about the source symbols is generated.•The proposed scheme allows the channel code-based DSC scheme to effectively utilize the inter/intra source correlation.•The scheme shows superior error correction and compression performance. |
|---|---|
| AbstractList | In many practical distributed source coding (DSC) applications, correlation information plays several important roles at decoding, which provides the prior knowledge of the source statistics for the decoding algorithms to start work. Therefore, the accurate utilization of such correlation information has a significant impact on decoding performance. In this work, a hybrid DSC (HYDSC) scheme is proposed to generate the “soft” information about the clean source symbols, which allows the channel code-based DSC scheme to effectively utilize the inter/intra source correlation without requiring prior knowledge of its statistics, so as to further improve the decoding performance. Further performance improvement, at the cost of moderate increasing in computational complexity, can be achieved by performing additional iterations on the basis of the HYDSC scheme. We mainly focus on, in particular, applications where Slepian–Wolf coding and usual source coding are jointly used to exploit both the correlation among the adjoining source symbols and the correlation between the sources. Experiment results indicate that the presented scheme not only show superior performance from an error correction viewpoint, but also achieve better compression ratio in the case of strong internal correlation of the source sequence, as compared with the previous DSC techniques.
•Analyze the limitations of source code-based and channel code-based DSC schemes.•More accurate “soft” information about the source symbols is generated.•The proposed scheme allows the channel code-based DSC scheme to effectively utilize the inter/intra source correlation.•The scheme shows superior error correction and compression performance. In many practical distributed source coding (DSC) applications, correlation information plays several important roles at decoding, which provides the prior knowledge of the source statistics for the decoding algorithms to start work. Therefore, the accurate utilization of such correlation information has a significant impact on decoding performance. In this work, a hybrid DSC (HYDSC) scheme is proposed to generate the "soft" information about the clean source symbols, which allows the channel code-based DSC scheme to effectively utilize the inter/intra source correlation without requiring prior knowledge of its statistics, so as to further improve the decoding performance. Further performance improvement, at the cost of moderate increasing in computational complexity, can be achieved by performing additional iterations on the basis of the HYDSC scheme. We mainly focus on, in particular, applications where Slepian–Wolf coding and usual source coding are jointly used to exploit both the correlation among the adjoining source symbols and the correlation between the sources. Experiment results indicate that the presented scheme not only show superior performance from an error correction viewpoint, but also achieve better compression ratio in the case of strong internal correlation of the source sequence, as compared with the previous DSC techniques. |
| ArticleNumber | 116698 |
| Author | Lang, Xun Chen, Jianhua Li, Jingjian Mo, Hong |
| Author_xml | – sequence: 1 givenname: Hong surname: Mo fullname: Mo, Hong – sequence: 2 givenname: Jianhua orcidid: 0000-0002-3637-2565 surname: Chen fullname: Chen, Jianhua email: chenjh@ynu.edu.cn – sequence: 3 givenname: Xun surname: Lang fullname: Lang, Xun – sequence: 4 givenname: Jingjian surname: Li fullname: Li, Jingjian |
| BookMark | eNqFkD1PwzAURS1UJNrCL2CJxJzUH4kdDwyofIpKLDBbif1SOQpxsR0k-PWkDRISAyzPyzl-990FmvWuB4TOCc4IJnzVZva12kJGMaUZIZzL8gjNSSlkSrkQMzTHkrK0kLw4QYsQWowxzbGco8drG6K39RDBJMENXkOinbH9NmmcT4ZoO_tZRev6xDWJ7SP41Th99QN7D92BOEXHTdUFOPt-l-jl9uZ5fZ9unu4e1lebVDNGYlobRgWVOpeElZyLhnFuKkygFKYwJeUmJ6JmIAuq61LoHEwtC0NqXTa5hpot0cX07867twFCVO2YpR9XKsrLAstCYjZScqK0dyF4aJS28ZBzTG87RbDad6dadehO7btTU3ejy365Oz9S_uMf63KyYDz-3YJXQVvoNRjrQUdlnP3T_wJz6Yw_ |
| CitedBy_id | crossref_primary_10_1109_TIP_2024_3463492 crossref_primary_10_1109_ACCESS_2025_3550790 |
| Cites_doi | 10.1016/j.sigpro.2006.03.013 10.1016/j.image.2013.03.007 10.1109/TIT.2012.2216503 10.1109/LCOMM.2002.804244 10.1109/JSEN.2012.2201936 10.1016/j.image.2015.01.003 10.1109/TIT.2008.920187 10.1109/TIP.2008.2004619 10.1109/LCOMM.2017.2768036 10.1109/TIP.2011.2175936 10.1109/ACCESS.2018.2877150 10.1109/TIT.1973.1055037 10.1109/TIT.2002.808103 10.1016/j.image.2019.03.016 10.1016/j.sigpro.2011.05.003 10.1109/TSP.2009.2014280 10.1109/18.910572 10.1109/JSEN.2011.2109947 10.1109/MSP.2004.1328091 10.1016/j.sigpro.2015.04.013 10.1109/LCOMM.2014.2385096 10.1109/TIT.2004.839518 10.1109/TIT.2004.836667 10.1016/j.sigpro.2020.107686 10.1109/4234.957380 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Jul 2022 |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Jul 2022 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.image.2022.116698 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1879-2677 |
| ExternalDocumentID | 10_1016_j_image_2022_116698 S092359652200042X |
| GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD AGCQF JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c331t-bd32729c49138667f366da01e87d5d826d417b3e952cb87c4edb95d1bc8f4ceb3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000794236100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0923-5965 |
| IngestDate | Fri Sep 12 11:52:07 EDT 2025 Sat Nov 29 07:16:56 EST 2025 Tue Nov 18 21:49:02 EST 2025 Fri Feb 23 02:40:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Distributed source coding (DSC) Correlation estimation Correlation utilization Extraction-based techniques Slepian–Wolf coding |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-bd32729c49138667f366da01e87d5d826d417b3e952cb87c4edb95d1bc8f4ceb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3637-2565 |
| PQID | 2685095903 |
| PQPubID | 2045400 |
| ParticipantIDs | proquest_journals_2685095903 crossref_citationtrail_10_1016_j_image_2022_116698 crossref_primary_10_1016_j_image_2022_116698 elsevier_sciencedirect_doi_10_1016_j_image_2022_116698 |
| PublicationCentury | 2000 |
| PublicationDate | July 2022 2022-07-00 20220701 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Signal processing. Image communication |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Pradhan, Ramchandran (b13) 2003; 49 Grangetto, Magli, Olmo (b9) 2009; 57 Artigas, Malinowski, Guillemot, Torres (b10) 2007 Cheung, Wang, Ortega (b20) 2008; 17 Ordentlich, Seroussi, Verdú, Viswanathan (b26) 2008; 54 Ordentlich, Viswanathan, Weinberger (b27) 2012; 59 Lajnef, Guillemot, Siohan (b15) 2006; 86 Slepian, Wolf (b8) 1973; 19 Jose, Pe (b23) 2015 Liveris, Xiong, Georghiades (b16) 2002; 6 Mo, Chen, Li, Zhao (b25) 2021; 1914 Lang, ur Rehman, Zhang, Xie, Su (b29) 2020; 176 Liu, Zhang, Cui (b30) 2014; 19 Ha, Kim, McLaughlin (b17) 2004; 50 Zhou, Wong, Yang (b11) 2015; 116 He, Chen, Li (b21) 2019 Garcia-Frias (b14) 2001; 5 Zhou, Fu, Yang, Ho (b12) 2019; 76 Milani, Calvagno (b7) 2013; 28 Lang, Zheng, Zhang, Lu, Xie, Horch, Su (b28) 2018; 6 Xiong, Liveris, Cheng (b1) 2004; 21 Brites, Pereira (b6) 2015; 32 Jin, Yang, Yang (b19) 2017; 22 Said (b31) 2004 Arjmandi, Lahouti (b4) 2011; 11 Weissman, Ordentlich, Seroussi, Verdú, Weinberger (b22) 2005; 51 Zengyou, Jin, Juan (b32) 2011 Kschischang, Frey, Loeliger (b24) 2001; 47 Varodayan, Lin, Girod (b18) 2011; 21 Arjmandi, Taki, Lahouti (b3) 2011; 91 Barceló-Lladó, Pérez, Seco-Granados (b5) 2012; 12 Pradhan, Ramchandran (b2) 2000 He (10.1016/j.image.2022.116698_b21) 2019 Lang (10.1016/j.image.2022.116698_b29) 2020; 176 Cheung (10.1016/j.image.2022.116698_b20) 2008; 17 Brites (10.1016/j.image.2022.116698_b6) 2015; 32 Zhou (10.1016/j.image.2022.116698_b12) 2019; 76 Kschischang (10.1016/j.image.2022.116698_b24) 2001; 47 Ordentlich (10.1016/j.image.2022.116698_b26) 2008; 54 Weissman (10.1016/j.image.2022.116698_b22) 2005; 51 Grangetto (10.1016/j.image.2022.116698_b9) 2009; 57 Ha (10.1016/j.image.2022.116698_b17) 2004; 50 Ordentlich (10.1016/j.image.2022.116698_b27) 2012; 59 Arjmandi (10.1016/j.image.2022.116698_b4) 2011; 11 Jin (10.1016/j.image.2022.116698_b19) 2017; 22 Liu (10.1016/j.image.2022.116698_b30) 2014; 19 Lang (10.1016/j.image.2022.116698_b28) 2018; 6 Zhou (10.1016/j.image.2022.116698_b11) 2015; 116 Pradhan (10.1016/j.image.2022.116698_b2) 2000 Slepian (10.1016/j.image.2022.116698_b8) 1973; 19 Varodayan (10.1016/j.image.2022.116698_b18) 2011; 21 Zengyou (10.1016/j.image.2022.116698_b32) 2011 Said (10.1016/j.image.2022.116698_b31) 2004 Xiong (10.1016/j.image.2022.116698_b1) 2004; 21 Jose (10.1016/j.image.2022.116698_b23) 2015 Artigas (10.1016/j.image.2022.116698_b10) 2007 Liveris (10.1016/j.image.2022.116698_b16) 2002; 6 Mo (10.1016/j.image.2022.116698_b25) 2021; 1914 Pradhan (10.1016/j.image.2022.116698_b13) 2003; 49 Garcia-Frias (10.1016/j.image.2022.116698_b14) 2001; 5 Lajnef (10.1016/j.image.2022.116698_b15) 2006; 86 Milani (10.1016/j.image.2022.116698_b7) 2013; 28 Barceló-Lladó (10.1016/j.image.2022.116698_b5) 2012; 12 Arjmandi (10.1016/j.image.2022.116698_b3) 2011; 91 |
| References_xml | – volume: 91 start-page: 2661 year: 2011 end-page: 2666 ident: b3 article-title: Lifetime maximized data gathering in wireless sensor networks using limited-order distributed source coding publication-title: Signal Process. – volume: 19 start-page: 471 year: 1973 end-page: 480 ident: b8 article-title: Noiseless coding of correlated information sources publication-title: IEEE Trans. Inform. Theory – start-page: 562 year: 2004 ident: b31 article-title: Comparative analysis of arithmetic coding computational complexity publication-title: Data Compression Conference – volume: 50 start-page: 2824 year: 2004 end-page: 2836 ident: b17 article-title: Rate-compatible puncturing of low-density parity-check codes publication-title: IEEE Trans. Inform. Theory – volume: 51 start-page: 5 year: 2005 end-page: 28 ident: b22 article-title: Universal discrete denoising: Known channel publication-title: IEEE Trans. Inform. Theory – volume: 21 start-page: 80 year: 2004 end-page: 94 ident: b1 article-title: Distributed source coding for sensor networks publication-title: IEEE Signal Process. Mag. – volume: 22 start-page: 49 year: 2017 end-page: 52 ident: b19 article-title: Distributed joint source-channel decoding using systematic polar codes publication-title: IEEE Commun. Lett. – start-page: 1537 year: 2019 end-page: 1541 ident: b21 article-title: Distributed source coding based on denoising theory publication-title: 2019 IEEE 5th International Conference on Computer and Communications (ICCC) – volume: 176 year: 2020 ident: b29 article-title: Median ensemble empirical mode decomposition publication-title: Signal Process. – volume: 47 start-page: 498 year: 2001 end-page: 519 ident: b24 article-title: Factor graphs and the sum–product algorithm publication-title: IEEE Trans. Inform. Theory – volume: 57 start-page: 2245 year: 2009 end-page: 2257 ident: b9 article-title: Distributed arithmetic coding for the Slepian–Wolf problem publication-title: IEEE Trans. Signal Process. – volume: 5 start-page: 417 year: 2001 end-page: 419 ident: b14 article-title: Compression of correlated binary sources using turbo codes publication-title: IEEE Commun. Lett. – start-page: 889 year: 2011 end-page: 892 ident: b32 article-title: Research of LDPC decoding based on LLR BP algorithm publication-title: Proceedings of 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, Vol. 2 – volume: 6 start-page: 440 year: 2002 end-page: 442 ident: b16 article-title: Compression of binary sources with side information at the decoder using LDPC codes publication-title: IEEE Commun. Lett. – volume: 32 start-page: 81 year: 2015 end-page: 105 ident: b6 article-title: Distributed video coding: Assessing the HEVC upgrade publication-title: Signal Process., Image Commun. – volume: 116 start-page: 29 year: 2015 end-page: 37 ident: b11 article-title: Distributed arithmetic coding with interval swapping publication-title: Signal Process. – volume: 19 start-page: 147 year: 2014 end-page: 150 ident: b30 article-title: Variable-node-based dynamic scheduling strategy for belief-propagation decoding of LDPC codes publication-title: IEEE Commun. Lett. – volume: 12 start-page: 2799 year: 2012 end-page: 2806 ident: b5 article-title: Enhanced correlation estimators for distributed source coding in large wireless sensor networks publication-title: IEEE Sens. J. – start-page: 430 year: 2015 end-page: 435 ident: b23 article-title: Analysis of hard decision and soft decision decoding algorithms of LDPC codes in AWGN publication-title: 2015 IEEE International Advance Computing Conference (IACC) – volume: 11 start-page: 2094 year: 2011 end-page: 2101 ident: b4 article-title: Resource optimized distributed source coding for complexity constrained data gathering wireless sensor networks publication-title: IEEE Sens. J. – volume: 76 start-page: 118 year: 2019 end-page: 124 ident: b12 article-title: Distributed video coding using interval overlapped arithmetic coding publication-title: Signal Process., Image Commun. – volume: 28 start-page: 553 year: 2013 end-page: 568 ident: b7 article-title: Distributed video coding based on lossy syndromes generated in hybrid pixel/transform domain publication-title: Signal Process., Image Commun. – volume: 86 start-page: 3131 year: 2006 end-page: 3149 ident: b15 article-title: Distributed coding of three binary and Gaussian correlated sources using punctured turbo codes publication-title: Signal Process. – volume: 6 start-page: 65521 year: 2018 end-page: 65538 ident: b28 article-title: Fast multivariate empirical mode decomposition publication-title: IEEE Access – volume: 1914 start-page: 012022 year: 2021 ident: b25 article-title: A sampling-based distributed source coding scheme publication-title: J. Phys.: Conf. Ser. – volume: 17 start-page: 2122 year: 2008 end-page: 2137 ident: b20 article-title: Sampling-based correlation estimation for distributed source coding under rate and complexity constraints publication-title: IEEE Trans. Image Process. – start-page: 363 year: 2000 end-page: 372 ident: b2 article-title: Distributed source coding: Symmetric rates and applications to sensor networks publication-title: Proceedings DCC 2000. Data Compression Conference – volume: 21 start-page: 2630 year: 2011 end-page: 2640 ident: b18 article-title: Adaptive distributed source coding publication-title: IEEE Trans. Image Process. – volume: 49 start-page: 626 year: 2003 end-page: 643 ident: b13 article-title: Distributed source coding using syndromes (DISCUS): Design and construction publication-title: IEEE Trans. Inform. Theory – volume: 59 start-page: 526 year: 2012 end-page: 545 ident: b27 article-title: Twice-universal denoising publication-title: IEEE Trans. Inform. Theory – start-page: II year: 2007 end-page: 9 ident: b10 article-title: Overlapped quasi-arithmetic codes for distributed video coding publication-title: 2007 IEEE International Conference on Image Processing, Vol. 2 – volume: 54 start-page: 2243 year: 2008 end-page: 2262 ident: b26 article-title: Universal algorithms for channel decoding of uncompressed sources publication-title: IEEE Trans. Inform. Theory – volume: 86 start-page: 3131 issue: 11 year: 2006 ident: 10.1016/j.image.2022.116698_b15 article-title: Distributed coding of three binary and Gaussian correlated sources using punctured turbo codes publication-title: Signal Process. doi: 10.1016/j.sigpro.2006.03.013 – volume: 28 start-page: 553 issue: 6 year: 2013 ident: 10.1016/j.image.2022.116698_b7 article-title: Distributed video coding based on lossy syndromes generated in hybrid pixel/transform domain publication-title: Signal Process., Image Commun. doi: 10.1016/j.image.2013.03.007 – volume: 59 start-page: 526 issue: 1 year: 2012 ident: 10.1016/j.image.2022.116698_b27 article-title: Twice-universal denoising publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2012.2216503 – volume: 6 start-page: 440 issue: 10 year: 2002 ident: 10.1016/j.image.2022.116698_b16 article-title: Compression of binary sources with side information at the decoder using LDPC codes publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2002.804244 – volume: 12 start-page: 2799 issue: 9 year: 2012 ident: 10.1016/j.image.2022.116698_b5 article-title: Enhanced correlation estimators for distributed source coding in large wireless sensor networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2012.2201936 – volume: 32 start-page: 81 year: 2015 ident: 10.1016/j.image.2022.116698_b6 article-title: Distributed video coding: Assessing the HEVC upgrade publication-title: Signal Process., Image Commun. doi: 10.1016/j.image.2015.01.003 – volume: 54 start-page: 2243 issue: 5 year: 2008 ident: 10.1016/j.image.2022.116698_b26 article-title: Universal algorithms for channel decoding of uncompressed sources publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2008.920187 – volume: 17 start-page: 2122 issue: 11 year: 2008 ident: 10.1016/j.image.2022.116698_b20 article-title: Sampling-based correlation estimation for distributed source coding under rate and complexity constraints publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2008.2004619 – volume: 22 start-page: 49 issue: 1 year: 2017 ident: 10.1016/j.image.2022.116698_b19 article-title: Distributed joint source-channel decoding using systematic polar codes publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2017.2768036 – volume: 21 start-page: 2630 issue: 5 year: 2011 ident: 10.1016/j.image.2022.116698_b18 article-title: Adaptive distributed source coding publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2175936 – volume: 6 start-page: 65521 year: 2018 ident: 10.1016/j.image.2022.116698_b28 article-title: Fast multivariate empirical mode decomposition publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2877150 – volume: 19 start-page: 471 issue: 4 year: 1973 ident: 10.1016/j.image.2022.116698_b8 article-title: Noiseless coding of correlated information sources publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.1973.1055037 – volume: 49 start-page: 626 issue: 3 year: 2003 ident: 10.1016/j.image.2022.116698_b13 article-title: Distributed source coding using syndromes (DISCUS): Design and construction publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2002.808103 – volume: 76 start-page: 118 year: 2019 ident: 10.1016/j.image.2022.116698_b12 article-title: Distributed video coding using interval overlapped arithmetic coding publication-title: Signal Process., Image Commun. doi: 10.1016/j.image.2019.03.016 – start-page: II year: 2007 ident: 10.1016/j.image.2022.116698_b10 article-title: Overlapped quasi-arithmetic codes for distributed video coding – volume: 91 start-page: 2661 issue: 11 year: 2011 ident: 10.1016/j.image.2022.116698_b3 article-title: Lifetime maximized data gathering in wireless sensor networks using limited-order distributed source coding publication-title: Signal Process. doi: 10.1016/j.sigpro.2011.05.003 – volume: 57 start-page: 2245 issue: 6 year: 2009 ident: 10.1016/j.image.2022.116698_b9 article-title: Distributed arithmetic coding for the Slepian–Wolf problem publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2014280 – start-page: 430 year: 2015 ident: 10.1016/j.image.2022.116698_b23 article-title: Analysis of hard decision and soft decision decoding algorithms of LDPC codes in AWGN – start-page: 562 year: 2004 ident: 10.1016/j.image.2022.116698_b31 article-title: Comparative analysis of arithmetic coding computational complexity – start-page: 363 year: 2000 ident: 10.1016/j.image.2022.116698_b2 article-title: Distributed source coding: Symmetric rates and applications to sensor networks – volume: 1914 start-page: 012022 issue: 1 year: 2021 ident: 10.1016/j.image.2022.116698_b25 article-title: A sampling-based distributed source coding scheme publication-title: J. Phys.: Conf. Ser. – start-page: 889 year: 2011 ident: 10.1016/j.image.2022.116698_b32 article-title: Research of LDPC decoding based on LLR BP algorithm – volume: 47 start-page: 498 issue: 2 year: 2001 ident: 10.1016/j.image.2022.116698_b24 article-title: Factor graphs and the sum–product algorithm publication-title: IEEE Trans. Inform. Theory doi: 10.1109/18.910572 – volume: 11 start-page: 2094 issue: 9 year: 2011 ident: 10.1016/j.image.2022.116698_b4 article-title: Resource optimized distributed source coding for complexity constrained data gathering wireless sensor networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2011.2109947 – volume: 21 start-page: 80 issue: 5 year: 2004 ident: 10.1016/j.image.2022.116698_b1 article-title: Distributed source coding for sensor networks publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2004.1328091 – volume: 116 start-page: 29 year: 2015 ident: 10.1016/j.image.2022.116698_b11 article-title: Distributed arithmetic coding with interval swapping publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.04.013 – volume: 19 start-page: 147 issue: 2 year: 2014 ident: 10.1016/j.image.2022.116698_b30 article-title: Variable-node-based dynamic scheduling strategy for belief-propagation decoding of LDPC codes publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2014.2385096 – volume: 51 start-page: 5 issue: 1 year: 2005 ident: 10.1016/j.image.2022.116698_b22 article-title: Universal discrete denoising: Known channel publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2004.839518 – volume: 50 start-page: 2824 issue: 11 year: 2004 ident: 10.1016/j.image.2022.116698_b17 article-title: Rate-compatible puncturing of low-density parity-check codes publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2004.836667 – start-page: 1537 year: 2019 ident: 10.1016/j.image.2022.116698_b21 article-title: Distributed source coding based on denoising theory – volume: 176 year: 2020 ident: 10.1016/j.image.2022.116698_b29 article-title: Median ensemble empirical mode decomposition publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107686 – volume: 5 start-page: 417 issue: 10 year: 2001 ident: 10.1016/j.image.2022.116698_b14 article-title: Compression of correlated binary sources using turbo codes publication-title: IEEE Commun. Lett. doi: 10.1109/4234.957380 |
| SSID | ssj0002409 |
| Score | 2.331668 |
| Snippet | In many practical distributed source coding (DSC) applications, correlation information plays several important roles at decoding, which provides the prior... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116698 |
| SubjectTerms | Algorithms Coding Compression ratio Compressive strength Correlation Correlation estimation Correlation utilization Decoding Distributed source coding (DSC) Error correction Extraction-based techniques Slepian–Wolf coding Symbols |
| Title | Distributed source coding for utilization of inter/intra source correlation |
| URI | https://dx.doi.org/10.1016/j.image.2022.116698 https://www.proquest.com/docview/2685095903 |
| Volume | 105 |
| WOSCitedRecordID | wos000794236100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002409 issn: 0923-5965 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMceCwgFhaUA-KypMRxHvZxBV3tQlWQ6K56sxLbWVKVtPSx2hO_nXFsJ-FVwYFL1Lp2ks58mRlP5oHQi1ikKiGh8GWUST8qssKnOMPwNVCYZaCy6hftF6N0PKbTKfvY631zuTBX87Sq6PU1W_5XVsMYMFunzv4Du5uTwgB8BqbDEdgOx79i_FtdCld3sVLaI65d80diIV3AJFx4blMvXbUIXUCk1D7edvpqZWPkurbrp_JSm65Lk1qgGy4cnX3RIT-im2TScLD2wZ4urGasIwhsIggg8vO2UQcj67GebtvooNLMqy5nDr3WMRG2QazWW9ZkzFx0vY4h8WNm2kMMlJG5NGV-mNhuLk4oB3FHrOLfCnvjd5gNSv1fB_oWQAEkielq_WNp7fEHfnI-GvHJcDp5ufzq665j-u28bcFyA-2FacxoH-0dnw2n7xpdDvaOqdZob9vVraojBH-57p9sm5-0fG26TO6hO3bP4R0brNxHPVXto7t2_-FZ6b6GIdfiw43to9udepUP0PsOtjwDFs9gywNseR1seYvCq7H1ukZWO7lB1kN0fjKcvDn1bTcOXxCCN34uSQg7MRExTGiSpAVJEpkFWNFUxhJ2qTLCaU4Ui0OR01RESuYsljgXtIiEyskj1K8WlXqMvECmBDR0TgpYxArM8gIIHAYCSxrIQByg0NGRC1uqXndMmXMXkzjjNfG5Jj43xD9Ar5pFS1OpZff0xDGIW2PTGJEc4LV74aFjJ7eP_ZqHCY21Rz0gT3b__BTdap-VQ9TfrLbqGboprjblevXcwu87isup0Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+source+coding+for+utilization+of+inter%2Fintra+source+correlation&rft.jtitle=Signal+processing.+Image+communication&rft.au=Mo%2C+Hong&rft.au=Chen%2C+Jianhua&rft.au=Lang%2C+Xun&rft.au=Li%2C+Jingjian&rft.date=2022-07-01&rft.pub=Elsevier+BV&rft.issn=0923-5965&rft.eissn=1879-2677&rft.volume=105&rft.spage=1&rft_id=info:doi/10.1016%2Fj.image.2022.116698&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-5965&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-5965&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-5965&client=summon |